Merge branch 'develop' into feature/advanced-status-command

This commit is contained in:
Sébastien Moreau
2017-11-05 10:32:53 -05:00
committed by GitHub
22 changed files with 570 additions and 274 deletions

View File

@@ -1,3 +1,3 @@
__version__ = '0.12.0'
__version__ = '0.13.0'
from . import main

View File

@@ -5,10 +5,10 @@ from datetime import timedelta
import arrow
import talib.abstract as ta
from pandas import DataFrame, to_datetime
from qtpylib.indicators import awesome_oscillator, crossed_above
from freqtrade import exchange
from freqtrade.exchange import Bittrex, get_ticker_history
from freqtrade.vendor.qtpylib.indicators import awesome_oscillator
logging.basicConfig(level=logging.DEBUG,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
@@ -17,8 +17,8 @@ logger = logging.getLogger(__name__)
def parse_ticker_dataframe(ticker: list) -> DataFrame:
"""
Analyses the trend for the given pair
:param pair: pair as str in format BTC_ETH or BTC-ETH
Analyses the trend for the given ticker history
:param ticker: See exchange.get_ticker_history
:return: DataFrame
"""
df = DataFrame(ticker) \
@@ -43,8 +43,17 @@ def populate_indicators(dataframe: DataFrame) -> DataFrame:
dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)
dataframe['mfi'] = ta.MFI(dataframe)
dataframe['cci'] = ta.CCI(dataframe)
dataframe['rsi'] = ta.RSI(dataframe)
dataframe['mom'] = ta.MOM(dataframe)
dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)
dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50)
dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)
dataframe['ao'] = awesome_oscillator(dataframe)
macd = ta.MACD(dataframe)
dataframe['macd'] = macd['macd']
dataframe['macdsignal'] = macd['macdsignal']
dataframe['macdhist'] = macd['macdhist']
return dataframe
@@ -152,7 +161,7 @@ def plot_dataframe(dataframe: DataFrame, pair: str) -> None:
if __name__ == '__main__':
# Install PYQT5==5.9 manually if you want to test this helper function
while True:
exchange.EXCHANGE = Bittrex({'key': '', 'secret': ''})
exchange._API = Bittrex({'key': '', 'secret': ''})
test_pair = 'BTC_ETH'
# for pair in ['BTC_ANT', 'BTC_ETH', 'BTC_GNT', 'BTC_ETC']:
# get_buy_signal(pair)

View File

@@ -1,6 +1,6 @@
import enum
import logging
from typing import List
from typing import List, Dict
import arrow
@@ -10,7 +10,7 @@ from freqtrade.exchange.interface import Exchange
logger = logging.getLogger(__name__)
# Current selected exchange
EXCHANGE: Exchange = None
_API: Exchange = None
_CONF: dict = {}
@@ -29,7 +29,7 @@ def init(config: dict) -> None:
:param config: config to use
:return: None
"""
global _CONF, EXCHANGE
global _CONF, _API
_CONF.update(config)
@@ -45,7 +45,7 @@ def init(config: dict) -> None:
except KeyError:
raise RuntimeError('Exchange {} is not supported'.format(name))
EXCHANGE = exchange_class(exchange_config)
_API = exchange_class(exchange_config)
# Check if all pairs are available
validate_pairs(config['exchange']['pair_whitelist'])
@@ -58,58 +58,86 @@ def validate_pairs(pairs: List[str]) -> None:
:param pairs: list of pairs
:return: None
"""
markets = EXCHANGE.get_markets()
markets = _API.get_markets()
for pair in pairs:
if pair not in markets:
raise RuntimeError('Pair {} is not available at {}'.format(pair, EXCHANGE.name.lower()))
raise RuntimeError('Pair {} is not available at {}'.format(pair, _API.name.lower()))
def buy(pair: str, rate: float, amount: float) -> str:
if _CONF['dry_run']:
return 'dry_run'
return 'dry_run_buy'
return EXCHANGE.buy(pair, rate, amount)
return _API.buy(pair, rate, amount)
def sell(pair: str, rate: float, amount: float) -> str:
if _CONF['dry_run']:
return 'dry_run'
return 'dry_run_sell'
return EXCHANGE.sell(pair, rate, amount)
return _API.sell(pair, rate, amount)
def get_balance(currency: str) -> float:
if _CONF['dry_run']:
return 999.9
return EXCHANGE.get_balance(currency)
return _API.get_balance(currency)
def get_balances():
if _CONF['dry_run']:
return []
return _API.get_balances()
def get_ticker(pair: str) -> dict:
return EXCHANGE.get_ticker(pair)
return _API.get_ticker(pair)
def get_ticker_history(pair: str, minimum_date: arrow.Arrow):
return EXCHANGE.get_ticker_history(pair, minimum_date)
return _API.get_ticker_history(pair, minimum_date)
def cancel_order(order_id: str) -> None:
if _CONF['dry_run']:
return
return EXCHANGE.cancel_order(order_id)
return _API.cancel_order(order_id)
def get_open_orders(pair: str) -> List[dict]:
def get_order(order_id: str) -> Dict:
if _CONF['dry_run']:
return []
return {
'id': 'dry_run_sell',
'type': 'LIMIT_SELL',
'pair': 'mocked',
'opened': arrow.utcnow().datetime,
'rate': 0.07256060,
'amount': 206.43811673387373,
'remaining': 0.0,
'closed': arrow.utcnow().datetime,
}
return EXCHANGE.get_open_orders(pair)
return _API.get_order(order_id)
def get_pair_detail_url(pair: str) -> str:
return EXCHANGE.get_pair_detail_url(pair)
return _API.get_pair_detail_url(pair)
def get_markets() -> List[str]:
return EXCHANGE.get_markets()
return _API.get_markets()
def get_name() -> str:
return _API.name
def get_sleep_time() -> float:
return _API.sleep_time
def get_fee() -> float:
return _API.fee

View File

@@ -1,5 +1,5 @@
import logging
from typing import List, Optional
from typing import List, Optional, Dict
import arrow
import requests
@@ -36,6 +36,11 @@ class Bittrex(Exchange):
_EXCHANGE_CONF.update(config)
_API = _Bittrex(api_key=_EXCHANGE_CONF['key'], api_secret=_EXCHANGE_CONF['secret'])
@property
def fee(self) -> float:
# See https://bittrex.com/fees
return 0.0025
def buy(self, pair: str, rate: float, amount: float) -> str:
data = _API.buy_limit(pair.replace('_', '-'), amount, rate)
if not data['success']:
@@ -54,6 +59,12 @@ class Bittrex(Exchange):
raise RuntimeError('{}: {}'.format(self.name.upper(), data['message']))
return float(data['result']['Balance'] or 0.0)
def get_balances(self):
data = _API.get_balances()
if not data['success']:
raise RuntimeError('{}: {}'.format(self.name.upper(), data['message']))
return data['result']
def get_ticker(self, pair: str) -> dict:
data = _API.get_ticker(pair.replace('_', '-'))
if not data['success']:
@@ -81,24 +92,27 @@ class Bittrex(Exchange):
raise RuntimeError('{}: {}'.format(self.name.upper(), data['message']))
return data
def get_order(self, order_id: str) -> Dict:
data = _API.get_order(order_id)
if not data['success']:
raise RuntimeError('{}: {}'.format(self.name.upper(), data['message']))
data = data['result']
return {
'id': data['OrderUuid'],
'type': data['Type'],
'pair': data['Exchange'].replace('-', '_'),
'opened': data['Opened'],
'rate': data['PricePerUnit'],
'amount': data['Quantity'],
'remaining': data['QuantityRemaining'],
'closed': data['Closed'],
}
def cancel_order(self, order_id: str) -> None:
data = _API.cancel(order_id)
if not data['success']:
raise RuntimeError('{}: {}'.format(self.name.upper(), data['message']))
def get_open_orders(self, pair: str) -> List[dict]:
data = _API.get_open_orders(pair.replace('_', '-'))
if not data['success']:
raise RuntimeError('{}: {}'.format(self.name.upper(), data['message']))
return [{
'id': entry['OrderUuid'],
'type': entry['OrderType'],
'opened': entry['Opened'],
'rate': entry['PricePerUnit'],
'amount': entry['Quantity'],
'remaining': entry['QuantityRemaining'],
} for entry in data['result']]
def get_pair_detail_url(self, pair: str) -> str:
return self.PAIR_DETAIL_METHOD + '?MarketName={}'.format(pair.replace('_', '-'))

View File

@@ -1,5 +1,5 @@
from abc import ABC, abstractmethod
from typing import List, Optional
from typing import List, Optional, Dict
import arrow
@@ -13,6 +13,14 @@ class Exchange(ABC):
"""
return self.__class__.__name__
@property
def fee(self) -> float:
"""
Fee for placing an order
:return: percentage in float
"""
return 0.0
@property
@abstractmethod
def sleep_time(self) -> float:
@@ -49,6 +57,21 @@ class Exchange(ABC):
:return: float
"""
@abstractmethod
def get_balances(self) -> List[dict]:
"""
Gets account balances across currencies
:return: List of dicts, format: [
{
'Currency': str,
'Balance': float,
'Available': float,
'Pending': float,
}
...
]
"""
@abstractmethod
def get_ticker(self, pair: str) -> dict:
"""
@@ -85,6 +108,22 @@ class Exchange(ABC):
}
"""
def get_order(self, order_id: str) -> Dict:
"""
Get order details for the given order_id.
:param order_id: ID as str
:return: dict, format: {
'id': str,
'type': str,
'pair': str,
'opened': str ISO 8601 datetime,
'closed': str ISO 8601 datetime,
'rate': float,
'amount': float,
'remaining': int
}
"""
@abstractmethod
def cancel_order(self, order_id: str) -> None:
"""
@@ -93,24 +132,6 @@ class Exchange(ABC):
:return: None
"""
@abstractmethod
def get_open_orders(self, pair: str) -> List[dict]:
"""
Gets all open orders for given pair.
:param pair: Pair as str, format: BTC_ETC
:return: List of dicts, format: [
{
'id': str,
'type': str,
'opened': datetime,
'rate': float,
'amount': float,
'remaining': int,
},
...
]
"""
@abstractmethod
def get_pair_detail_url(self, pair: str) -> str:
"""

View File

@@ -8,6 +8,7 @@ from datetime import datetime
from typing import Dict, Optional
from signal import signal, SIGINT, SIGABRT, SIGTERM
import requests
from jsonschema import validate
from freqtrade import __version__, exchange, persistence
@@ -44,22 +45,21 @@ def _process() -> None:
logger.exception('Unable to create trade')
for trade in trades:
# Check if there is already an open order for this trade
orders = exchange.get_open_orders(trade.pair)
orders = [o for o in orders if o['id'] == trade.open_order_id]
if orders:
logger.info('There is an open order for: %s', orders[0])
else:
# Update state
trade.open_order_id = None
# Check if this trade can be closed
if not close_trade_if_fulfilled(trade):
# Check if we can sell our current pair
handle_trade(trade)
Trade.session.flush()
except (ConnectionError, json.JSONDecodeError) as error:
msg = 'Got {} in _process()'.format(error.__class__.__name__)
# Get order details for actual price per unit
if trade.open_order_id:
# Update trade with order values
logger.info('Got open order for %s', trade)
trade.update(exchange.get_order(trade.open_order_id))
if not close_trade_if_fulfilled(trade):
# Check if we can sell our current pair
handle_trade(trade)
Trade.session.flush()
except (requests.exceptions.ConnectionError, json.JSONDecodeError) as error:
msg = 'Got {} in _process(), retrying in 30 seconds...'.format(error.__class__.__name__)
logger.exception(msg)
time.sleep(30)
def close_trade_if_fulfilled(trade: Trade) -> bool:
@@ -80,23 +80,25 @@ def close_trade_if_fulfilled(trade: Trade) -> bool:
return False
def execute_sell(trade: Trade, current_rate: float) -> None:
def execute_sell(trade: Trade, limit: float) -> None:
"""
Executes a sell for the given trade and current rate
Executes a limit sell for the given trade and limit
:param trade: Trade instance
:param current_rate: current rate
:param limit: limit rate for the sell order
:return: None
"""
# Get available balance
currency = trade.pair.split('_')[1]
balance = exchange.get_balance(currency)
profit = trade.exec_sell_order(current_rate, balance)
message = '*{}:* Selling [{}]({}) at rate `{:f} (profit: {}%)`'.format(
# Execute sell and update trade record
order_id = exchange.sell(str(trade.pair), limit, trade.amount)
trade.open_order_id = order_id
trade.close_date = datetime.utcnow()
fmt_exp_profit = round(trade.calc_profit(limit) * 100, 2)
message = '*{}:* Selling [{}]({}) with limit `{:f} (profit: ~{}%)`'.format(
trade.exchange,
trade.pair.replace('_', '/'),
exchange.get_pair_detail_url(trade.pair),
trade.close_rate,
round(profit, 2)
limit,
fmt_exp_profit
)
logger.info(message)
telegram.send_msg(message)
@@ -107,17 +109,15 @@ def should_sell(trade: Trade, current_rate: float, current_time: datetime) -> bo
Based an earlier trade and current price and configuration, decides whether bot should sell
:return True if bot should sell at current rate
"""
current_profit = (current_rate - trade.open_rate) / trade.open_rate
current_profit = trade.calc_profit(current_rate)
if 'stoploss' in _CONF and current_profit < float(_CONF['stoploss']):
logger.debug('Stop loss hit.')
return True
for duration, threshold in sorted(_CONF['minimal_roi'].items()):
duration, threshold = float(duration), float(threshold)
# Check if time matches and current rate is above threshold
time_diff = (current_time - trade.open_date).total_seconds() / 60
if time_diff > duration and current_profit > threshold:
if time_diff > float(duration) and current_profit > threshold:
return True
logger.debug('Threshold not reached. (cur_profit: %1.2f%%)', current_profit * 100.0)
@@ -133,7 +133,7 @@ def handle_trade(trade: Trade) -> None:
if not trade.is_open:
raise ValueError('attempt to handle closed trade: {}'.format(trade))
logger.debug('Handling open trade %s ...', trade)
logger.debug('Handling %s ...', trade)
current_rate = exchange.get_ticker(trade.pair)['bid']
if should_sell(trade, current_rate, datetime.utcnow()):
@@ -163,7 +163,7 @@ def create_trade(stake_amount: float) -> Optional[Trade]:
# Check if stake_amount is fulfilled
if exchange.get_balance(_CONF['stake_currency']) < stake_amount:
raise ValueError(
'stake amount is not fulfilled (currency={}'.format(_CONF['stake_currency'])
'stake amount is not fulfilled (currency={})'.format(_CONF['stake_currency'])
)
# Remove currently opened and latest pairs from whitelist
@@ -182,25 +182,29 @@ def create_trade(stake_amount: float) -> Optional[Trade]:
else:
return None
open_rate = get_target_bid(exchange.get_ticker(pair))
amount = stake_amount / open_rate
order_id = exchange.buy(pair, open_rate, amount)
# Calculate amount and subtract fee
fee = exchange.get_fee()
buy_limit = get_target_bid(exchange.get_ticker(pair))
amount = (1 - fee) * stake_amount / buy_limit
order_id = exchange.buy(pair, buy_limit, amount)
# Create trade entity and return
message = '*{}:* Buying [{}]({}) at rate `{:f}`'.format(
exchange.EXCHANGE.name.upper(),
message = '*{}:* Buying [{}]({}) with limit `{:f}`'.format(
exchange.get_name().upper(),
pair.replace('_', '/'),
exchange.get_pair_detail_url(pair),
open_rate
buy_limit
)
logger.info(message)
telegram.send_msg(message)
# Fee is applied twice because we make a LIMIT_BUY and LIMIT_SELL
return Trade(pair=pair,
stake_amount=stake_amount,
open_rate=open_rate,
open_date=datetime.utcnow(),
amount=amount,
exchange=exchange.EXCHANGE.name.upper(),
fee=fee * 2,
open_rate=buy_limit,
open_date=datetime.utcnow(),
exchange=exchange.get_name().upper(),
open_order_id=order_id,
is_open=True)
@@ -266,7 +270,7 @@ def app(config: dict) -> None:
elif new_state == State.RUNNING:
_process()
# We need to sleep here because otherwise we would run into bittrex rate limit
time.sleep(exchange.EXCHANGE.sleep_time)
time.sleep(exchange.get_sleep_time())
old_state = new_state
except RuntimeError:
telegram.send_msg(

View File

@@ -1,16 +1,19 @@
import logging
from datetime import datetime
from typing import Optional
from decimal import Decimal, getcontext
from typing import Optional, Dict
import arrow
from sqlalchemy import Boolean, Column, DateTime, Float, Integer, String, create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm.scoping import scoped_session
from sqlalchemy.orm.session import sessionmaker
from sqlalchemy.types import Enum
from freqtrade import exchange
logging.basicConfig(level=logging.DEBUG,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
_CONF = {}
Base = declarative_base()
@@ -26,9 +29,9 @@ def init(config: dict, db_url: Optional[str] = None) -> None:
_CONF.update(config)
if not db_url:
if _CONF.get('dry_run', False):
db_url = 'sqlite:///tradesv2.dry_run.sqlite'
db_url = 'sqlite:///tradesv3.dry_run.sqlite'
else:
db_url = 'sqlite:///tradesv2.sqlite'
db_url = 'sqlite:///tradesv3.sqlite'
engine = create_engine(db_url, echo=False)
session = scoped_session(sessionmaker(bind=engine, autoflush=True, autocommit=True))
@@ -52,44 +55,55 @@ class Trade(Base):
exchange = Column(String, nullable=False)
pair = Column(String, nullable=False)
is_open = Column(Boolean, nullable=False, default=True)
open_rate = Column(Float, nullable=False)
fee = Column(Float, nullable=False, default=0.0)
open_rate = Column(Float)
close_rate = Column(Float)
close_profit = Column(Float)
stake_amount = Column(Float, name='btc_amount', nullable=False)
amount = Column(Float, nullable=False)
stake_amount = Column(Float, nullable=False)
amount = Column(Float)
open_date = Column(DateTime, nullable=False, default=datetime.utcnow)
close_date = Column(DateTime)
open_order_id = Column(String)
def __repr__(self):
if self.is_open:
open_since = 'closed'
else:
open_since = round((datetime.utcnow() - self.open_date).total_seconds() / 60, 2)
return 'Trade(id={}, pair={}, amount={}, open_rate={}, open_since={})'.format(
self.id,
self.pair,
self.amount,
self.open_rate,
open_since
arrow.get(self.open_date).humanize() if self.is_open else 'closed'
)
def exec_sell_order(self, rate: float, amount: float) -> float:
def update(self, order: Dict) -> None:
"""
Executes a sell for the given trade and updated the entity.
:param rate: rate to sell for
:param amount: amount to sell
:return: current profit as percentage
Updates this entity with amount and actual open/close rates.
:param order: order retrieved by exchange.get_order()
:return: None
"""
profit = 100 * ((rate - self.open_rate) / self.open_rate)
if not order['closed']:
return
# Execute sell and update trade record
order_id = exchange.sell(str(self.pair), rate, amount)
self.close_rate = rate
self.close_profit = profit
self.close_date = datetime.utcnow()
self.open_order_id = order_id
logger.debug('Updating trade (id=%d) ...', self.id)
if order['type'] == 'LIMIT_BUY':
# Update open rate and actual amount
self.open_rate = order['rate']
self.amount = order['amount']
elif order['type'] == 'LIMIT_SELL':
# Set close rate and set actual profit
self.close_rate = order['rate']
self.close_profit = self.calc_profit()
else:
raise ValueError('Unknown order type: {}'.format(order['type']))
# Flush changes
Trade.session.flush()
return profit
self.open_order_id = None
def calc_profit(self, rate: Optional[float] = None) -> float:
"""
Calculates the profit in percentage (including fee).
:param rate: rate to compare with (optional).
If rate is not set self.close_rate will be used
:return: profit in percentage as float
"""
getcontext().prec = 8
return float((Decimal(rate or self.close_rate) - Decimal(self.open_rate))
/ Decimal(self.open_rate) - Decimal(self.fee))

View File

@@ -35,7 +35,7 @@ def init(config: dict) -> None:
global _updater
_CONF.update(config)
if not _CONF['telegram']['enabled']:
if not is_enabled():
return
_updater = Updater(token=config['telegram']['token'], workers=0)
@@ -44,6 +44,7 @@ def init(config: dict) -> None:
handles = [
CommandHandler('status', _status),
CommandHandler('profit', _profit),
CommandHandler('balance', _balance),
CommandHandler('start', _start),
CommandHandler('stop', _stop),
CommandHandler('forcesell', _forcesell),
@@ -70,9 +71,18 @@ def cleanup() -> None:
Stops all running telegram threads.
:return: None
"""
if not is_enabled():
return
_updater.stop()
def is_enabled() -> bool:
"""
Returns True if the telegram module is activated, False otherwise
"""
return bool(_CONF['telegram'].get('enabled', False))
def authorized_only(command_handler: Callable[[Bot, Update], None]) -> Callable[..., Any]:
"""
Decorator to check if the message comes from the correct chat_id
@@ -116,18 +126,15 @@ def _status(bot: Bot, update: Update) -> None:
if get_state() != State.RUNNING:
send_msg('*Status:* `trader is not running`', bot=bot)
elif not trades:
send_msg('*Status:* `no active order`', bot=bot)
send_msg('*Status:* `no active trade`', bot=bot)
else:
for trade in trades:
order = exchange.get_order(trade.open_order_id)
# calculate profit and send message to user
current_rate = exchange.get_ticker(trade.pair)['bid']
current_profit = 100 * ((current_rate - trade.open_rate) / trade.open_rate)
orders = exchange.get_open_orders(trade.pair)
orders = [o for o in orders if o['id'] == trade.open_order_id]
order = orders[0] if orders else None
current_profit = trade.calc_profit(current_rate)
fmt_close_profit = '{:.2f}%'.format(
round(trade.close_profit, 2)
round(trade.close_profit * 100, 2)
) if trade.close_profit else None
message = """
*Trade ID:* `{trade_id}`
@@ -150,8 +157,10 @@ def _status(bot: Bot, update: Update) -> None:
current_rate=current_rate,
amount=round(trade.amount, 8),
close_profit=fmt_close_profit,
current_profit=round(current_profit, 2),
open_order='{} ({})'.format(order['remaining'], order['type']) if order else None,
current_profit=round(current_profit * 100, 2),
open_order='{} ({})'.format(
order['remaining'], order['type']
) if order else None,
)
send_msg(message, bot=bot)
@@ -214,6 +223,8 @@ def _profit(bot: Bot, update: Update) -> None:
profits = []
durations = []
for trade in trades:
if not trade.open_rate:
continue
if trade.close_date:
durations.append((trade.close_date - trade.open_date).total_seconds())
if trade.close_profit:
@@ -221,9 +232,9 @@ def _profit(bot: Bot, update: Update) -> None:
else:
# Get current rate
current_rate = exchange.get_ticker(trade.pair)['bid']
profit = 100 * ((current_rate - trade.open_rate) / trade.open_rate)
profit = trade.calc_profit(current_rate)
profit_amounts.append((profit / 100) * trade.stake_amount)
profit_amounts.append(profit * trade.stake_amount)
profits.append(profit)
best_pair = Trade.session.query(Trade.pair, func.sum(Trade.close_profit).label('profit_sum')) \
@@ -238,25 +249,49 @@ def _profit(bot: Bot, update: Update) -> None:
bp_pair, bp_rate = best_pair
markdown_msg = """
*ROI:* `{profit_btc:.2f} ({profit:.2f}%)`
*ROI:* `{profit_btc:.6f} ({profit:.2f}%)`
*Trade Count:* `{trade_count}`
*First Trade opened:* `{first_trade_date}`
*Latest Trade opened:* `{latest_trade_date}`
*Avg. Duration:* `{avg_duration}`
*Best Performing:* `{best_pair}: {best_rate:.2f}%`
{dry_run_info}
""".format(
profit_btc=round(sum(profit_amounts), 8),
profit=round(sum(profits), 2),
profit=round(sum(profits) * 100, 2),
trade_count=len(trades),
first_trade_date=arrow.get(trades[0].open_date).humanize(),
latest_trade_date=arrow.get(trades[-1].open_date).humanize(),
avg_duration=str(timedelta(seconds=sum(durations) / float(len(durations)))).split('.')[0],
best_pair=bp_pair,
best_rate=round(bp_rate, 2),
best_rate=round(bp_rate * 100, 2),
dry_run_info='\n*NOTE:* These values are mocked because *dry_run* is enabled!'
if _CONF['dry_run'] else ''
)
send_msg(markdown_msg, bot=bot)
@authorized_only
def _balance(bot: Bot, update: Update) -> None:
"""
Handler for /balance
Returns current account balance per crypto
"""
output = ""
balances = exchange.get_balances()
for currency in balances:
if not currency['Balance'] and not currency['Available'] and not currency['Pending']:
continue
output += """*Currency*: {Currency}
*Available*: {Available}
*Balance*: {Balance}
*Pending*: {Pending}
""".format(**currency)
send_msg(output)
@authorized_only
def _start(bot: Bot, update: Update) -> None:
"""
@@ -315,20 +350,8 @@ def _forcesell(bot: Bot, update: Update) -> None:
return
# Get current rate
current_rate = exchange.get_ticker(trade.pair)['bid']
# Get available balance
currency = trade.pair.split('_')[1]
balance = exchange.get_balance(currency)
# Execute sell
profit = trade.exec_sell_order(current_rate, balance)
message = '*{}:* Selling [{}]({}) at rate `{:f} (profit: {}%)`'.format(
trade.exchange,
trade.pair.replace('_', '/'),
exchange.get_pair_detail_url(trade.pair),
trade.close_rate,
round(profit, 2)
)
logger.info(message)
send_msg(message)
from freqtrade.main import execute_sell
execute_sell(trade, current_rate)
except ValueError:
send_msg('Invalid argument. Usage: `/forcesell <trade_id>`')
@@ -357,10 +380,14 @@ def _performance(bot: Bot, update: Update) -> None:
stats = '\n'.join('{index}. <code>{pair}\t{profit:.2f}%</code>'.format(
index=i + 1,
pair=pair,
profit=round(rate, 2)
profit=round(rate * 100, 2)
) for i, (pair, rate) in enumerate(pair_rates))
message = '<b>Performance:</b>\n{}\n'.format(stats)
message = '<b>Performance:</b>\n{}\n{}'.format(
stats,
'<b>NOTE:</b> These values are mocked because <b>dry_run</b> is enabled.'
if _CONF['dry_run'] else ''
)
logger.debug(message)
send_msg(message, parse_mode=ParseMode.HTML)
@@ -403,6 +430,7 @@ def _help(bot: Bot, update: Update) -> None:
*/forcesell <trade_id>:* `Instantly sells the given trade, regardless of profit`
*/performance:* `Show performance of each finished trade grouped by pair`
*/count:* `Show number of trades running compared to allowed number of trades`
*/balance:* `Show account balance per currency`
*/help:* `This help message`
"""
send_msg(message, bot=bot)
@@ -428,18 +456,19 @@ def send_msg(msg: str, bot: Bot = None, parse_mode: ParseMode = ParseMode.MARKDO
:param parse_mode: telegram parse mode
:return: None
"""
if _CONF['telegram'].get('enabled', False):
if not is_enabled():
return
try:
bot = bot or _updater.bot
try:
bot = bot or _updater.bot
try:
bot.send_message(_CONF['telegram']['chat_id'], msg, parse_mode=parse_mode)
except NetworkError as error:
# Sometimes the telegram server resets the current connection,
# if this is the case we send the message again.
logger.warning(
'Got Telegram NetworkError: %s! Trying one more time.',
error.message
)
bot.send_message(_CONF['telegram']['chat_id'], msg, parse_mode=parse_mode)
except Exception:
logger.exception('Exception occurred within Telegram API')
bot.send_message(_CONF['telegram']['chat_id'], msg, parse_mode=parse_mode)
except NetworkError as error:
# Sometimes the telegram server resets the current connection,
# if this is the case we send the message again.
logger.warning(
'Got Telegram NetworkError: %s! Trying one more time.',
error.message
)
bot.send_message(_CONF['telegram']['chat_id'], msg, parse_mode=parse_mode)
except Exception:
logger.exception('Exception occurred within Telegram API')

View File

@@ -7,6 +7,7 @@ from pandas import DataFrame
from freqtrade.analyze import parse_ticker_dataframe, populate_buy_trend, populate_indicators, \
get_buy_signal
@pytest.fixture
def result():
with open('freqtrade/tests/testdata/btc-eth.json') as data_file:
@@ -14,18 +15,22 @@ def result():
return parse_ticker_dataframe(data['result'])
def test_dataframe_has_correct_columns(result):
assert result.columns.tolist() == \
['close', 'high', 'low', 'open', 'date', 'volume']
def test_dataframe_has_correct_length(result):
assert len(result.index) == 5751
def test_populates_buy_trend(result):
dataframe = populate_buy_trend(populate_indicators(result))
assert 'buy' in dataframe.columns
assert 'buy_price' in dataframe.columns
def test_returns_latest_buy_signal(mocker):
buydf = DataFrame([{'buy': 1, 'date': datetime.today()}])
mocker.patch('freqtrade.analyze.analyze_ticker', return_value=buydf)

View File

@@ -7,11 +7,14 @@ import pytest
import arrow
from pandas import DataFrame
from freqtrade import exchange
from freqtrade.analyze import analyze_ticker
from freqtrade.exchange import Bittrex
from freqtrade.main import should_sell
from freqtrade.persistence import Trade
logging.disable(logging.DEBUG) # disable debug logs that slow backtesting a lot
logging.disable(logging.DEBUG) # disable debug logs that slow backtesting a lot
def format_results(results):
return 'Made {} buys. Average profit {:.2f}%. Total profit was {:.3f}. Average duration {:.1f} mins.'.format(
@@ -21,15 +24,18 @@ def format_results(results):
results.duration.mean() * 5
)
def print_pair_results(pair, results):
print('For currency {}:'.format(pair))
print(format_results(results[results.currency == pair]))
@pytest.fixture
def pairs():
return ['btc-neo', 'btc-eth', 'btc-omg', 'btc-edg', 'btc-pay',
'btc-pivx', 'btc-qtum', 'btc-mtl', 'btc-etc', 'btc-ltc']
@pytest.fixture
def conf():
return {
@@ -42,23 +48,29 @@ def conf():
"stoploss": -0.40
}
def backtest(conf, pairs, mocker):
trades = []
exchange._API = Bittrex({'key': '', 'secret': ''})
mocked_history = mocker.patch('freqtrade.analyze.get_ticker_history')
mocker.patch.dict('freqtrade.main._CONF', conf)
mocker.patch('arrow.utcnow', return_value=arrow.get('2017-08-20T14:50:00'))
for pair in pairs:
with open('freqtrade/tests/testdata/'+pair+'.json') as data_file:
data = json.load(data_file)
mocker.patch('freqtrade.analyze.get_ticker_history', return_value=data)
mocker.patch('arrow.utcnow', return_value=arrow.get('2017-08-20T14:50:00'))
mocked_history.return_value = json.load(data_file)
ticker = analyze_ticker(pair)[['close', 'date', 'buy']].copy()
# for each buy point
for row in ticker[ticker.buy == 1].itertuples(index=True):
trade = Trade(open_rate=row.close, open_date=row.date, amount=1)
trade = Trade(
open_rate=row.close,
open_date=row.date,
amount=1,
fee=exchange.get_fee()*2
)
# calculate win/lose forwards from buy point
for row2 in ticker[row.Index:].itertuples(index=True):
if should_sell(trade, row2.close, row2.date):
current_profit = (row2.close - trade.open_rate) / trade.open_rate
current_profit = trade.calc_profit(row2.close)
trades.append((pair, current_profit, row2.Index - row.Index))
break
@@ -66,11 +78,13 @@ def backtest(conf, pairs, mocker):
results = DataFrame.from_records(trades, columns=labels)
return results
@pytest.mark.skipif(not os.environ.get('BACKTEST', False), reason="BACKTEST not set")
def test_backtest(conf, pairs, mocker, report=True):
results = backtest(conf, pairs, mocker)
print('====================== BACKTESTING REPORT ================================')
[print_pair_results(pair, results) for pair in pairs]
for pair in pairs:
print_pair_results(pair, results)
print('TOTAL OVER ALL TRADES:')
print(format_results(results))

View File

@@ -1,18 +1,18 @@
# pragma pylint: disable=missing-docstring
from operator import itemgetter
import logging
import os
from functools import reduce
from math import exp
import pytest
from pandas import DataFrame
from qtpylib.indicators import crossed_above
from operator import itemgetter
import pytest
from hyperopt import fmin, tpe, hp, Trials, STATUS_OK
from pandas import DataFrame
from freqtrade.tests.test_backtesting import backtest, format_results
from freqtrade.vendor.qtpylib.indicators import crossed_above
logging.disable(logging.DEBUG) # disable debug logs that slow backtesting a lot
logging.disable(logging.DEBUG) # disable debug logs that slow backtesting a lot
# set TARGET_TRADES to suit your number concurrent trades so its realistic to 20days of data
TARGET_TRADES = 1200
@@ -23,6 +23,7 @@ def pairs():
return ['btc-neo', 'btc-eth', 'btc-omg', 'btc-edg', 'btc-pay',
'btc-pivx', 'btc-qtum', 'btc-mtl', 'btc-etc', 'btc-ltc']
@pytest.fixture
def conf():
return {
@@ -35,15 +36,15 @@ def conf():
"stoploss": -0.05
}
def buy_strategy_generator(params):
print(params)
def populate_buy_trend(dataframe: DataFrame) -> DataFrame:
conditions = []
# GUARDS AND TRENDS
if params['below_sma']['enabled']:
conditions.append(dataframe['close'] < dataframe['sma'])
if params['over_sma']['enabled']:
conditions.append(dataframe['close'] > dataframe['sma'])
if params['uptrend_long_ema']['enabled']:
conditions.append(dataframe['ema50'] > dataframe['ema100'])
if params['mfi']['enabled']:
conditions.append(dataframe['mfi'] < params['mfi']['value'])
if params['fastd']['enabled']:
@@ -52,6 +53,8 @@ def buy_strategy_generator(params):
conditions.append(dataframe['adx'] > params['adx']['value'])
if params['cci']['enabled']:
conditions.append(dataframe['cci'] < params['cci']['value'])
if params['rsi']['enabled']:
conditions.append(dataframe['rsi'] < params['rsi']['value'])
if params['over_sar']['enabled']:
conditions.append(dataframe['close'] > dataframe['sar'])
if params['uptrend_sma']['enabled']:
@@ -64,6 +67,8 @@ def buy_strategy_generator(params):
'lower_bb': dataframe['tema'] <= dataframe['blower'],
'faststoch10': (dataframe['fastd'] >= 10) & (prev_fastd < 10),
'ao_cross_zero': (crossed_above(dataframe['ao'], 0.0)),
'ema5_cross_ema10': (crossed_above(dataframe['ema5'], dataframe['ema10'])),
'macd_cross_signal': (crossed_above(dataframe['macd'], dataframe['macdsignal'])),
}
conditions.append(triggers.get(params['trigger']['type']))
@@ -75,11 +80,14 @@ def buy_strategy_generator(params):
return dataframe
return populate_buy_trend
@pytest.mark.skipif(not os.environ.get('BACKTEST', False), reason="BACKTEST not set")
def test_hyperopt(conf, pairs, mocker):
mocked_buy_trend = mocker.patch('freqtrade.analyze.populate_buy_trend')
def optimizer(params):
buy_strategy = buy_strategy_generator(params)
mocker.patch('freqtrade.analyze.populate_buy_trend', side_effect=buy_strategy)
mocked_buy_trend.side_effect = buy_strategy_generator(params)
results = backtest(conf, pairs, mocker)
result = format_results(results)
@@ -100,25 +108,25 @@ def test_hyperopt(conf, pairs, mocker):
space = {
'mfi': hp.choice('mfi', [
{'enabled': False},
{'enabled': True, 'value': hp.uniform('mfi-value', 2, 40)}
{'enabled': True, 'value': hp.uniform('mfi-value', 5, 15)}
]),
'fastd': hp.choice('fastd', [
{'enabled': False},
{'enabled': True, 'value': hp.uniform('fastd-value', 2, 40)}
{'enabled': True, 'value': hp.uniform('fastd-value', 5, 40)}
]),
'adx': hp.choice('adx', [
{'enabled': False},
{'enabled': True, 'value': hp.uniform('adx-value', 2, 40)}
{'enabled': True, 'value': hp.uniform('adx-value', 10, 30)}
]),
'cci': hp.choice('cci', [
{'enabled': False},
{'enabled': True, 'value': hp.uniform('cci-value', -200, -100)}
{'enabled': True, 'value': hp.uniform('cci-value', -150, -100)}
]),
'below_sma': hp.choice('below_sma', [
'rsi': hp.choice('rsi', [
{'enabled': False},
{'enabled': True}
{'enabled': True, 'value': hp.uniform('rsi-value', 20, 30)}
]),
'over_sma': hp.choice('over_sma', [
'uptrend_long_ema': hp.choice('uptrend_long_ema', [
{'enabled': False},
{'enabled': True}
]),
@@ -133,11 +141,13 @@ def test_hyperopt(conf, pairs, mocker):
'trigger': hp.choice('trigger', [
{'type': 'lower_bb'},
{'type': 'faststoch10'},
{'type': 'ao_cross_zero'}
{'type': 'ao_cross_zero'},
{'type': 'ema5_cross_ema10'},
{'type': 'macd_cross_signal'},
]),
}
trials = Trials()
best = fmin(fn=optimizer, space=space, algo=tpe.suggest, max_evals=40, trials=trials)
best = fmin(fn=optimizer, space=space, algo=tpe.suggest, max_evals=4, trials=trials)
print('\n\n\n\n====================== HYPEROPT BACKTESTING REPORT ================================')
print('Best parameters {}'.format(best))
newlist = sorted(trials.results, key=itemgetter('loss'))

View File

@@ -1,5 +1,6 @@
# pragma pylint: disable=missing-docstring
import copy
from datetime import datetime
from unittest.mock import MagicMock, call
import pytest
@@ -48,6 +49,7 @@ def conf():
validate(configuration, CONF_SCHEMA)
return configuration
def test_create_trade(conf, mocker):
mocker.patch.dict('freqtrade.main._CONF', conf)
buy_signal = mocker.patch('freqtrade.main.get_buy_signal', side_effect=lambda _: True)
@@ -59,29 +61,43 @@ def test_create_trade(conf, mocker):
'ask': 0.072661,
'last': 0.07256061
}),
buy=MagicMock(return_value='mocked_order_id'))
buy=MagicMock(return_value='mocked_limit_buy'))
# Save state of current whitelist
whitelist = copy.deepcopy(conf['exchange']['pair_whitelist'])
init(conf, 'sqlite://')
for pair in ['BTC_ETH', 'BTC_TKN', 'BTC_TRST', 'BTC_SWT']:
for _ in ['BTC_ETH', 'BTC_TKN', 'BTC_TRST', 'BTC_SWT']:
trade = create_trade(15.0)
Trade.session.add(trade)
Trade.session.flush()
assert trade is not None
assert trade.open_rate == 0.072661
assert trade.pair == pair
assert trade.exchange == Exchanges.BITTREX.name
assert trade.amount == 206.43811673387373
assert trade.stake_amount == 15.0
assert trade.is_open
assert trade.open_date is not None
assert trade.exchange == Exchanges.BITTREX.name
# Simulate fulfilled LIMIT_BUY order for trade
trade.update({
'id': 'mocked_limit_buy',
'type': 'LIMIT_BUY',
'pair': 'mocked',
'opened': datetime.utcnow(),
'rate': 0.072661,
'amount': 206.43811673387373,
'remaining': 0.0,
'closed': datetime.utcnow(),
})
assert trade.open_rate == 0.072661
assert trade.amount == 206.43811673387373
assert whitelist == conf['exchange']['pair_whitelist']
buy_signal.assert_has_calls(
[call('BTC_ETH'), call('BTC_TKN'), call('BTC_TRST'), call('BTC_SWT')]
)
def test_handle_trade(conf, mocker):
mocker.patch.dict('freqtrade.main._CONF', conf)
mocker.patch.multiple('freqtrade.main.telegram', init=MagicMock(), send_msg=MagicMock())
@@ -92,14 +108,29 @@ def test_handle_trade(conf, mocker):
'ask': 0.172661,
'last': 0.17256061
}),
buy=MagicMock(return_value='mocked_order_id'))
sell=MagicMock(return_value='mocked_limit_sell'))
trade = Trade.query.filter(Trade.is_open.is_(True)).first()
assert trade
handle_trade(trade)
assert trade.open_order_id == 'mocked_limit_sell'
# Simulate fulfilled LIMIT_SELL order for trade
trade.update({
'id': 'mocked_sell_limit',
'type': 'LIMIT_SELL',
'pair': 'mocked',
'opened': datetime.utcnow(),
'rate': 0.17256061,
'amount': 206.43811673387373,
'remaining': 0.0,
'closed': datetime.utcnow(),
})
assert trade.close_rate == 0.17256061
assert trade.close_profit == 137.4872490056564
assert trade.close_profit == 1.3698725
assert trade.close_date is not None
assert trade.open_order_id == 'dry_run'
def test_close_trade(conf, mocker):
mocker.patch.dict('freqtrade.main._CONF', conf)
@@ -113,14 +144,17 @@ def test_close_trade(conf, mocker):
assert closed
assert not trade.is_open
def test_balance_fully_ask_side(mocker):
mocker.patch.dict('freqtrade.main._CONF', {'bid_strategy': {'ask_last_balance': 0.0}})
assert get_target_bid({'ask': 20, 'last': 10}) == 20
def test_balance_fully_last_side(mocker):
mocker.patch.dict('freqtrade.main._CONF', {'bid_strategy': {'ask_last_balance': 1.0}})
assert get_target_bid({'ask': 20, 'last': 10}) == 10
def test_balance_when_last_bigger_than_ask(mocker):
mocker.patch.dict('freqtrade.main._CONF', {'bid_strategy': {'ask_last_balance': 1.0}})
assert get_target_bid({'ask': 5, 'last': 10}) == 5

View File

@@ -1,20 +0,0 @@
# pragma pylint: disable=missing-docstring
from freqtrade.exchange import Exchanges
from freqtrade.persistence import Trade
def test_exec_sell_order(mocker):
api_mock = mocker.patch('freqtrade.main.exchange.sell', side_effect='mocked_order_id')
trade = Trade(
pair='BTC_ETH',
stake_amount=1.00,
open_rate=0.50,
amount=10.00,
exchange=Exchanges.BITTREX,
open_order_id='mocked'
)
profit = trade.exec_sell_order(1.00, 10.00)
api_mock.assert_called_once_with('BTC_ETH', 1.0, 10.0)
assert profit == 100.0
assert trade.close_rate == 1.0
assert trade.close_profit == profit
assert trade.close_date is not None

View File

@@ -11,12 +11,9 @@ from telegram import Bot, Update, Message, Chat
from freqtrade.main import init, create_trade
from freqtrade.misc import update_state, State, get_state, CONF_SCHEMA
from freqtrade.persistence import Trade
from freqtrade.rpc.telegram import _status, _status_table, _profit, _forcesell, _performance, \
_count, _start, _stop
logging.getLogger('requests.packages.urllib3').setLevel(logging.INFO)
logging.getLogger('telegram').setLevel(logging.INFO)
logger = logging.getLogger(__name__)
from freqtrade.rpc.telegram import (
_status, _status_table, _profit, _forcesell, _performance, _count, _start, _stop, _balance
)
@pytest.fixture
@@ -54,6 +51,7 @@ def conf():
validate(configuration, CONF_SCHEMA)
return configuration
@pytest.fixture
def update():
_update = Update(0)
@@ -69,7 +67,10 @@ def test_status_handle(conf, update, mocker):
mocker.patch.dict('freqtrade.main._CONF', conf)
mocker.patch('freqtrade.main.get_buy_signal', side_effect=lambda _: True)
msg_mock = MagicMock()
mocker.patch.multiple('freqtrade.main.telegram', _CONF=conf, init=MagicMock(), send_msg=msg_mock)
mocker.patch.multiple('freqtrade.main.telegram',
_CONF=conf,
init=MagicMock(),
send_msg=msg_mock)
mocker.patch.multiple('freqtrade.main.exchange',
validate_pairs=MagicMock(),
get_ticker=MagicMock(return_value={
@@ -86,8 +87,26 @@ def test_status_handle(conf, update, mocker):
Trade.session.add(trade)
Trade.session.flush()
# Trigger status while we don't know the open_rate yet
_status(bot=MagicBot(), update=update)
assert msg_mock.call_count == 2
# Simulate fulfilled LIMIT_BUY order for trade
trade.update({
'id': 'mocked_limit_buy',
'type': 'LIMIT_BUY',
'pair': 'mocked',
'opened': datetime.utcnow(),
'rate': 0.07256060,
'amount': 206.43811673387373,
'remaining': 0.0,
'closed': datetime.utcnow(),
})
Trade.session.flush()
# Trigger status while we have a fulfilled order for the open trade
_status(bot=MagicBot(), update=update)
assert msg_mock.call_count == 3
assert '[BTC_ETH]' in msg_mock.call_args_list[-1][0][0]
@@ -127,7 +146,10 @@ def test_profit_handle(conf, update, mocker):
mocker.patch.dict('freqtrade.main._CONF', conf)
mocker.patch('freqtrade.main.get_buy_signal', side_effect=lambda _: True)
msg_mock = MagicMock()
mocker.patch.multiple('freqtrade.main.telegram', _CONF=conf, init=MagicMock(), send_msg=msg_mock)
mocker.patch.multiple('freqtrade.main.telegram',
_CONF=conf,
init=MagicMock(),
send_msg=msg_mock)
mocker.patch.multiple('freqtrade.main.exchange',
validate_pairs=MagicMock(),
get_ticker=MagicMock(return_value={
@@ -135,14 +157,36 @@ def test_profit_handle(conf, update, mocker):
'ask': 0.072661,
'last': 0.07256061
}),
buy=MagicMock(return_value='mocked_order_id'))
buy=MagicMock(return_value='mocked_limit_buy'))
init(conf, 'sqlite://')
# Create some test data
trade = create_trade(15.0)
assert trade
trade.close_rate = 0.07256061
trade.close_profit = 100.00
# Simulate fulfilled LIMIT_BUY order for trade
trade.update({
'id': 'mocked_limit_buy',
'type': 'LIMIT_BUY',
'pair': 'mocked',
'opened': datetime.utcnow(),
'rate': 0.07256061,
'amount': 206.43811673387373,
'remaining': 0.0,
'closed': datetime.utcnow(),
})
# Simulate fulfilled LIMIT_SELL order for trade
trade.update({
'id': 'mocked_limit_sell',
'type': 'LIMIT_SELL',
'pair': 'mocked',
'opened': datetime.utcnow(),
'rate': 0.0802134,
'amount': 206.43811673387373,
'remaining': 0.0,
'closed': datetime.utcnow(),
})
trade.close_date = datetime.utcnow()
trade.open_order_id = None
trade.is_open = False
@@ -151,13 +195,18 @@ def test_profit_handle(conf, update, mocker):
_profit(bot=MagicBot(), update=update)
assert msg_mock.call_count == 2
assert '(100.00%)' in msg_mock.call_args_list[-1][0][0]
assert '*ROI:* `1.507013 (10.05%)`' in msg_mock.call_args_list[-1][0][0]
assert 'Best Performing:* `BTC_ETH: 10.05%`' in msg_mock.call_args_list[-1][0][0]
def test_forcesell_handle(conf, update, mocker):
mocker.patch.dict('freqtrade.main._CONF', conf)
mocker.patch('freqtrade.main.get_buy_signal', side_effect=lambda _: True)
msg_mock = MagicMock()
mocker.patch.multiple('freqtrade.main.telegram', _CONF=conf, init=MagicMock(), send_msg=msg_mock)
mocker.patch.multiple('freqtrade.main.telegram',
_CONF=conf,
init=MagicMock(),
send_msg=msg_mock)
mocker.patch.multiple('freqtrade.main.exchange',
validate_pairs=MagicMock(),
get_ticker=MagicMock(return_value={
@@ -171,6 +220,19 @@ def test_forcesell_handle(conf, update, mocker):
# Create some test data
trade = create_trade(15.0)
assert trade
# Simulate fulfilled LIMIT_BUY order for trade
trade.update({
'id': 'mocked_limit_buy',
'type': 'LIMIT_BUY',
'pair': 'mocked',
'opened': datetime.utcnow(),
'rate': 0.07256060,
'amount': 206.43811673387373,
'remaining': 0.0,
'closed': datetime.utcnow(),
})
Trade.session.add(trade)
Trade.session.flush()
@@ -179,13 +241,17 @@ def test_forcesell_handle(conf, update, mocker):
assert msg_mock.call_count == 2
assert 'Selling [BTC/ETH]' in msg_mock.call_args_list[-1][0][0]
assert '0.072561' in msg_mock.call_args_list[-1][0][0]
assert '0.072561 (profit: ~-0.5%)' in msg_mock.call_args_list[-1][0][0]
def test_performance_handle(conf, update, mocker):
mocker.patch.dict('freqtrade.main._CONF', conf)
mocker.patch('freqtrade.main.get_buy_signal', side_effect=lambda _: True)
msg_mock = MagicMock()
mocker.patch.multiple('freqtrade.main.telegram', _CONF=conf, init=MagicMock(), send_msg=msg_mock)
mocker.patch.multiple('freqtrade.main.telegram',
_CONF=conf,
init=MagicMock(),
send_msg=msg_mock)
mocker.patch.multiple('freqtrade.main.exchange',
validate_pairs=MagicMock(),
get_ticker=MagicMock(return_value={
@@ -199,10 +265,32 @@ def test_performance_handle(conf, update, mocker):
# Create some test data
trade = create_trade(15.0)
assert trade
trade.close_rate = 0.07256061
trade.close_profit = 100.00
# Simulate fulfilled LIMIT_BUY order for trade
trade.update({
'id': 'mocked_limit_buy',
'type': 'LIMIT_BUY',
'pair': 'mocked',
'opened': datetime.utcnow(),
'rate': 0.07256061,
'amount': 206.43811673387373,
'remaining': 0.0,
'closed': datetime.utcnow(),
})
# Simulate fulfilled LIMIT_SELL order for trade
trade.update({
'id': 'mocked_limit_sell',
'type': 'LIMIT_SELL',
'pair': 'mocked',
'opened': datetime.utcnow(),
'rate': 0.0802134,
'amount': 206.43811673387373,
'remaining': 0.0,
'closed': datetime.utcnow(),
})
trade.close_date = datetime.utcnow()
trade.open_order_id = None
trade.is_open = False
Trade.session.add(trade)
Trade.session.flush()
@@ -210,7 +298,8 @@ def test_performance_handle(conf, update, mocker):
_performance(bot=MagicBot(), update=update)
assert msg_mock.call_count == 2
assert 'Performance' in msg_mock.call_args_list[-1][0][0]
assert 'BTC_ETH 100.00%' in msg_mock.call_args_list[-1][0][0]
assert '<code>BTC_ETH\t10.05%</code>' in msg_mock.call_args_list[-1][0][0]
def test_count_handle(conf, update, mocker):
@@ -245,8 +334,13 @@ def test_count_handle(conf, update, mocker):
def test_start_handle(conf, update, mocker):
mocker.patch.dict('freqtrade.main._CONF', conf)
msg_mock = MagicMock()
mocker.patch.multiple('freqtrade.main.telegram', _CONF=conf, init=MagicMock(), send_msg=msg_mock)
mocker.patch.multiple('freqtrade.main.exchange', _CONF=conf, init=MagicMock())
mocker.patch.multiple('freqtrade.main.telegram',
_CONF=conf,
init=MagicMock(),
send_msg=msg_mock)
mocker.patch.multiple('freqtrade.main.exchange',
_CONF=conf,
init=MagicMock())
init(conf, 'sqlite://')
update_state(State.STOPPED)
@@ -255,11 +349,17 @@ def test_start_handle(conf, update, mocker):
assert get_state() == State.RUNNING
assert msg_mock.call_count == 0
def test_stop_handle(conf, update, mocker):
mocker.patch.dict('freqtrade.main._CONF', conf)
msg_mock = MagicMock()
mocker.patch.multiple('freqtrade.main.telegram', _CONF=conf, init=MagicMock(), send_msg=msg_mock)
mocker.patch.multiple('freqtrade.main.exchange', _CONF=conf, init=MagicMock())
mocker.patch.multiple('freqtrade.main.telegram',
_CONF=conf,
init=MagicMock(),
send_msg=msg_mock)
mocker.patch.multiple('freqtrade.main.exchange',
_CONF=conf,
init=MagicMock())
init(conf, 'sqlite://')
update_state(State.RUNNING)
@@ -268,3 +368,25 @@ def test_stop_handle(conf, update, mocker):
assert get_state() == State.STOPPED
assert msg_mock.call_count == 1
assert 'Stopping trader' in msg_mock.call_args_list[0][0][0]
def test_balance_handle(conf, update, mocker):
mock_balance = [{
'Currency': 'BTC',
'Balance': 10.0,
'Available': 12.0,
'Pending': 0.0,
'CryptoAddress': 'XXXX'}]
mocker.patch.dict('freqtrade.main._CONF', conf)
msg_mock = MagicMock()
mocker.patch.multiple('freqtrade.main.telegram',
_CONF=conf,
init=MagicMock(),
send_msg=msg_mock)
mocker.patch.multiple('freqtrade.main.exchange',
get_balances=MagicMock(return_value=mock_balance))
_balance(bot=MagicBot(), update=update)
assert msg_mock.call_count == 1
assert '*Currency*: BTC' in msg_mock.call_args_list[0][0][0]
assert 'Balance' in msg_mock.call_args_list[0][0][0]

0
freqtrade/vendor/__init__.py vendored Normal file
View File

0
freqtrade/vendor/qtpylib/__init__.py vendored Normal file
View File

619
freqtrade/vendor/qtpylib/indicators.py vendored Normal file
View File

@@ -0,0 +1,619 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# QTPyLib: Quantitative Trading Python Library
# https://github.com/ranaroussi/qtpylib
#
# Copyright 2016 Ran Aroussi
#
# Licensed under the GNU Lesser General Public License, v3.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.gnu.org/licenses/lgpl-3.0.en.html
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import numpy as np
import pandas as pd
import warnings
import sys
from datetime import datetime, timedelta
from pandas.core.base import PandasObject
# =============================================
# check min, python version
if sys.version_info < (3, 4):
raise SystemError("QTPyLib requires Python version >= 3.4")
# =============================================
warnings.simplefilter(action="ignore", category=RuntimeWarning)
# =============================================
def numpy_rolling_window(data, window):
shape = data.shape[:-1] + (data.shape[-1] - window + 1, window)
strides = data.strides + (data.strides[-1],)
return np.lib.stride_tricks.as_strided(data, shape=shape, strides=strides)
def numpy_rolling_series(func):
def func_wrapper(data, window, as_source=False):
series = data.values if isinstance(data, pd.Series) else data
new_series = np.empty(len(series)) * np.nan
calculated = func(series, window)
new_series[-len(calculated):] = calculated
if as_source and isinstance(data, pd.Series):
return pd.Series(index=data.index, data=new_series)
return new_series
return func_wrapper
@numpy_rolling_series
def numpy_rolling_mean(data, window, as_source=False):
return np.mean(numpy_rolling_window(data, window), -1)
@numpy_rolling_series
def numpy_rolling_std(data, window, as_source=False):
return np.std(numpy_rolling_window(data, window), -1)
# ---------------------------------------------
def session(df, start='17:00', end='16:00'):
""" remove previous globex day from df """
if len(df) == 0:
return df
# get start/end/now as decimals
int_start = list(map(int, start.split(':')))
int_start = (int_start[0] + int_start[1] - 1 / 100) - 0.0001
int_end = list(map(int, end.split(':')))
int_end = int_end[0] + int_end[1] / 100
int_now = (df[-1:].index.hour[0] + (df[:1].index.minute[0]) / 100)
# same-dat session?
is_same_day = int_end > int_start
# set pointers
curr = prev = df[-1:].index[0].strftime('%Y-%m-%d')
# globex/forex session
if is_same_day == False:
prev = (datetime.strptime(curr, '%Y-%m-%d') -
timedelta(1)).strftime('%Y-%m-%d')
# slice
if int_now >= int_start:
df = df[df.index >= curr + ' ' + start]
else:
df = df[df.index >= prev + ' ' + start]
return df.copy()
# ---------------------------------------------
def heikinashi(bars):
bars = bars.copy()
bars['ha_close'] = (bars['open'] + bars['high'] +
bars['low'] + bars['close']) / 4
bars['ha_open'] = (bars['open'].shift(1) + bars['close'].shift(1)) / 2
bars.loc[:1, 'ha_open'] = bars['open'].values[0]
bars.loc[1:, 'ha_open'] = (
(bars['ha_open'].shift(1) + bars['ha_close'].shift(1)) / 2)[1:]
bars['ha_high'] = bars.loc[:, ['high', 'ha_open', 'ha_close']].max(axis=1)
bars['ha_low'] = bars.loc[:, ['low', 'ha_open', 'ha_close']].min(axis=1)
return pd.DataFrame(index=bars.index, data={'open': bars['ha_open'],
'high': bars['ha_high'], 'low': bars['ha_low'], 'close': bars['ha_close']})
# ---------------------------------------------
def tdi(series, rsi_len=13, bollinger_len=34, rsi_smoothing=2, rsi_signal_len=7, bollinger_std=1.6185):
rsi_series = rsi(series, rsi_len)
bb_series = bollinger_bands(rsi_series, bollinger_len, bollinger_std)
signal = sma(rsi_series, rsi_signal_len)
rsi_series = sma(rsi_series, rsi_smoothing)
return pd.DataFrame(index=series.index, data={
"rsi": rsi_series,
"signal": signal,
"bbupper": bb_series['upper'],
"bblower": bb_series['lower'],
"bbmid": bb_series['mid']
})
# ---------------------------------------------
def awesome_oscillator(df, weighted=False, fast=5, slow=34):
midprice = (df['high'] + df['low']) / 2
if weighted:
ao = (midprice.ewm(fast).mean() - midprice.ewm(slow).mean()).values
else:
ao = numpy_rolling_mean(midprice, fast) - \
numpy_rolling_mean(midprice, slow)
return pd.Series(index=df.index, data=ao)
# ---------------------------------------------
def nans(len=1):
mtx = np.empty(len)
mtx[:] = np.nan
return mtx
# ---------------------------------------------
def typical_price(bars):
res = (bars['high'] + bars['low'] + bars['close']) / 3.
return pd.Series(index=bars.index, data=res)
# ---------------------------------------------
def mid_price(bars):
res = (bars['high'] + bars['low']) / 2.
return pd.Series(index=bars.index, data=res)
# ---------------------------------------------
def ibs(bars):
""" Internal bar strength """
res = np.round((bars['close'] - bars['low']) /
(bars['high'] - bars['low']), 2)
return pd.Series(index=bars.index, data=res)
# ---------------------------------------------
def true_range(bars):
return pd.DataFrame({
"hl": bars['high'] - bars['low'],
"hc": abs(bars['high'] - bars['close'].shift(1)),
"lc": abs(bars['low'] - bars['close'].shift(1))
}).max(axis=1)
# ---------------------------------------------
def atr(bars, window=14, exp=False):
tr = true_range(bars)
if exp:
res = rolling_weighted_mean(tr, window)
else:
res = rolling_mean(tr, window)
res = pd.Series(res)
return (res.shift(1) * (window - 1) + res) / window
# ---------------------------------------------
def crossed(series1, series2, direction=None):
if isinstance(series1, np.ndarray):
series1 = pd.Series(series1)
if isinstance(series2, int) or isinstance(series2, float) or isinstance(series2, np.ndarray):
series2 = pd.Series(index=series1.index, data=series2)
if direction is None or direction == "above":
above = pd.Series((series1 > series2) & (
series1.shift(1) <= series2.shift(1)))
if direction is None or direction == "below":
below = pd.Series((series1 < series2) & (
series1.shift(1) >= series2.shift(1)))
if direction is None:
return above or below
return above if direction is "above" else below
def crossed_above(series1, series2):
return crossed(series1, series2, "above")
def crossed_below(series1, series2):
return crossed(series1, series2, "below")
# ---------------------------------------------
def rolling_std(series, window=200, min_periods=None):
min_periods = window if min_periods is None else min_periods
try:
if min_periods == window:
return numpy_rolling_std(series, window, True)
else:
try:
return series.rolling(window=window, min_periods=min_periods).std()
except:
return pd.Series(series).rolling(window=window, min_periods=min_periods).std()
except:
return pd.rolling_std(series, window=window, min_periods=min_periods)
# ---------------------------------------------
def rolling_mean(series, window=200, min_periods=None):
min_periods = window if min_periods is None else min_periods
try:
if min_periods == window:
return numpy_rolling_mean(series, window, True)
else:
try:
return series.rolling(window=window, min_periods=min_periods).mean()
except:
return pd.Series(series).rolling(window=window, min_periods=min_periods).mean()
except:
return pd.rolling_mean(series, window=window, min_periods=min_periods)
# ---------------------------------------------
def rolling_min(series, window=14, min_periods=None):
min_periods = window if min_periods is None else min_periods
try:
try:
return series.rolling(window=window, min_periods=min_periods).min()
except:
return pd.Series(series).rolling(window=window, min_periods=min_periods).min()
except:
return pd.rolling_min(series, window=window, min_periods=min_periods)
# ---------------------------------------------
def rolling_max(series, window=14, min_periods=None):
min_periods = window if min_periods is None else min_periods
try:
try:
return series.rolling(window=window, min_periods=min_periods).min()
except:
return pd.Series(series).rolling(window=window, min_periods=min_periods).min()
except:
return pd.rolling_min(series, window=window, min_periods=min_periods)
# ---------------------------------------------
def rolling_weighted_mean(series, window=200, min_periods=None):
min_periods = window if min_periods is None else min_periods
try:
return series.ewm(span=window, min_periods=min_periods).mean()
except:
return pd.ewma(series, span=window, min_periods=min_periods)
# ---------------------------------------------
def hull_moving_average(series, window=200):
wma = (2 * rolling_weighted_mean(series, window=window / 2)) - \
rolling_weighted_mean(series, window=window)
return rolling_weighted_mean(wma, window=np.sqrt(window))
# ---------------------------------------------
def sma(series, window=200, min_periods=None):
return rolling_mean(series, window=window, min_periods=min_periods)
# ---------------------------------------------
def wma(series, window=200, min_periods=None):
return rolling_weighted_mean(series, window=window, min_periods=min_periods)
# ---------------------------------------------
def hma(series, window=200):
return hull_moving_average(series, window=window)
# ---------------------------------------------
def vwap(bars):
"""
calculate vwap of entire time series
(input can be pandas series or numpy array)
bars are usually mid [ (h+l)/2 ] or typical [ (h+l+c)/3 ]
"""
typical = ((bars['high'] + bars['low'] + bars['close']) / 3).values
volume = bars['volume'].values
return pd.Series(index=bars.index,
data=np.cumsum(volume * typical) / np.cumsum(volume))
# ---------------------------------------------
def rolling_vwap(bars, window=200, min_periods=None):
"""
calculate vwap using moving window
(input can be pandas series or numpy array)
bars are usually mid [ (h+l)/2 ] or typical [ (h+l+c)/3 ]
"""
min_periods = window if min_periods is None else min_periods
typical = ((bars['high'] + bars['low'] + bars['close']) / 3)
volume = bars['volume']
left = (volume * typical).rolling(window=window,
min_periods=min_periods).sum()
right = volume.rolling(window=window, min_periods=min_periods).sum()
return pd.Series(index=bars.index, data=(left / right))
# ---------------------------------------------
def rsi(series, window=14):
"""
compute the n period relative strength indicator
"""
# 100-(100/relative_strength)
deltas = np.diff(series)
seed = deltas[:window + 1]
# default values
ups = seed[seed > 0].sum() / window
downs = -seed[seed < 0].sum() / window
rsival = np.zeros_like(series)
rsival[:window] = 100. - 100. / (1. + ups / downs)
# period values
for i in range(window, len(series)):
delta = deltas[i - 1]
if delta > 0:
upval = delta
downval = 0
else:
upval = 0
downval = -delta
ups = (ups * (window - 1) + upval) / window
downs = (downs * (window - 1.) + downval) / window
rsival[i] = 100. - 100. / (1. + ups / downs)
# return rsival
return pd.Series(index=series.index, data=rsival)
# ---------------------------------------------
def macd(series, fast=3, slow=10, smooth=16):
"""
compute the MACD (Moving Average Convergence/Divergence)
using a fast and slow exponential moving avg'
return value is emaslow, emafast, macd which are len(x) arrays
"""
macd = rolling_weighted_mean(series, window=fast) - \
rolling_weighted_mean(series, window=slow)
signal = rolling_weighted_mean(macd, window=smooth)
histogram = macd - signal
# return macd, signal, histogram
return pd.DataFrame(index=series.index, data={
'macd': macd.values,
'signal': signal.values,
'histogram': histogram.values
})
# ---------------------------------------------
def bollinger_bands(series, window=20, stds=2):
sma = rolling_mean(series, window=window)
std = rolling_std(series, window=window)
upper = sma + std * stds
lower = sma - std * stds
return pd.DataFrame(index=series.index, data={
'upper': upper,
'mid': sma,
'lower': lower
})
# ---------------------------------------------
def weighted_bollinger_bands(series, window=20, stds=2):
ema = rolling_weighted_mean(series, window=window)
std = rolling_std(series, window=window)
upper = ema + std * stds
lower = ema - std * stds
return pd.DataFrame(index=series.index, data={
'upper': upper.values,
'mid': ema.values,
'lower': lower.values
})
# ---------------------------------------------
def returns(series):
try:
res = (series / series.shift(1) -
1).replace([np.inf, -np.inf], float('NaN'))
except:
res = nans(len(series))
return pd.Series(index=series.index, data=res)
# ---------------------------------------------
def log_returns(series):
try:
res = np.log(series / series.shift(1)
).replace([np.inf, -np.inf], float('NaN'))
except:
res = nans(len(series))
return pd.Series(index=series.index, data=res)
# ---------------------------------------------
def implied_volatility(series, window=252):
try:
logret = np.log(series / series.shift(1)
).replace([np.inf, -np.inf], float('NaN'))
res = numpy_rolling_std(logret, window) * np.sqrt(window)
except:
res = nans(len(series))
return pd.Series(index=series.index, data=res)
# ---------------------------------------------
def keltner_channel(bars, window=14, atrs=2):
typical_mean = rolling_mean(typical_price(bars), window)
atrval = atr(bars, window) * atrs
upper = typical_mean + atrval
lower = typical_mean - atrval
return pd.DataFrame(index=bars.index, data={
'upper': upper.values,
'mid': typical_mean.values,
'lower': lower.values
})
# ---------------------------------------------
def roc(series, window=14):
"""
compute rate of change
"""
res = (series - series.shift(window)) / series.shift(window)
return pd.Series(index=series.index, data=res)
# ---------------------------------------------
def cci(series, window=14):
"""
compute commodity channel index
"""
price = typical_price(series)
typical_mean = rolling_mean(price, window)
res = (price - typical_mean) / (.015 * np.std(typical_mean))
return pd.Series(index=series.index, data=res)
# ---------------------------------------------
def stoch(df, window=14, d=3, k=3, fast=False):
"""
compute the n period relative strength indicator
http://excelta.blogspot.co.il/2013/09/stochastic-oscillator-technical.html
"""
highs_ma = pd.concat([df['high'].shift(i)
for i in np.arange(window)], 1).apply(list, 1)
highs_ma = highs_ma.T.max().T
lows_ma = pd.concat([df['low'].shift(i)
for i in np.arange(window)], 1).apply(list, 1)
lows_ma = lows_ma.T.min().T
fast_k = ((df['close'] - lows_ma) / (highs_ma - lows_ma)) * 100
fast_d = numpy_rolling_mean(fast_k, d)
if fast:
data = {
'k': fast_k,
'd': fast_d
}
else:
slow_k = numpy_rolling_mean(fast_k, k)
slow_d = numpy_rolling_mean(slow_k, d)
data = {
'k': slow_k,
'd': slow_d
}
return pd.DataFrame(index=df.index, data=data)
# ---------------------------------------------
def zscore(bars, window=20, stds=1, col='close'):
""" get zscore of price """
std = numpy_rolling_std(bars[col], window)
mean = numpy_rolling_mean(bars[col], window)
return (bars[col] - mean) / (std * stds)
# ---------------------------------------------
def pvt(bars):
""" Price Volume Trend """
pvt = ((bars['close'] - bars['close'].shift(1)) /
bars['close'].shift(1)) * bars['volume']
return pvt.cumsum()
# =============================================
PandasObject.session = session
PandasObject.atr = atr
PandasObject.bollinger_bands = bollinger_bands
PandasObject.cci = cci
PandasObject.crossed = crossed
PandasObject.crossed_above = crossed_above
PandasObject.crossed_below = crossed_below
PandasObject.heikinashi = heikinashi
PandasObject.hull_moving_average = hull_moving_average
PandasObject.ibs = ibs
PandasObject.implied_volatility = implied_volatility
PandasObject.keltner_channel = keltner_channel
PandasObject.log_returns = log_returns
PandasObject.macd = macd
PandasObject.returns = returns
PandasObject.roc = roc
PandasObject.rolling_max = rolling_max
PandasObject.rolling_min = rolling_min
PandasObject.rolling_mean = rolling_mean
PandasObject.rolling_std = rolling_std
PandasObject.rsi = rsi
PandasObject.stoch = stoch
PandasObject.zscore = zscore
PandasObject.pvt = pvt
PandasObject.tdi = tdi
PandasObject.true_range = true_range
PandasObject.mid_price = mid_price
PandasObject.typical_price = typical_price
PandasObject.vwap = vwap
PandasObject.rolling_vwap = rolling_vwap
PandasObject.weighted_bollinger_bands = weighted_bollinger_bands
PandasObject.rolling_weighted_mean = rolling_weighted_mean
PandasObject.sma = sma
PandasObject.wma = wma
PandasObject.hma = hma