a new hyperopt loss created that uses calmar ratio
This is a new hyperopt loss file that uses the Calmar Ratio. Calmar Ratio = average annual rate of return / maximum drawdown
This commit is contained in:
parent
6fc770d97d
commit
3845d55186
52
freqtrade/optimize/hyperopt_loss_calmar.py
Normal file
52
freqtrade/optimize/hyperopt_loss_calmar.py
Normal file
@ -0,0 +1,52 @@
|
||||
"""
|
||||
CalmarHyperOptLoss
|
||||
|
||||
This module defines the alternative HyperOptLoss class which can be used for
|
||||
Hyperoptimization.
|
||||
"""
|
||||
from datetime import datetime
|
||||
|
||||
import numpy as np
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.optimize.hyperopt import IHyperOptLoss
|
||||
from freqtrade.data.btanalysis import calculate_max_drawdown
|
||||
|
||||
|
||||
class CalmarHyperOptLoss(IHyperOptLoss):
|
||||
"""
|
||||
Defines the loss function for hyperopt.
|
||||
|
||||
This implementation uses the Calmar Ratio calculation.
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def hyperopt_loss_function(results: DataFrame, trade_count: int,
|
||||
min_date: datetime, max_date: datetime,
|
||||
*args, **kwargs) -> float:
|
||||
"""
|
||||
Objective function, returns smaller number for more optimal results.
|
||||
|
||||
Uses Calmar Ratio calculation.
|
||||
"""
|
||||
total_profit = results["profit_ratio"]
|
||||
days_period = (max_date - min_date).days
|
||||
|
||||
# adding slippage of 0.1% per trade
|
||||
total_profit = total_profit - 0.0005
|
||||
expected_returns_mean = total_profit.sum() / days_period
|
||||
|
||||
# calculate max drawdown
|
||||
try:
|
||||
_, _, _, high_val, low_val = calculate_max_drawdown(results)
|
||||
max_drawdown = -(high_val - low_val) / high_val
|
||||
except ValueError:
|
||||
max_drawdown = 0
|
||||
|
||||
if max_drawdown > 0:
|
||||
calmar_ratio = expected_returns_mean / max_drawdown * np.sqrt(365)
|
||||
else:
|
||||
calmar_ratio = -20.
|
||||
|
||||
# print(calmar_ratio)
|
||||
return -calmar_ratio
|
Loading…
Reference in New Issue
Block a user