Merge branch 'freqtrade:develop' into patch-1

This commit is contained in:
Stefano Ariestasia 2022-05-16 07:27:11 +09:00 committed by GitHub
commit 36e514e825
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
198 changed files with 11050 additions and 8419 deletions

View File

@ -24,4 +24,3 @@ Have you search for this feature before requesting it? It's highly likely that a
## Describe the enhancement
*Explain the enhancement you would like*

View File

@ -1,9 +1,9 @@
Thank you for sending your pull request. But first, have you included
<!-- Thank you for sending your pull request. But first, have you included
unit tests, and is your code PEP8 conformant? [More details](https://github.com/freqtrade/freqtrade/blob/develop/CONTRIBUTING.md)
-->
## Summary
Explain in one sentence the goal of this PR
<!-- Explain in one sentence the goal of this PR -->
Solve the issue: #___
@ -14,4 +14,4 @@ Solve the issue: #___
## What's new?
*Explain in details what this PR solve or improve. You can include visuals.*
<!-- Explain in details what this PR solve or improve. You can include visuals. -->

View File

@ -19,7 +19,7 @@ jobs:
runs-on: ${{ matrix.os }}
strategy:
matrix:
os: [ ubuntu-18.04, ubuntu-20.04 ]
os: [ ubuntu-18.04, ubuntu-20.04, ubuntu-22.04 ]
python-version: ["3.8", "3.9", "3.10"]
steps:
@ -70,7 +70,7 @@ jobs:
if: matrix.python-version == '3.9'
- name: Coveralls
if: (runner.os == 'Linux' && matrix.python-version == '3.8')
if: (runner.os == 'Linux' && matrix.python-version == '3.9')
env:
# Coveralls token. Not used as secret due to github not providing secrets to forked repositories
COVERALLS_REPO_TOKEN: 6D1m0xupS3FgutfuGao8keFf9Hc0FpIXu
@ -100,7 +100,7 @@ jobs:
- name: Mypy
run: |
mypy freqtrade scripts
mypy freqtrade scripts tests
- name: Discord notification
uses: rjstone/discord-webhook-notify@v1
@ -158,16 +158,7 @@ jobs:
- name: Tests
run: |
pytest --random-order --cov=freqtrade --cov-config=.coveragerc
- name: Coveralls
if: (runner.os == 'Linux' && matrix.python-version == '3.8')
env:
# Coveralls token. Not used as secret due to github not providing secrets to forked repositories
COVERALLS_REPO_TOKEN: 6D1m0xupS3FgutfuGao8keFf9Hc0FpIXu
run: |
# Allow failure for coveralls
coveralls -v || true
pytest --random-order
- name: Backtesting
run: |
@ -229,7 +220,7 @@ jobs:
- name: Tests
run: |
pytest --random-order --cov=freqtrade --cov-config=.coveragerc
pytest --random-order
- name: Backtesting
run: |
@ -249,7 +240,7 @@ jobs:
- name: Mypy
run: |
mypy freqtrade scripts
mypy freqtrade scripts tests
- name: Discord notification
uses: rjstone/discord-webhook-notify@v1
@ -259,6 +250,21 @@ jobs:
details: Test Failed
webhookUrl: ${{ secrets.DISCORD_WEBHOOK }}
mypy_version_check:
runs-on: ubuntu-20.04
steps:
- uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v3
with:
python-version: "3.10"
- name: pre-commit dependencies
run: |
pip install pyaml
python build_helpers/pre_commit_update.py
docs_check:
runs-on: ubuntu-20.04
steps:
@ -271,7 +277,7 @@ jobs:
- name: Set up Python
uses: actions/setup-python@v3
with:
python-version: 3.8
python-version: "3.10"
- name: Documentation build
run: |
@ -288,6 +294,9 @@ jobs:
webhookUrl: ${{ secrets.DISCORD_WEBHOOK }}
cleanup-prior-runs:
permissions:
actions: write # for rokroskar/workflow-run-cleanup-action to obtain workflow name & cancel it
contents: read # for rokroskar/workflow-run-cleanup-action to obtain branch
runs-on: ubuntu-20.04
steps:
- name: Cleanup previous runs on this branch
@ -298,8 +307,12 @@ jobs:
# Notify only once - when CI completes (and after deploy) in case it's successfull
notify-complete:
needs: [ build_linux, build_macos, build_windows, docs_check ]
needs: [ build_linux, build_macos, build_windows, docs_check, mypy_version_check ]
runs-on: ubuntu-20.04
# Discord notification can't handle schedule events
if: (github.event_name != 'schedule')
permissions:
repository-projects: read
steps:
- name: Check user permission
@ -319,7 +332,7 @@ jobs:
webhookUrl: ${{ secrets.DISCORD_WEBHOOK }}
deploy:
needs: [ build_linux, build_macos, build_windows, docs_check ]
needs: [ build_linux, build_macos, build_windows, docs_check, mypy_version_check ]
runs-on: ubuntu-20.04
if: (github.event_name == 'push' || github.event_name == 'schedule' || github.event_name == 'release') && github.repository == 'freqtrade/freqtrade'
@ -330,7 +343,7 @@ jobs:
- name: Set up Python
uses: actions/setup-python@v3
with:
python-version: 3.8
python-version: "3.9"
- name: Extract branch name
shell: bash
@ -391,7 +404,7 @@ jobs:
- name: Discord notification
uses: rjstone/discord-webhook-notify@v1
if: always() && ( github.event_name != 'pull_request' || github.event.pull_request.head.repo.fork == false)
if: always() && ( github.event_name != 'pull_request' || github.event.pull_request.head.repo.fork == false) && (github.event_name != 'schedule')
with:
severity: info
details: Deploy Succeeded!

View File

@ -15,4 +15,3 @@ jobs:
DOCKERHUB_USERNAME: ${{ secrets.DOCKER_USERNAME }}
DOCKERHUB_PASSWORD: ${{ secrets.DOCKER_PASSWORD }}
DOCKERHUB_REPOSITORY: freqtradeorg/freqtrade

46
.pre-commit-config.yaml Normal file
View File

@ -0,0 +1,46 @@
# See https://pre-commit.com for more information
# See https://pre-commit.com/hooks.html for more hooks
repos:
- repo: https://github.com/pycqa/flake8
rev: "4.0.1"
hooks:
- id: flake8
# stages: [push]
- repo: https://github.com/pre-commit/mirrors-mypy
rev: "v0.942"
hooks:
- id: mypy
exclude: build_helpers
additional_dependencies:
- types-cachetools==5.0.1
- types-filelock==3.2.5
- types-requests==2.27.25
- types-tabulate==0.8.9
- types-python-dateutil==2.8.15
# stages: [push]
- repo: https://github.com/pycqa/isort
rev: "5.10.1"
hooks:
- id: isort
name: isort (python)
# stages: [push]
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v2.4.0
hooks:
- id: end-of-file-fixer
exclude: |
(?x)^(
tests/.*|
.*\.svg
)$
- id: mixed-line-ending
- id: debug-statements
- id: check-ast
- id: trailing-whitespace
exclude: |
(?x)^(
.*\.md
)$

View File

@ -7,4 +7,3 @@ ignore=vendor
[TYPECHECK]
ignored-modules=numpy,talib,talib.abstract

View File

@ -1,4 +1,4 @@
FROM python:3.9.9-slim-bullseye as base
FROM python:3.10.4-slim-bullseye as base
# Setup env
ENV LANG C.UTF-8

View File

@ -39,6 +39,14 @@ Please read the [exchange specific notes](docs/exchanges.md) to learn about even
- [X] [OKX](https://okx.com/) (Former OKEX)
- [ ] [potentially many others](https://github.com/ccxt/ccxt/). _(We cannot guarantee they will work)_
### Experimentally, freqtrade also supports futures on the following exchanges
- [X] [Binance](https://www.binance.com/)
- [X] [Gate.io](https://www.gate.io/ref/6266643)
- [X] [OKX](https://okx.com/).
Please make sure to read the [exchange specific notes](docs/exchanges.md), as well as the [trading with leverage](docs/leverage.md) documentation before diving in.
### Community tested
Exchanges confirmed working by the community:
@ -129,6 +137,7 @@ Telegram is not mandatory. However, this is a great way to control your bot. Mor
- `/status <trade_id>|[table]`: Lists all or specific open trades.
- `/profit [<n>]`: Lists cumulative profit from all finished trades, over the last n days.
- `/forceexit <trade_id>|all`: Instantly exits the given trade (Ignoring `minimum_roi`).
- `/fx <trade_id>|all`: Alias to `/forceexit`
- `/performance`: Show performance of each finished trade grouped by pair
- `/balance`: Show account balance per currency.
- `/daily <n>`: Shows profit or loss per day, over the last n days.

View File

@ -0,0 +1,42 @@
# File used in CI to ensure pre-commit dependencies are kept uptodate.
import sys
from pathlib import Path
import yaml
pre_commit_file = Path('.pre-commit-config.yaml')
require_dev = Path('requirements-dev.txt')
with require_dev.open('r') as rfile:
requirements = rfile.readlines()
# Extract types only
type_reqs = [r.strip('\n') for r in requirements if r.startswith('types-')]
with pre_commit_file.open('r') as file:
f = yaml.load(file, Loader=yaml.FullLoader)
mypy_repo = [repo for repo in f['repos'] if repo['repo']
== 'https://github.com/pre-commit/mirrors-mypy']
hooks = mypy_repo[0]['hooks'][0]['additional_dependencies']
errors = []
for hook in hooks:
if hook not in type_reqs:
errors.append(f"{hook} is missing in requirements-dev.txt.")
for req in type_reqs:
if req not in hooks:
errors.append(f"{req} is missing in pre-config file.")
if errors:
for e in errors:
print(e)
sys.exit(1)
sys.exit(0)

View File

@ -90,7 +90,7 @@
},
"bot_name": "freqtrade",
"initial_state": "running",
"forcebuy_enable": false,
"force_entry_enable": false,
"internals": {
"process_throttle_secs": 5
}

View File

@ -87,7 +87,7 @@
},
"bot_name": "freqtrade",
"initial_state": "running",
"forcebuy_enable": false,
"force_entry_enable": false,
"internals": {
"process_throttle_secs": 5
}

View File

@ -89,7 +89,7 @@
},
"bot_name": "freqtrade",
"initial_state": "running",
"forcebuy_enable": false,
"force_entry_enable": false,
"internals": {
"process_throttle_secs": 5
}

View File

@ -15,10 +15,10 @@
"trailing_stop_positive": 0.005,
"trailing_stop_positive_offset": 0.0051,
"trailing_only_offset_is_reached": false,
"use_sell_signal": true,
"sell_profit_only": false,
"sell_profit_offset": 0.0,
"ignore_roi_if_buy_signal": false,
"use_exit_signal": true,
"exit_profit_only": false,
"exit_profit_offset": 0.0,
"ignore_roi_if_entry_signal": false,
"ignore_buying_expired_candle_after": 300,
"trading_mode": "spot",
"margin_mode": "",
@ -54,9 +54,9 @@
"order_types": {
"entry": "limit",
"exit": "limit",
"emergencyexit": "market",
"forceexit": "market",
"forceentry": "market",
"emergency_exit": "market",
"force_exit": "market",
"force_entry": "market",
"stoploss": "market",
"stoploss_on_exchange": false,
"stoploss_on_exchange_interval": 60,
@ -139,21 +139,21 @@
"status": "on",
"warning": "on",
"startup": "on",
"buy": "on",
"buy_fill": "on",
"sell": {
"entry": "on",
"entry_fill": "on",
"exit": {
"roi": "off",
"emergency_sell": "off",
"force_sell": "off",
"sell_signal": "off",
"emergency_exit": "off",
"force_exit": "off",
"exit_signal": "off",
"trailing_stop_loss": "off",
"stop_loss": "off",
"stoploss_on_exchange": "off",
"custom_sell": "off"
"custom_exit": "off"
},
"sell_fill": "on",
"buy_cancel": "on",
"sell_cancel": "on",
"exit_fill": "on",
"entry_cancel": "on",
"exit_cancel": "on",
"protection_trigger": "off",
"protection_trigger_global": "on"
},
@ -174,7 +174,7 @@
"bot_name": "freqtrade",
"db_url": "sqlite:///tradesv3.sqlite",
"initial_state": "running",
"forcebuy_enable": false,
"force_entry_enable": false,
"internals": {
"process_throttle_secs": 5,
"heartbeat_interval": 60
@ -182,6 +182,8 @@
"disable_dataframe_checks": false,
"strategy": "SampleStrategy",
"strategy_path": "user_data/strategies/",
"recursive_strategy_search": false,
"add_config_files": [],
"dataformat_ohlcv": "json",
"dataformat_trades": "jsongz"
}

View File

@ -95,7 +95,7 @@
},
"bot_name": "freqtrade",
"initial_state": "running",
"forcebuy_enable": false,
"force_entry_enable": false,
"internals": {
"process_throttle_secs": 5
},

View File

@ -1,4 +1,4 @@
FROM python:3.9.9-slim-bullseye as base
FROM python:3.9.12-slim-bullseye as base
# Setup env
ENV LANG C.UTF-8

View File

@ -0,0 +1,73 @@
# Advanced Backtesting Analysis
## Analyze the buy/entry and sell/exit tags
It can be helpful to understand how a strategy behaves according to the buy/entry tags used to
mark up different buy conditions. You might want to see more complex statistics about each buy and
sell condition above those provided by the default backtesting output. You may also want to
determine indicator values on the signal candle that resulted in a trade opening.
!!! Note
The following buy reason analysis is only available for backtesting, *not hyperopt*.
We need to run backtesting with the `--export` option set to `signals` to enable the exporting of
signals **and** trades:
``` bash
freqtrade backtesting -c <config.json> --timeframe <tf> --strategy <strategy_name> --timerange=<timerange> --export=signals
```
This will tell freqtrade to output a pickled dictionary of strategy, pairs and corresponding
DataFrame of the candles that resulted in buy signals. Depending on how many buys your strategy
makes, this file may get quite large, so periodically check your `user_data/backtest_results`
folder to delete old exports.
To analyze the buy tags, we need to use the `buy_reasons.py` script from
[froggleston's repo](https://github.com/froggleston/freqtrade-buyreasons). Follow the instructions
in their README to copy the script into your `freqtrade/scripts/` folder.
Before running your next backtest, make sure you either delete your old backtest results or run
backtesting with the `--cache none` option to make sure no cached results are used.
If all goes well, you should now see a `backtest-result-{timestamp}_signals.pkl` file in the
`user_data/backtest_results` folder.
Now run the `buy_reasons.py` script, supplying a few options:
``` bash
python3 scripts/buy_reasons.py -c <config.json> -s <strategy_name> -t <timerange> -g0,1,2,3,4
```
The `-g` option is used to specify the various tabular outputs, ranging from the simplest (0)
to the most detailed per pair, per buy and per sell tag (4). More options are available by
running with the `-h` option.
### Tuning the buy tags and sell tags to display
To show only certain buy and sell tags in the displayed output, use the following two options:
```
--enter_reason_list : Comma separated list of enter signals to analyse. Default: "all"
--exit_reason_list : Comma separated list of exit signals to analyse. Default: "stop_loss,trailing_stop_loss"
```
For example:
```bash
python3 scripts/buy_reasons.py -c <config.json> -s <strategy_name> -t <timerange> -g0,1,2,3,4 --enter_reason_list "enter_tag_a,enter_tag_b" --exit_reason_list "roi,custom_exit_tag_a,stop_loss"
```
### Outputting signal candle indicators
The real power of the buy_reasons.py script comes from the ability to print out the indicator
values present on signal candles to allow fine-grained investigation and tuning of buy signal
indicators. To print out a column for a given set of indicators, use the `--indicator-list`
option:
```bash
python3 scripts/buy_reasons.py -c <config.json> -s <strategy_name> -t <timerange> -g0,1,2,3,4 --enter_reason_list "enter_tag_a,enter_tag_b" --exit_reason_list "roi,custom_exit_tag_a,stop_loss" --indicator_list "rsi,rsi_1h,bb_lowerband,ema_9,macd,macdsignal"
```
The indicators have to be present in your strategy's main DataFrame (either for your main
timeframe or for informative timeframes) otherwise they will simply be ignored in the script
output.

View File

@ -56,7 +56,7 @@ Currently, the arguments are:
* `results`: DataFrame containing the resulting trades.
The following columns are available in results (corresponds to the output-file of backtesting when used with `--export trades`):
`pair, profit_ratio, profit_abs, open_date, open_rate, fee_open, close_date, close_rate, fee_close, amount, trade_duration, is_open, sell_reason, stake_amount, min_rate, max_rate, stop_loss_ratio, stop_loss_abs`
`pair, profit_ratio, profit_abs, open_date, open_rate, fee_open, close_date, close_rate, fee_close, amount, trade_duration, is_open, exit_reason, stake_amount, min_rate, max_rate, stop_loss_ratio, stop_loss_abs`
* `trade_count`: Amount of trades (identical to `len(results)`)
* `min_date`: Start date of the timerange used
* `min_date`: End date of the timerange used

View File

@ -20,7 +20,8 @@ usage: freqtrade backtesting [-h] [-v] [--logfile FILE] [-V] [-c PATH]
[--dry-run-wallet DRY_RUN_WALLET]
[--timeframe-detail TIMEFRAME_DETAIL]
[--strategy-list STRATEGY_LIST [STRATEGY_LIST ...]]
[--export {none,trades}] [--export-filename PATH]
[--export {none,trades,signals}]
[--export-filename PATH]
[--breakdown {day,week,month} [{day,week,month} ...]]
[--cache {none,day,week,month}]
@ -63,18 +64,17 @@ optional arguments:
`30m`, `1h`, `1d`).
--strategy-list STRATEGY_LIST [STRATEGY_LIST ...]
Provide a space-separated list of strategies to
backtest. Please note that timeframe needs to be
set either in config or via command line. When using
this together with `--export trades`, the strategy-
name is injected into the filename (so `backtest-
data.json` becomes `backtest-data-SampleStrategy.json`
--export {none,trades}
backtest. Please note that timeframe needs to be set
either in config or via command line. When using this
together with `--export trades`, the strategy-name is
injected into the filename (so `backtest-data.json`
becomes `backtest-data-SampleStrategy.json`
--export {none,trades,signals}
Export backtest results (default: trades).
--export-filename PATH
Save backtest results to the file with this filename.
Requires `--export` to be set as well. Example:
`--export-filename=user_data/backtest_results/backtest
_today.json`
--export-filename PATH, --backtest-filename PATH
Use this filename for backtest results.Requires
`--export` to be set as well. Example: `--export-filen
ame=user_data/backtest_results/backtest_today.json`
--breakdown {day,week,month} [{day,week,month} ...]
Show backtesting breakdown per [day, week, month].
--cache {none,day,week,month}
@ -279,106 +279,17 @@ A backtesting result will look like that:
|:-------------------|--------:|------:|-------:|--------:|
| trailing_stop_loss | 205 | 150 | 0 | 55 |
| stop_loss | 166 | 0 | 0 | 166 |
| sell_signal | 56 | 36 | 0 | 20 |
| force_sell | 2 | 0 | 0 | 2 |
| exit_signal | 56 | 36 | 0 | 20 |
| force_exit | 2 | 0 | 0 | 2 |
====================================================== LEFT OPEN TRADES REPORT ======================================================
| Pair | Buys | Avg Profit % | Cum Profit % | Tot Profit BTC | Tot Profit % | Avg Duration | Win Draw Loss Win% |
|:---------|-------:|---------------:|---------------:|-----------------:|---------------:|:---------------|--------------------:|
| ADA/BTC | 1 | 0.89 | 0.89 | 0.00004434 | 0.44 | 6:00:00 | 1 0 0 100 |
| LTC/BTC | 1 | 0.68 | 0.68 | 0.00003421 | 0.34 | 2:00:00 | 1 0 0 100 |
| TOTAL | 2 | 0.78 | 1.57 | 0.00007855 | 0.78 | 4:00:00 | 2 0 0 100 |
================ SUMMARY METRICS ===============
================== SUMMARY METRICS ==================
| Metric | Value |
|------------------------+---------------------|
| Backtesting from | 2019-01-01 00:00:00 |
| Backtesting to | 2019-05-01 00:00:00 |
| Max open trades | 3 |
| | |
| Total/Daily Avg Trades | 429 / 3.575 |
| Starting balance | 0.01000000 BTC |
| Final balance | 0.01762792 BTC |
| Absolute profit | 0.00762792 BTC |
| Total profit % | 76.2% |
| Trades per day | 3.575 |
| Avg. stake amount | 0.001 BTC |
| Total trade volume | 0.429 BTC |
| | |
| Best Pair | LSK/BTC 26.26% |
| Worst Pair | ZEC/BTC -10.18% |
| Best Trade | LSK/BTC 4.25% |
| Worst Trade | ZEC/BTC -10.25% |
| Best day | 0.00076 BTC |
| Worst day | -0.00036 BTC |
| Days win/draw/lose | 12 / 82 / 25 |
| Avg. Duration Winners | 4:23:00 |
| Avg. Duration Loser | 6:55:00 |
| Rejected Entry signals | 3089 |
| Entry/Exit Timeouts | 0 / 0 |
| | |
| Min balance | 0.00945123 BTC |
| Max balance | 0.01846651 BTC |
| Drawdown (Account) | 13.33% |
| Drawdown | 0.0015 BTC |
| Drawdown high | 0.0013 BTC |
| Drawdown low | -0.0002 BTC |
| Drawdown Start | 2019-02-15 14:10:00 |
| Drawdown End | 2019-04-11 18:15:00 |
| Market change | -5.88% |
===============================================
```
### Backtesting report table
The 1st table contains all trades the bot made, including "left open trades".
The last line will give you the overall performance of your strategy,
here:
```
| TOTAL | 429 | 0.36 | 152.41 | 0.00762792 | 76.20 | 4:12:00 | 186 0 243 43.4 |
```
The bot has made `429` trades for an average duration of `4:12:00`, with a performance of `76.20%` (profit), that means it has
earned a total of `0.00762792 BTC` starting with a capital of 0.01 BTC.
The column `Avg Profit %` shows the average profit for all trades made while the column `Cum Profit %` sums up all the profits/losses.
The column `Tot Profit %` shows instead the total profit % in relation to the starting balance.
In the above results, we have a starting balance of 0.01 BTC and an absolute profit of 0.00762792 BTC - so the `Tot Profit %` will be `(0.00762792 / 0.01) * 100 ~= 76.2%`.
Your strategy performance is influenced by your buy strategy, your sell strategy, and also by the `minimal_roi` and `stop_loss` you have set.
For example, if your `minimal_roi` is only `"0": 0.01` you cannot expect the bot to make more profit than 1% (because it will sell every time a trade reaches 1%).
```json
"minimal_roi": {
"0": 0.01
},
```
On the other hand, if you set a too high `minimal_roi` like `"0": 0.55`
(55%), there is almost no chance that the bot will ever reach this profit.
Hence, keep in mind that your performance is an integral mix of all different elements of the strategy, your configuration, and the crypto-currency pairs you have set up.
### Exit reasons table
The 2nd table contains a recap of exit reasons.
This table can tell you which area needs some additional work (e.g. all or many of the `sell_signal` trades are losses, so you should work on improving the sell signal, or consider disabling it).
### Left open trades table
The 3rd table contains all trades the bot had to `forceexit` at the end of the backtesting period to present you the full picture.
This is necessary to simulate realistic behavior, since the backtest period has to end at some point, while realistically, you could leave the bot running forever.
These trades are also included in the first table, but are also shown separately in this table for clarity.
### Summary metrics
The last element of the backtest report is the summary metrics table.
It contains some useful key metrics about performance of your strategy on backtesting data.
```
================ SUMMARY METRICS ===============
| Metric | Value |
|------------------------+---------------------|
|-----------------------------+---------------------|
| Backtesting from | 2019-01-01 00:00:00 |
| Backtesting to | 2019-05-01 00:00:00 |
| Max open trades | 3 |
@ -388,6 +299,7 @@ It contains some useful key metrics about performance of your strategy on backte
| Final balance | 0.01762792 BTC |
| Absolute profit | 0.00762792 BTC |
| Total profit % | 76.2% |
| CAGR % | 460.87% |
| Avg. stake amount | 0.001 BTC |
| Total trade volume | 0.429 BTC |
| | |
@ -411,14 +323,111 @@ It contains some useful key metrics about performance of your strategy on backte
| | |
| Min balance | 0.00945123 BTC |
| Max balance | 0.01846651 BTC |
| Drawdown (Account) | 13.33% |
| Max % of account underwater | 25.19% |
| Absolute Drawdown (Account) | 13.33% |
| Drawdown | 0.0015 BTC |
| Drawdown high | 0.0013 BTC |
| Drawdown low | -0.0002 BTC |
| Drawdown Start | 2019-02-15 14:10:00 |
| Drawdown End | 2019-04-11 18:15:00 |
| Market change | -5.88% |
================================================
=====================================================
```
### Backtesting report table
The 1st table contains all trades the bot made, including "left open trades".
The last line will give you the overall performance of your strategy,
here:
```
| TOTAL | 429 | 0.36 | 152.41 | 0.00762792 | 76.20 | 4:12:00 | 186 0 243 43.4 |
```
The bot has made `429` trades for an average duration of `4:12:00`, with a performance of `76.20%` (profit), that means it has
earned a total of `0.00762792 BTC` starting with a capital of 0.01 BTC.
The column `Avg Profit %` shows the average profit for all trades made while the column `Cum Profit %` sums up all the profits/losses.
The column `Tot Profit %` shows instead the total profit % in relation to the starting balance.
In the above results, we have a starting balance of 0.01 BTC and an absolute profit of 0.00762792 BTC - so the `Tot Profit %` will be `(0.00762792 / 0.01) * 100 ~= 76.2%`.
Your strategy performance is influenced by your buy strategy, your exit strategy, and also by the `minimal_roi` and `stop_loss` you have set.
For example, if your `minimal_roi` is only `"0": 0.01` you cannot expect the bot to make more profit than 1% (because it will exit every time a trade reaches 1%).
```json
"minimal_roi": {
"0": 0.01
},
```
On the other hand, if you set a too high `minimal_roi` like `"0": 0.55`
(55%), there is almost no chance that the bot will ever reach this profit.
Hence, keep in mind that your performance is an integral mix of all different elements of the strategy, your configuration, and the crypto-currency pairs you have set up.
### Exit reasons table
The 2nd table contains a recap of exit reasons.
This table can tell you which area needs some additional work (e.g. all or many of the `exit_signal` trades are losses, so you should work on improving the exit signal, or consider disabling it).
### Left open trades table
The 3rd table contains all trades the bot had to `force_exit` at the end of the backtesting period to present you the full picture.
This is necessary to simulate realistic behavior, since the backtest period has to end at some point, while realistically, you could leave the bot running forever.
These trades are also included in the first table, but are also shown separately in this table for clarity.
### Summary metrics
The last element of the backtest report is the summary metrics table.
It contains some useful key metrics about performance of your strategy on backtesting data.
```
================== SUMMARY METRICS ==================
| Metric | Value |
|-----------------------------+---------------------|
| Backtesting from | 2019-01-01 00:00:00 |
| Backtesting to | 2019-05-01 00:00:00 |
| Max open trades | 3 |
| | |
| Total/Daily Avg Trades | 429 / 3.575 |
| Starting balance | 0.01000000 BTC |
| Final balance | 0.01762792 BTC |
| Absolute profit | 0.00762792 BTC |
| Total profit % | 76.2% |
| CAGR % | 460.87% |
| Avg. stake amount | 0.001 BTC |
| Total trade volume | 0.429 BTC |
| | |
| Long / Short | 352 / 77 |
| Total profit Long % | 1250.58% |
| Total profit Short % | -15.02% |
| Absolute profit Long | 0.00838792 BTC |
| Absolute profit Short | -0.00076 BTC |
| | |
| Best Pair | LSK/BTC 26.26% |
| Worst Pair | ZEC/BTC -10.18% |
| Best Trade | LSK/BTC 4.25% |
| Worst Trade | ZEC/BTC -10.25% |
| Best day | 0.00076 BTC |
| Worst day | -0.00036 BTC |
| Days win/draw/lose | 12 / 82 / 25 |
| Avg. Duration Winners | 4:23:00 |
| Avg. Duration Loser | 6:55:00 |
| Rejected Entry signals | 3089 |
| Entry/Exit Timeouts | 0 / 0 |
| | |
| Min balance | 0.00945123 BTC |
| Max balance | 0.01846651 BTC |
| Max % of account underwater | 25.19% |
| Absolute Drawdown (Account) | 13.33% |
| Drawdown | 0.0015 BTC |
| Drawdown high | 0.0013 BTC |
| Drawdown low | -0.0002 BTC |
| Drawdown Start | 2019-02-15 14:10:00 |
| Drawdown End | 2019-04-11 18:15:00 |
| Market change | -5.88% |
=====================================================
```
@ -439,7 +448,9 @@ It contains some useful key metrics about performance of your strategy on backte
- `Rejected Entry signals`: Trade entry signals that could not be acted upon due to `max_open_trades` being reached.
- `Entry/Exit Timeouts`: Entry/exit orders which did not fill (only applicable if custom pricing is used).
- `Min balance` / `Max balance`: Lowest and Highest Wallet balance during the backtest period.
- `Drawdown (Account)`: Maximum Account Drawdown experienced. Calculated as $(Absolute Drawdown) / (DrawdownHigh + startingBalance)$.
- `Max % of account underwater`: Maximum percentage your account has decreased from the top since the simulation started.
Calculated as the maximum of `(Max Balance - Current Balance) / (Max Balance)`.
- `Absolute Drawdown (Account)`: Maximum Account Drawdown experienced. Calculated as `(Absolute Drawdown) / (DrawdownHigh + startingBalance)`.
- `Drawdown`: Maximum, absolute drawdown experienced. Difference between Drawdown High and Subsequent Low point.
- `Drawdown high` / `Drawdown low`: Profit at the beginning and end of the largest drawdown period. A negative low value means initial capital lost.
- `Drawdown Start` / `Drawdown End`: Start and end datetime for this largest drawdown (can also be visualized via the `plot-dataframe` sub-command).
@ -455,7 +466,7 @@ You can get an overview over daily / weekly or monthly results by using the `--b
To visualize daily and weekly breakdowns, you can use the following:
``` bash
freqtrade backtesting --strategy MyAwesomeStrategy --breakdown day month
freqtrade backtesting --strategy MyAwesomeStrategy --breakdown day week
```
``` output
@ -471,7 +482,7 @@ freqtrade backtesting --strategy MyAwesomeStrategy --breakdown day month
```
The output will show a table containing the realized absolute Profit (in stake currency) for the given timeperiod, as well as wins, draws and losses that materialized (closed) on this day.
The output will show a table containing the realized absolute Profit (in stake currency) for the given timeperiod, as well as wins, draws and losses that materialized (closed) on this day. Below that there will be a second table for the summarized values of weeks indicated by the date of the closing Sunday. The same would apply to a monthly breakdown indicated by the last day of the month.
### Backtest result caching
@ -492,24 +503,24 @@ Since backtesting lacks some detailed information about what happens within a ca
- Buys happen at open-price
- All orders are filled at the requested price (no slippage, no unfilled orders)
- Sell-signal sells happen at open-price of the consecutive candle
- Sell-signal is favored over Stoploss, because sell-signals are assumed to trigger on candle's open
- Exit-signal exits happen at open-price of the consecutive candle
- Exit-signal is favored over Stoploss, because exit-signals are assumed to trigger on candle's open
- ROI
- sells are compared to high - but the ROI value is used (e.g. ROI = 2%, high=5% - so the sell will be at 2%)
- sells are never "below the candle", so a ROI of 2% may result in a sell at 2.4% if low was at 2.4% profit
- Forcesells caused by `<N>=-1` ROI entries use low as sell value, unless N falls on the candle open (e.g. `120: -1` for 1h candles)
- Stoploss sells happen exactly at stoploss price, even if low was lower, but the loss will be `2 * fees` higher than the stoploss price
- Stoploss is evaluated before ROI within one candle. So you can often see more trades with the `stoploss` sell reason comparing to the results obtained with the same strategy in the Dry Run/Live Trade modes
- exits are compared to high - but the ROI value is used (e.g. ROI = 2%, high=5% - so the exit will be at 2%)
- exits are never "below the candle", so a ROI of 2% may result in a exit at 2.4% if low was at 2.4% profit
- Forceexits caused by `<N>=-1` ROI entries use low as exit value, unless N falls on the candle open (e.g. `120: -1` for 1h candles)
- Stoploss exits happen exactly at stoploss price, even if low was lower, but the loss will be `2 * fees` higher than the stoploss price
- Stoploss is evaluated before ROI within one candle. So you can often see more trades with the `stoploss` exit reason comparing to the results obtained with the same strategy in the Dry Run/Live Trade modes
- Low happens before high for stoploss, protecting capital first
- Trailing stoploss
- Trailing Stoploss is only adjusted if it's below the candle's low (otherwise it would be triggered)
- On trade entry candles that trigger trailing stoploss, the "minimum offset" (`stop_positive_offset`) is assumed (instead of high) - and the stop is calculated from this point
- High happens first - adjusting stoploss
- Low uses the adjusted stoploss (so sells with large high-low difference are backtested correctly)
- Low uses the adjusted stoploss (so exits with large high-low difference are backtested correctly)
- ROI applies before trailing-stop, ensuring profits are "top-capped" at ROI if both ROI and trailing stop applies
- Sell-reason does not explain if a trade was positive or negative, just what triggered the sell (this can look odd if negative ROI values are used)
- Exit-reason does not explain if a trade was positive or negative, just what triggered the exit (this can look odd if negative ROI values are used)
- Evaluation sequence (if multiple signals happen on the same candle)
- Sell-signal
- Exit-signal
- ROI (if not stoploss)
- Stoploss

View File

@ -34,6 +34,7 @@ By default, loop runs every few seconds (`internals.process_throttle_secs`) and
* Check timeouts for open orders.
* Calls `check_entry_timeout()` strategy callback for open entry orders.
* Calls `check_exit_timeout()` strategy callback for open exit orders.
* Calls `adjust_entry_price()` strategy callback for open entry orders.
* Verifies existing positions and eventually places exit orders.
* Considers stoploss, ROI and exit-signal, `custom_exit()` and `custom_stoploss()`.
* Determine exit-price based on `exit_pricing` configuration setting or by using the `custom_exit_price()` callback.
@ -58,6 +59,7 @@ This loop will be repeated again and again until the bot is stopped.
* Calculate entry / exit signals (calls `populate_entry_trend()` and `populate_exit_trend()` once per pair).
* Loops per candle simulating entry and exit points.
* Check for Order timeouts, either via the `unfilledtimeout` configuration, or via `check_entry_timeout()` / `check_exit_timeout()` strategy callbacks.
* Calls `adjust_entry_price()` strategy callback for open entry orders.
* Check for trade entry signals (`enter_long` / `enter_short` columns).
* Confirm trade entry / exits (calls `confirm_trade_entry()` and `confirm_trade_exit()` if implemented in the strategy).
* Call `custom_entry_price()` (if implemented in the strategy) to determine entry price (Prices are moved to be within the opening candle).

View File

@ -53,14 +53,63 @@ FREQTRADE__EXCHANGE__SECRET=<yourExchangeSecret>
Multiple configuration files can be specified and used by the bot or the bot can read its configuration parameters from the process standard input stream.
You can specify additional configuration files in `add_config_files`. Files specified in this parameter will be loaded and merged with the initial config file. The files are resolved relative to the initial configuration file.
This is similar to using multiple `--config` parameters, but simpler in usage as you don't have to specify all files for all commands.
!!! Tip "Use multiple configuration files to keep secrets secret"
You can use a 2nd configuration file containing your secrets. That way you can share your "primary" configuration file, while still keeping your API keys for yourself.
``` json title="user_data/config.json"
"add_config_files": [
"config-private.json"
]
```
``` bash
freqtrade trade --config user_data/config.json <...>
```
The 2nd file should only specify what you intend to override.
If a key is in more than one of the configurations, then the "last specified configuration" wins (in the above example, `config-private.json`).
For one-off commands, you can also use the below syntax by specifying multiple "--config" parameters.
``` bash
freqtrade trade --config user_data/config.json --config user_data/config-private.json <...>
```
The 2nd file should only specify what you intend to override.
If a key is in more than one of the configurations, then the "last specified configuration" wins (in the above example, `config-private.json`).
This is equivalent to the example above - but `config-private.json` is specified as cli argument.
??? Note "config collision handling"
If the same configuration setting takes place in both `config.json` and `config-import.json`, then the parent configuration wins.
In the below case, `max_open_trades` would be 3 after the merging - as the reusable "import" configuration has this key overwritten.
``` json title="user_data/config.json"
{
"max_open_trades": 3,
"stake_currency": "USDT",
"add_config_files": [
"config-import.json"
]
}
```
``` json title="user_data/config-import.json"
{
"max_open_trades": 10,
"stake_amount": "unlimited",
}
```
Resulting combined configuration:
``` json title="Result"
{
"max_open_trades": 10,
"stake_currency": "USDT",
"stake_amount": "unlimited"
}
```
## Configuration parameters
@ -92,7 +141,7 @@ Mandatory parameters are marked as **Required**, which means that they are requi
| `dry_run_wallet` | Define the starting amount in stake currency for the simulated wallet used by the bot running in Dry Run mode.<br>*Defaults to `1000`.* <br> **Datatype:** Float
| `cancel_open_orders_on_exit` | Cancel open orders when the `/stop` RPC command is issued, `Ctrl+C` is pressed or the bot dies unexpectedly. When set to `true`, this allows you to use `/stop` to cancel unfilled and partially filled orders in the event of a market crash. It does not impact open positions. <br>*Defaults to `false`.* <br> **Datatype:** Boolean
| `process_only_new_candles` | Enable processing of indicators only when new candles arrive. If false each loop populates the indicators, this will mean the same candle is processed many times creating system load but can be useful of your strategy depends on tick data not only candle. [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `false`.* <br> **Datatype:** Boolean
| `minimal_roi` | **Required.** Set the threshold as ratio the bot will use to sell a trade. [More information below](#understand-minimal_roi). [Strategy Override](#parameters-in-the-strategy). <br> **Datatype:** Dict
| `minimal_roi` | **Required.** Set the threshold as ratio the bot will use to exit a trade. [More information below](#understand-minimal_roi). [Strategy Override](#parameters-in-the-strategy). <br> **Datatype:** Dict
| `stoploss` | **Required.** Value as ratio of the stoploss used by the bot. More details in the [stoploss documentation](stoploss.md). [Strategy Override](#parameters-in-the-strategy). <br> **Datatype:** Float (as ratio)
| `trailing_stop` | Enables trailing stoploss (based on `stoploss` in either configuration or strategy file). More details in the [stoploss documentation](stoploss.md#trailing-stop-loss). [Strategy Override](#parameters-in-the-strategy). <br> **Datatype:** Boolean
| `trailing_stop_positive` | Changes stoploss once profit has been reached. More details in the [stoploss documentation](stoploss.md#trailing-stop-loss-custom-positive-loss). [Strategy Override](#parameters-in-the-strategy). <br> **Datatype:** Float
@ -105,7 +154,7 @@ Mandatory parameters are marked as **Required**, which means that they are requi
| `unfilledtimeout.entry` | **Required.** How long (in minutes or seconds) the bot will wait for an unfilled entry order to complete, after which the order will be cancelled and repeated at current (new) price, as long as there is a signal. [Strategy Override](#parameters-in-the-strategy).<br> **Datatype:** Integer
| `unfilledtimeout.exit` | **Required.** How long (in minutes or seconds) the bot will wait for an unfilled exit order to complete, after which the order will be cancelled and repeated at current (new) price, as long as there is a signal. [Strategy Override](#parameters-in-the-strategy).<br> **Datatype:** Integer
| `unfilledtimeout.unit` | Unit to use in unfilledtimeout setting. Note: If you set unfilledtimeout.unit to "seconds", "internals.process_throttle_secs" must be inferior or equal to timeout [Strategy Override](#parameters-in-the-strategy). <br> *Defaults to `minutes`.* <br> **Datatype:** String
| `unfilledtimeout.exit_timeout_count` | How many times can exit orders time out. Once this number of timeouts is reached, an emergency sell is triggered. 0 to disable and allow unlimited order cancels. [Strategy Override](#parameters-in-the-strategy).<br>*Defaults to `0`.* <br> **Datatype:** Integer
| `unfilledtimeout.exit_timeout_count` | How many times can exit orders time out. Once this number of timeouts is reached, an emergency exit is triggered. 0 to disable and allow unlimited order cancels. [Strategy Override](#parameters-in-the-strategy).<br>*Defaults to `0`.* <br> **Datatype:** Integer
| `entry_pricing.price_side` | Select the side of the spread the bot should look at to get the entry rate. [More information below](#buy-price-side).<br> *Defaults to `same`.* <br> **Datatype:** String (either `ask`, `bid`, `same` or `other`).
| `entry_pricing.price_last_balance` | **Required.** Interpolate the bidding price. More information [below](#entry-price-without-orderbook-enabled).
| `entry_pricing.use_order_book` | Enable entering using the rates in [Order Book Entry](#entry-price-with-orderbook-enabled). <br> *Defaults to `True`.*<br> **Datatype:** Boolean
@ -115,15 +164,16 @@ Mandatory parameters are marked as **Required**, which means that they are requi
| `exit_pricing.price_side` | Select the side of the spread the bot should look at to get the exit rate. [More information below](#exit-price-side).<br> *Defaults to `same`.* <br> **Datatype:** String (either `ask`, `bid`, `same` or `other`).
| `exit_pricing.price_last_balance` | Interpolate the exiting price. More information [below](#exit-price-without-orderbook-enabled).
| `exit_pricing.use_order_book` | Enable exiting of open trades using [Order Book Exit](#exit-price-with-orderbook-enabled). <br> *Defaults to `True`.*<br> **Datatype:** Boolean
| `exit_pricing.order_book_top` | Bot will use the top N rate in Order Book "price_side" to sell. I.e. a value of 2 will allow the bot to pick the 2nd ask rate in [Order Book Exit](#exit-price-with-orderbook-enabled)<br>*Defaults to `1`.* <br> **Datatype:** Positive Integer
| `use_sell_signal` | Use sell signals produced by the strategy in addition to the `minimal_roi`. [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `true`.* <br> **Datatype:** Boolean
| `sell_profit_only` | Wait until the bot reaches `sell_profit_offset` before taking a sell decision. [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `false`.* <br> **Datatype:** Boolean
| `sell_profit_offset` | Sell-signal is only active above this value. Only active in combination with `sell_profit_only=True`. [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `0.0`.* <br> **Datatype:** Float (as ratio)
| `ignore_roi_if_buy_signal` | Do not sell if the buy signal is still active. This setting takes preference over `minimal_roi` and `use_sell_signal`. [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `false`.* <br> **Datatype:** Boolean
| `exit_pricing.order_book_top` | Bot will use the top N rate in Order Book "price_side" to exit. I.e. a value of 2 will allow the bot to pick the 2nd ask rate in [Order Book Exit](#exit-price-with-orderbook-enabled)<br>*Defaults to `1`.* <br> **Datatype:** Positive Integer
| `use_exit_signal` | Use exit signals produced by the strategy in addition to the `minimal_roi`. [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `true`.* <br> **Datatype:** Boolean
| `exit_profit_only` | Wait until the bot reaches `exit_profit_offset` before taking an exit decision. [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `false`.* <br> **Datatype:** Boolean
| `exit_profit_offset` | Exit-signal is only active above this value. Only active in combination with `exit_profit_only=True`. [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `0.0`.* <br> **Datatype:** Float (as ratio)
| `ignore_roi_if_entry_signal` | Do not exit if the entry signal is still active. This setting takes preference over `minimal_roi` and `use_exit_signal`. [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `false`.* <br> **Datatype:** Boolean
| `ignore_buying_expired_candle_after` | Specifies the number of seconds until a buy signal is no longer used. <br> **Datatype:** Integer
| `order_types` | Configure order-types depending on the action (`"entry"`, `"exit"`, `"stoploss"`, `"stoploss_on_exchange"`). [More information below](#understand-order_types). [Strategy Override](#parameters-in-the-strategy).<br> **Datatype:** Dict
| `order_time_in_force` | Configure time in force for entry and exit orders. [More information below](#understand-order_time_in_force). [Strategy Override](#parameters-in-the-strategy). <br> **Datatype:** Dict
| `custom_price_max_distance_ratio` | Configure maximum distance ratio between current and custom entry or exit price. <br>*Defaults to `0.02` 2%).*<br> **Datatype:** Positive float
| `recursive_strategy_search` | Set to `true` to recursively search sub-directories inside `user_data/strategies` for a strategy. <br> **Datatype:** Boolean
| `exchange.name` | **Required.** Name of the exchange class to use. [List below](#user-content-what-values-for-exchangename). <br> **Datatype:** String
| `exchange.sandbox` | Use the 'sandbox' version of the exchange, where the exchange provides a sandbox for risk-free integration. See [here](sandbox-testing.md) in more details.<br> **Datatype:** Boolean
| `exchange.key` | API key to use for the exchange. Only required when you are in production mode.<br>**Keep it in secret, do not disclose publicly.** <br> **Datatype:** String
@ -150,10 +200,12 @@ Mandatory parameters are marked as **Required**, which means that they are requi
| `telegram.balance_dust_level` | Dust-level (in stake currency) - currencies with a balance below this will not be shown by `/balance`. <br> **Datatype:** float
| `webhook.enabled` | Enable usage of Webhook notifications <br> **Datatype:** Boolean
| `webhook.url` | URL for the webhook. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.webhookbuy` | Payload to send on buy. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.webhookbuycancel` | Payload to send on buy order cancel. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.webhooksell` | Payload to send on sell. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.webhooksellcancel` | Payload to send on sell order cancel. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.webhookentry` | Payload to send on entry. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.webhookentrycancel` | Payload to send on entry order cancel. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.webhookentryfill` | Payload to send on entry order filled. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.webhookexit` | Payload to send on exit. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.webhookexitcancel` | Payload to send on exit order cancel. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.webhookexitfill` | Payload to send on exit order filled. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.webhookstatus` | Payload to send on status calls. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `api_server.enabled` | Enable usage of API Server. See the [API Server documentation](rest-api.md) for more details. <br> **Datatype:** Boolean
| `api_server.listen_ip_address` | Bind IP address. See the [API Server documentation](rest-api.md) for more details. <br> **Datatype:** IPv4
@ -164,7 +216,7 @@ Mandatory parameters are marked as **Required**, which means that they are requi
| `bot_name` | Name of the bot. Passed via API to a client - can be shown to distinguish / name bots.<br> *Defaults to `freqtrade`*<br> **Datatype:** String
| `db_url` | Declares database URL to use. NOTE: This defaults to `sqlite:///tradesv3.dryrun.sqlite` if `dry_run` is `true`, and to `sqlite:///tradesv3.sqlite` for production instances. <br> **Datatype:** String, SQLAlchemy connect string
| `initial_state` | Defines the initial application state. If set to stopped, then the bot has to be explicitly started via `/start` RPC command. <br>*Defaults to `stopped`.* <br> **Datatype:** Enum, either `stopped` or `running`
| `forcebuy_enable` | Enables the RPC Commands to force a buy. More information below. <br> **Datatype:** Boolean
| `force_entry_enable` | Enables the RPC Commands to force a Trade entry. More information below. <br> **Datatype:** Boolean
| `disable_dataframe_checks` | Disable checking the OHLCV dataframe returned from the strategy methods for correctness. Only use when intentionally changing the dataframe and understand what you are doing. [Strategy Override](#parameters-in-the-strategy).<br> *Defaults to `False`*. <br> **Datatype:** Boolean
| `strategy` | **Required** Defines Strategy class to use. Recommended to be set via `--strategy NAME`. <br> **Datatype:** ClassName
| `strategy_path` | Adds an additional strategy lookup path (must be a directory). <br> **Datatype:** String
@ -173,6 +225,7 @@ Mandatory parameters are marked as **Required**, which means that they are requi
| `internals.sd_notify` | Enables use of the sd_notify protocol to tell systemd service manager about changes in the bot state and issue keep-alive pings. See [here](installation.md#7-optional-configure-freqtrade-as-a-systemd-service) for more details. <br> **Datatype:** Boolean
| `logfile` | Specifies logfile name. Uses a rolling strategy for log file rotation for 10 files with the 1MB limit per file. <br> **Datatype:** String
| `user_data_dir` | Directory containing user data. <br> *Defaults to `./user_data/`*. <br> **Datatype:** String
| `add_config_files` | Additional config files. These files will be loaded and merged with the current config file. The files are resolved relative to the initial file.<br> *Defaults to `[]`*. <br> **Datatype:** List of strings
| `dataformat_ohlcv` | Data format to use to store historical candle (OHLCV) data. <br> *Defaults to `json`*. <br> **Datatype:** String
| `dataformat_trades` | Data format to use to store historical trades data. <br> *Defaults to `jsongz`*. <br> **Datatype:** String
| `position_adjustment_enable` | Enables the strategy to use position adjustments (additional buys or sells). [More information here](strategy-callbacks.md#adjust-trade-position). <br> [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `false`.*<br> **Datatype:** Boolean
@ -196,10 +249,10 @@ Values set in the configuration file always overwrite values set in the strategy
* `order_time_in_force`
* `unfilledtimeout`
* `disable_dataframe_checks`
* `use_sell_signal`
* `sell_profit_only`
* `sell_profit_offset`
* `ignore_roi_if_buy_signal`
- `use_exit_signal`
* `exit_profit_only`
- `exit_profit_offset`
- `ignore_roi_if_entry_signal`
* `ignore_buying_expired_candle_after`
* `position_adjustment_enable`
* `max_entry_position_adjustment`
@ -328,10 +381,10 @@ See the example below:
```json
"minimal_roi": {
"40": 0.0, # Sell after 40 minutes if the profit is not negative
"30": 0.01, # Sell after 30 minutes if there is at least 1% profit
"20": 0.02, # Sell after 20 minutes if there is at least 2% profit
"0": 0.04 # Sell immediately if there is at least 4% profit
"40": 0.0, # Exit after 40 minutes if the profit is not negative
"30": 0.01, # Exit after 30 minutes if there is at least 1% profit
"20": 0.02, # Exit after 20 minutes if there is at least 2% profit
"0": 0.04 # Exit immediately if there is at least 4% profit
},
```
@ -340,14 +393,14 @@ This parameter can be set in either Strategy or Configuration file. If you use i
`minimal_roi` value from the strategy file.
If it is not set in either Strategy or Configuration, a default of 1000% `{"0": 10}` is used, and minimal ROI is disabled unless your trade generates 1000% profit.
!!! Note "Special case to forcesell after a specific time"
A special case presents using `"<N>": -1` as ROI. This forces the bot to sell a trade after N Minutes, no matter if it's positive or negative, so represents a time-limited force-sell.
!!! Note "Special case to forceexit after a specific time"
A special case presents using `"<N>": -1` as ROI. This forces the bot to exit a trade after N Minutes, no matter if it's positive or negative, so represents a time-limited force-exit.
### Understand forcebuy_enable
### Understand force_entry_enable
The `forcebuy_enable` configuration parameter enables the usage of forcebuy commands via Telegram and REST API.
The `force_entry_enable` configuration parameter enables the usage of force-enter (`/forcelong`, `/forceshort`) commands via Telegram and REST API.
For security reasons, it's disabled by default, and freqtrade will show a warning message on startup if enabled.
For example, you can send `/forcebuy ETH/BTC` to the bot, which will result in freqtrade buying the pair and holds it until a regular sell-signal (ROI, stoploss, /forcesell) appears.
For example, you can send `/forceenter ETH/BTC` to the bot, which will result in freqtrade buying the pair and holds it until a regular exit-signal (ROI, stoploss, /forceexit) appears.
This can be dangerous with some strategies, so use with care.
@ -374,18 +427,17 @@ For example, if your strategy is using a 1h timeframe, and you only want to buy
### Understand order_types
The `order_types` configuration parameter maps actions (`entry`, `exit`, `stoploss`, `emergencyexit`, `forceexit`, `forceentry`) to order-types (`market`, `limit`, ...) as well as configures stoploss to be on the exchange and defines stoploss on exchange update interval in seconds.
The `order_types` configuration parameter maps actions (`entry`, `exit`, `stoploss`, `emergency_exit`, `force_exit`, `force_entry`) to order-types (`market`, `limit`, ...) as well as configures stoploss to be on the exchange and defines stoploss on exchange update interval in seconds.
This allows to buy using limit orders, sell using
limit-orders, and create stoplosses using market orders. It also allows to set the
stoploss "on exchange" which means stoploss order would be placed immediately once
the buy order is fulfilled.
This allows to enter using limit orders, exit using limit-orders, and create stoplosses using market orders.
It also allows to set the
stoploss "on exchange" which means stoploss order would be placed immediately once the buy order is fulfilled.
`order_types` set in the configuration file overwrites values set in the strategy as a whole, so you need to configure the whole `order_types` dictionary in one place.
If this is configured, the following 4 values (`entry`, `exit`, `stoploss` and `stoploss_on_exchange`) need to be present, otherwise, the bot will fail to start.
For information on (`emergencyexit`,`forceexit`, `forceentry`, `stoploss_on_exchange`,`stoploss_on_exchange_interval`,`stoploss_on_exchange_limit_ratio`) please see stop loss documentation [stop loss on exchange](stoploss.md)
For information on (`emergency_exit`,`force_exit`, `force_entry`, `stoploss_on_exchange`,`stoploss_on_exchange_interval`,`stoploss_on_exchange_limit_ratio`) please see stop loss documentation [stop loss on exchange](stoploss.md)
Syntax for Strategy:
@ -393,9 +445,9 @@ Syntax for Strategy:
order_types = {
"entry": "limit",
"exit": "limit",
"emergencyexit": "market",
"forceentry": "market",
"forceexit": "market",
"emergency_exit": "market",
"force_entry": "market",
"force_exit": "market",
"stoploss": "market",
"stoploss_on_exchange": False,
"stoploss_on_exchange_interval": 60,
@ -409,9 +461,9 @@ Configuration:
"order_types": {
"entry": "limit",
"exit": "limit",
"emergencyexit": "market",
"forceentry": "market",
"forceexit": "market",
"emergency_exit": "market",
"force_entry": "market",
"force_exit": "market",
"stoploss": "market",
"stoploss_on_exchange": false,
"stoploss_on_exchange_interval": 60
@ -434,7 +486,7 @@ Configuration:
If `stoploss_on_exchange` is enabled and the stoploss is cancelled manually on the exchange, then the bot will create a new stoploss order.
!!! Warning "Warning: stoploss_on_exchange failures"
If stoploss on exchange creation fails for some reason, then an "emergency exit" is initiated. By default, this will sell the asset using a market order. The order-type for the emergency-sell can be changed by setting the `emergencyexit` value in the `order_types` dictionary - however, this is not advised.
If stoploss on exchange creation fails for some reason, then an "emergency exit" is initiated. By default, this will exit the trade using a market order. The order-type for the emergency-exit can be changed by setting the `emergency_exit` value in the `order_types` dictionary - however, this is not advised.
### Understand order_time_in_force

View File

@ -122,5 +122,6 @@ Best avoid relative paths, since this starts at the storage location of the jupy
* [Strategy debugging](strategy_analysis_example.md) - also available as Jupyter notebook (`user_data/notebooks/strategy_analysis_example.ipynb`)
* [Plotting](plotting.md)
* [Tag Analysis](advanced-backtesting.md)
Feel free to submit an issue or Pull Request enhancing this document if you would like to share ideas on how to best analyze the data.

View File

@ -30,6 +30,7 @@ usage: freqtrade download-data [-h] [-v] [--logfile FILE] [-V] [-c PATH]
[--data-format-ohlcv {json,jsongz,hdf5}]
[--data-format-trades {json,jsongz,hdf5}]
[--trading-mode {spot,margin,futures}]
[--prepend]
optional arguments:
-h, --help show this help message and exit
@ -62,6 +63,7 @@ optional arguments:
`jsongz`).
--trading-mode {spot,margin,futures}
Select Trading mode
--prepend Allow data prepending.
Common arguments:
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
@ -157,10 +159,21 @@ freqtrade download-data --exchange binance --pairs .*/USDT
- To change the exchange used to download the historical data from, please use a different configuration file (you'll probably need to adjust rate limits etc.)
- To use `pairs.json` from some other directory, use `--pairs-file some_other_dir/pairs.json`.
- To download historical candle (OHLCV) data for only 10 days, use `--days 10` (defaults to 30 days).
- To download historical candle (OHLCV) data from a fixed starting point, use `--timerange 20200101-` - which will download all data from January 1st, 2020. Eventually set end dates are ignored.
- To download historical candle (OHLCV) data from a fixed starting point, use `--timerange 20200101-` - which will download all data from January 1st, 2020.
- Use `--timeframes` to specify what timeframe download the historical candle (OHLCV) data for. Default is `--timeframes 1m 5m` which will download 1-minute and 5-minute data.
- To use exchange, timeframe and list of pairs as defined in your configuration file, use the `-c/--config` option. With this, the script uses the whitelist defined in the config as the list of currency pairs to download data for and does not require the pairs.json file. You can combine `-c/--config` with most other options.
#### Download additional data before the current timerange
Assuming you downloaded all data from 2022 (`--timerange 20220101-`) - but you'd now like to also backtest with earlier data.
You can do so by using the `--prepend` flag, combined with `--timerange` - specifying an end-date.
``` bash
freqtrade download-data --exchange binance --pairs ETH/USDT XRP/USDT BTC/USDT --prepend --timerange 20210101-20220101
```
!!! Note
Freqtrade will ignore the end-date in this mode if data is available, updating the end-date to the existing data start point.
### Data format

View File

@ -38,7 +38,7 @@ The old section of configuration parameters (`"pairlist"`) has been deprecated i
Since only quoteVolume can be compared between assets, the other options (bidVolume, askVolume) have been deprecated in 2020.4, and have been removed in 2020.9.
### Using order book steps for sell price
### Using order book steps for exit price
Using `order_book_min` and `order_book_max` used to allow stepping the orderbook and trying to find the next ROI slot - trying to place sell-orders early.
As this does however increase risk and provides no benefit, it's been removed for maintainability purposes in 2021.7.
@ -57,7 +57,20 @@ While we may drop support for the current interface sometime in the future, we w
Please follow the [Strategy migration](strategy_migration.md) guide to migrate your strategy to the new format to start using the new functionalities.
### webhooks - `buy_tag` has been renamed to `enter_tag`
### webhooks - changes with 2022.4
#### `buy_tag` has been renamed to `enter_tag`
This should apply only to your strategy and potentially to webhooks.
We will keep a compatibility layer for 1-2 versions (so both `buy_tag` and `enter_tag` will still work), but support for this in webhooks will disappear after that.
#### Naming changes
Webhook terminology changed from "sell" to "exit", and from "buy" to "entry".
* `webhookbuy` -> `webhookentry`
* `webhookbuyfill` -> `webhookentryfill`
* `webhookbuycancel` -> `webhookentrycancel`
* `webhooksell` -> `webhookexit`
* `webhooksellfill` -> `webhookexitfill`
* `webhooksellcancel` -> `webhookexitcancel`

View File

@ -26,6 +26,9 @@ Alternatively (e.g. if your system is not supported by the setup.sh script), fol
This will install all required tools for development, including `pytest`, `flake8`, `mypy`, and `coveralls`.
Then install the git hook scripts by running `pre-commit install`, so your changes will be verified locally before committing.
This avoids a lot of waiting for CI already, as some basic formatting checks are done locally on your machine.
Before opening a pull request, please familiarize yourself with our [Contributing Guidelines](https://github.com/freqtrade/freqtrade/blob/develop/CONTRIBUTING.md).
### Devcontainer setup
@ -197,11 +200,12 @@ For that reason, they must implement the following methods:
* `global_stop()`
* `stop_per_pair()`.
`global_stop()` and `stop_per_pair()` must return a ProtectionReturn tuple, which consists of:
`global_stop()` and `stop_per_pair()` must return a ProtectionReturn object, which consists of:
* lock pair - boolean
* lock until - datetime - until when should the pair be locked (will be rounded up to the next new candle)
* reason - string, used for logging and storage in the database
* lock_side - long, short or '*'.
The `until` portion should be calculated using the provided `calculate_lock_end()` method.
@ -220,13 +224,13 @@ Protections can have 2 different ways to stop trading for a limited :
##### Protections - per pair
Protections that implement the per pair approach must set `has_local_stop=True`.
The method `stop_per_pair()` will be called whenever a trade closed (sell order completed).
The method `stop_per_pair()` will be called whenever a trade closed (exit order completed).
##### Protections - global protection
These Protections should do their evaluation across all pairs, and consequently will also lock all pairs from trading (called a global PairLock).
Global protection must set `has_global_stop=True` to be evaluated for global stops.
The method `global_stop()` will be called whenever a trade closed (sell order completed).
The method `global_stop()` will be called whenever a trade closed (exit order completed).
##### Protections - calculating lock end time
@ -264,7 +268,7 @@ Additional tests / steps to complete:
* Check if balance shows correctly (*)
* Create market order (*)
* Create limit order (*)
* Complete trade (buy + sell) (*)
* Complete trade (enter + exit) (*)
* Compare result calculation between exchange and bot
* Ensure fees are applied correctly (check the database against the exchange)

View File

@ -64,7 +64,10 @@ Binance supports [time_in_force](configuration.md#understand-order_time_in_force
For Binance, please add `"BNB/<STAKE>"` to your blacklist to avoid issues.
Accounts having BNB accounts use this to pay for fees - if your first trade happens to be on `BNB`, further trades will consume this position and make the initial BNB trade unsellable as the expected amount is not there anymore.
### Binance Futures' order pricing
### Binance Futures
Binance has specific (unfortunately complex) [Futures Trading Quantitative Rules](https://www.binance.com/en/support/faq/4f462ebe6ff445d4a170be7d9e897272) which need to be followed, and which prohibit a too low stake-amount (among others) for too many orders.
Violating these rules will result in a trading restriction.
When trading on Binance Futures market, orderbook must be used because there is no price ticker data for futures.
@ -227,6 +230,11 @@ OKX requires a passphrase for each api key, you will therefore need to add this
!!! Warning
OKX only provides 100 candles per api call. Therefore, the strategy will only have a pretty low amount of data available in backtesting mode.
!!! Warning "Futures"
OKX Futures has the concept of "position mode" - which can be Net or long/short (hedge mode).
Freqtrade supports both modes - but changing the mode mid-trading is not supported and will lead to exceptions and failures to place trades.
OKX also only provides MARK candles for the past ~3 months. Backtesting futures prior to that date will therefore lead to slight deviations, as funding-fees cannot be calculated correctly without this data.
## Gate.io
!!! Tip "Stoploss on Exchange"

View File

@ -116,7 +116,9 @@ optional arguments:
ShortTradeDurHyperOptLoss, OnlyProfitHyperOptLoss,
SharpeHyperOptLoss, SharpeHyperOptLossDaily,
SortinoHyperOptLoss, SortinoHyperOptLossDaily,
CalmarHyperOptLoss, MaxDrawDownHyperOptLoss, ProfitDrawDownHyperOptLoss
CalmarHyperOptLoss, MaxDrawDownHyperOptLoss,
MaxDrawDownRelativeHyperOptLoss,
ProfitDrawDownHyperOptLoss
--disable-param-export
Disable automatic hyperopt parameter export.
--ignore-missing-spaces, --ignore-unparameterized-spaces
@ -563,7 +565,8 @@ Currently, the following loss functions are builtin:
* `SharpeHyperOptLossDaily` - optimizes Sharpe Ratio calculated on **daily** trade returns relative to standard deviation.
* `SortinoHyperOptLoss` - optimizes Sortino Ratio calculated on trade returns relative to **downside** standard deviation.
* `SortinoHyperOptLossDaily` - optimizes Sortino Ratio calculated on **daily** trade returns relative to **downside** standard deviation.
* `MaxDrawDownHyperOptLoss` - Optimizes Maximum drawdown.
* `MaxDrawDownHyperOptLoss` - Optimizes Maximum absolute drawdown.
* `MaxDrawDownRelativeHyperOptLoss` - Optimizes both maximum absolute drawdown while also adjusting for maximum relative drawdown.
* `CalmarHyperOptLoss` - Optimizes Calmar Ratio calculated on trade returns relative to max drawdown.
* `ProfitDrawDownHyperOptLoss` - Optimizes by max Profit & min Drawdown objective. `DRAWDOWN_MULT` variable within the hyperoptloss file can be adjusted to be stricter or more flexible on drawdown purposes.

View File

@ -44,7 +44,7 @@ It uses configuration from `exchange.pair_whitelist` and `exchange.pair_blacklis
```json
"pairlists": [
{"method": "StaticPairList"}
],
],
```
By default, only currently enabled pairs are allowed.
@ -160,17 +160,17 @@ This filter allows freqtrade to ignore pairs until they have been listed for at
Offsets an incoming pairlist by a given `offset` value.
As an example it can be used in conjunction with `VolumeFilter` to remove the top X volume pairs. Or to split
a larger pairlist on two bot instances.
As an example it can be used in conjunction with `VolumeFilter` to remove the top X volume pairs. Or to split a larger pairlist on two bot instances.
Example to remove the first 10 pairs from the pairlist:
Example to remove the first 10 pairs from the pairlist, and takes the next 20 (taking items 10-30 of the initial list):
```json
"pairlists": [
// ...
{
"method": "OffsetFilter",
"offset": 10
"offset": 10,
"number_assets": 20
}
],
```
@ -181,7 +181,7 @@ Example to remove the first 10 pairs from the pairlist:
`VolumeFilter`.
!!! Note
An offset larger then the total length of the incoming pairlist will result in an empty pairlist.
An offset larger than the total length of the incoming pairlist will result in an empty pairlist.
#### PerformanceFilter

View File

@ -48,6 +48,8 @@ If `trade_limit` or more trades resulted in stoploss, trading will stop for `sto
This applies across all pairs, unless `only_per_pair` is set to true, which will then only look at one pair at a time.
Similarly, this protection will by default look at all trades (long and short). For futures bots, setting `only_per_side` will make the bot only consider one side, and will then only lock this one side, allowing for example shorts to continue after a series of long stoplosses.
The below example stops trading for all pairs for 4 candles after the last trade if the bot hit stoploss 4 times within the last 24 candles.
``` python
@ -59,7 +61,8 @@ def protections(self):
"lookback_period_candles": 24,
"trade_limit": 4,
"stop_duration_candles": 4,
"only_per_pair": False
"only_per_pair": False,
"only_per_side": False
}
]
```
@ -93,6 +96,8 @@ def protections(self):
`LowProfitPairs` uses all trades for a pair within `lookback_period` in minutes (or in candles when using `lookback_period_candles`) to determine the overall profit ratio.
If that ratio is below `required_profit`, that pair will be locked for `stop_duration` in minutes (or in candles when using `stop_duration_candles`).
For futures bots, setting `only_per_side` will make the bot only consider one side, and will then only lock this one side, allowing for example shorts to continue after a series of long losses.
The below example will stop trading a pair for 60 minutes if the pair does not have a required profit of 2% (and a minimum of 2 trades) within the last 6 candles.
``` python
@ -104,7 +109,8 @@ def protections(self):
"lookback_period_candles": 6,
"trade_limit": 2,
"stop_duration": 60,
"required_profit": 0.02
"required_profit": 0.02,
"only_per_pair": False,
}
]
```

View File

@ -51,6 +51,14 @@ Please read the [exchange specific notes](exchanges.md) to learn about eventual,
- [X] [OKX](https://okx.com/) (Former OKEX)
- [ ] [potentially many others through <img alt="ccxt" width="30px" src="assets/ccxt-logo.svg" />](https://github.com/ccxt/ccxt/). _(We cannot guarantee they will work)_
### Experimentally, freqtrade also supports futures on the following exchanges:
- [X] [Binance](https://www.binance.com/)
- [X] [Gate.io](https://www.gate.io/ref/6266643)
- [X] [OKX](https://okx.com/).
Please make sure to read the [exchange specific notes](exchanges.md), as well as the [trading with leverage](leverage.md) documentation before diving in.
### Community tested
Exchanges confirmed working by the community:

View File

@ -13,6 +13,16 @@
Please only use advanced trading modes when you know how freqtrade (and your strategy) works.
Also, never risk more than what you can afford to lose.
Please read the [strategy migration guide](strategy_migration.md#strategy-migration-between-v2-and-v3) to migrate your strategy from a freqtrade v2 strategy, to v3 strategy that can short and trade futures.
## Shorting
Shorting is not possible when trading with [`trading_mode`](#understand-tradingmode) set to `spot`. To short trade, `trading_mode` must be set to `margin`(currently unavailable) or [`futures`](#futures), with [`margin_mode`](#margin-mode) set to `cross`(currently unavailable) or [`isolated`](#isolated-margin-mode)
For a strategy to short, the strategy class must set the class variable `can_short = True`
Please read [strategy customization](strategy-customization.md#entry-signal-rules) for instructions on how to set signals to enter and exit short trades.
## Understand `trading_mode`
The possible values are: `spot` (default), `margin`(*Currently unavailable*) or `futures`.

View File

@ -96,7 +96,7 @@ Strategy arguments:
Example:
``` bash
freqtrade plot-dataframe -p BTC/ETH
freqtrade plot-dataframe -p BTC/ETH --strategy AwesomeStrategy
```
The `-p/--pairs` argument can be used to specify pairs you would like to plot.
@ -107,9 +107,6 @@ The `-p/--pairs` argument can be used to specify pairs you would like to plot.
Specify custom indicators.
Use `--indicators1` for the main plot and `--indicators2` for the subplot below (if values are in a different range than prices).
!!! Tip
You will almost certainly want to specify a custom strategy! This can be done by adding `-s Classname` / `--strategy ClassName` to the command.
``` bash
freqtrade plot-dataframe --strategy AwesomeStrategy -p BTC/ETH --indicators1 sma ema --indicators2 macd
```

View File

@ -1,5 +1,5 @@
mkdocs==1.3.0
mkdocs-material==8.2.8
mkdocs-material==8.2.14
mdx_truly_sane_lists==1.2
pymdown-extensions==9.3
jinja2==3.1.1
pymdown-extensions==9.4
jinja2==3.1.2

View File

@ -147,8 +147,8 @@ python3 scripts/rest_client.py --config rest_config.json <command> [optional par
| `profit` | Display a summary of your profit/loss from close trades and some stats about your performance.
| `forceexit <trade_id>` | Instantly exits the given trade (Ignoring `minimum_roi`).
| `forceexit all` | Instantly exits all open trades (Ignoring `minimum_roi`).
| `forceenter <pair> [rate]` | Instantly enters the given pair. Rate is optional. (`forcebuy_enable` must be set to True)
| `forceenter <pair> <side> [rate]` | Instantly longs or shorts the given pair. Rate is optional. (`forcebuy_enable` must be set to True)
| `forceenter <pair> [rate]` | Instantly enters the given pair. Rate is optional. (`force_entry_enable` must be set to True)
| `forceenter <pair> <side> [rate]` | Instantly longs or shorts the given pair. Rate is optional. (`force_entry_enable` must be set to True)
| `performance` | Show performance of each finished trade grouped by pair.
| `balance` | Show account balance per currency.
| `daily <n>` | Shows profit or loss per day, over the last n days (n defaults to 7).
@ -223,8 +223,8 @@ forceenter
:param side: 'long' or 'short'
:param price: Optional - price to buy
forcesell
Force-sell a trade.
forceexit
Force-exit a trade.
:param tradeid: Id of the trade (can be received via status command)

View File

@ -52,11 +52,11 @@ SELECT * FROM trades;
## Fix trade still open after a manual exit on the exchange
!!! Warning
Manually selling a pair on the exchange will not be detected by the bot and it will try to sell anyway. Whenever possible, forceexit <tradeid> should be used to accomplish the same thing.
Manually selling a pair on the exchange will not be detected by the bot and it will try to sell anyway. Whenever possible, /forceexit <tradeid> should be used to accomplish the same thing.
It is strongly advised to backup your database file before making any manual changes.
!!! Note
This should not be necessary after /forceexit, as forceexit orders are closed automatically by the bot on the next iteration.
This should not be necessary after /forceexit, as force_exit orders are closed automatically by the bot on the next iteration.
```sql
UPDATE trades
@ -65,7 +65,7 @@ SET is_open=0,
close_rate=<close_rate>,
close_profit = close_rate / open_rate - 1,
close_profit_abs = (amount * <close_rate> * (1 - fee_close) - (amount * (open_rate * (1 - fee_open)))),
sell_reason=<sell_reason>
exit_reason=<exit_reason>
WHERE id=<trade_ID_to_update>;
```
@ -78,7 +78,7 @@ SET is_open=0,
close_rate=0.19638016,
close_profit=0.0496,
close_profit_abs = (amount * 0.19638016 * (1 - fee_close) - (amount * (open_rate * (1 - fee_open)))),
sell_reason='force_sell'
exit_reason='force_exit'
WHERE id=31;
```

View File

@ -17,7 +17,7 @@ Those stoploss modes can be *on exchange* or *off exchange*.
These modes can be configured with these values:
``` python
'emergencyexit': 'market',
'emergency_exit': 'market',
'stoploss_on_exchange': False
'stoploss_on_exchange_interval': 60,
'stoploss_on_exchange_limit_ratio': 0.99
@ -52,17 +52,17 @@ The bot cannot do these every 5 seconds (at each iteration), otherwise it would
So this parameter will tell the bot how often it should update the stoploss order. The default value is 60 (1 minute).
This same logic will reapply a stoploss order on the exchange should you cancel it accidentally.
### forceexit
### force_exit
`forceexit` is an optional value, which defaults to the same value as `exit` and is used when sending a `/forceexit` command from Telegram or from the Rest API.
`force_exit` is an optional value, which defaults to the same value as `exit` and is used when sending a `/forceexit` command from Telegram or from the Rest API.
### forceentry
### force_entry
`forceentry` is an optional value, which defaults to the same value as `entry` and is used when sending a `/forceentry` command from Telegram or from the Rest API.
`force_entry` is an optional value, which defaults to the same value as `entry` and is used when sending a `/forceentry` command from Telegram or from the Rest API.
### emergencyexit
### emergency_exit
`emergencyexit` is an optional value, which defaults to `market` and is used when creating stop loss on exchange orders fails.
`emergency_exit` is an optional value, which defaults to `market` and is used when creating stop loss on exchange orders fails.
The below is the default which is used if not changed in strategy or configuration file.
Example from strategy file:
@ -71,7 +71,7 @@ Example from strategy file:
order_types = {
"entry": "limit",
"exit": "limit",
"emergencyexit": "market",
"emergency_exit": "market",
"stoploss": "market",
"stoploss_on_exchange": True,
"stoploss_on_exchange_interval": 60,

View File

@ -7,6 +7,7 @@ Depending on the callback used, they may be called when entering / exiting a tra
Currently available callbacks:
* [`bot_start()`](#bot-start)
* [`bot_loop_start()`](#bot-loop-start)
* [`custom_stake_amount()`](#stake-size-management)
* [`custom_exit()`](#custom-exit-signal)
@ -16,11 +17,35 @@ Currently available callbacks:
* [`confirm_trade_entry()`](#trade-entry-buy-order-confirmation)
* [`confirm_trade_exit()`](#trade-exit-sell-order-confirmation)
* [`adjust_trade_position()`](#adjust-trade-position)
* [`adjust_entry_price()`](#adjust-entry-price)
* [`leverage()`](#leverage-callback)
!!! Tip "Callback calling sequence"
You can find the callback calling sequence in [bot-basics](bot-basics.md#bot-execution-logic)
## Bot start
A simple callback which is called once when the strategy is loaded.
This can be used to perform actions that must only be performed once and runs after dataprovider and wallet are set
``` python
import requests
class AwesomeStrategy(IStrategy):
# ... populate_* methods
def bot_start(self, **kwargs) -> None:
"""
Called only once after bot instantiation.
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
"""
if self.config['runmode'].value in ('live', 'dry_run'):
# Assign this to the class by using self.*
# can then be used by populate_* methods
self.cust_remote_data = requests.get('https://some_remote_source.example.com')
```
## Bot loop start
A simple callback which is called once at the start of every bot throttling iteration (roughly every 5 seconds, unless configured differently).
@ -84,16 +109,17 @@ Freqtrade will fall back to the `proposed_stake` value should your code raise an
Called for open trade every throttling iteration (roughly every 5 seconds) until a trade is closed.
Allows to define custom sell signals, indicating that specified position should be sold. This is very useful when we need to customize sell conditions for each individual trade, or if you need trade data to make an exit decision.
Allows to define custom exit signals, indicating that specified position should be sold. This is very useful when we need to customize exit conditions for each individual trade, or if you need trade data to make an exit decision.
For example you could implement a 1:2 risk-reward ROI with `custom_exit()`.
Using custom_exit() signals in place of stoploss though *is not recommended*. It is a inferior method to using `custom_stoploss()` in this regard - which also allows you to keep the stoploss on exchange.
Using `custom_exit()` signals in place of stoploss though *is not recommended*. It is a inferior method to using `custom_stoploss()` in this regard - which also allows you to keep the stoploss on exchange.
!!! Note
Returning a (none-empty) `string` or `True` from this method is equal to setting sell signal on a candle at specified time. This method is not called when sell signal is set already, or if sell signals are disabled (`use_sell_signal=False` or `sell_profit_only=True` while profit is below `sell_profit_offset`). `string` max length is 64 characters. Exceeding this limit will cause the message to be truncated to 64 characters.
Returning a (none-empty) `string` or `True` from this method is equal to setting exit signal on a candle at specified time. This method is not called when exit signal is set already, or if exit signals are disabled (`use_exit_signal=False`). `string` max length is 64 characters. Exceeding this limit will cause the message to be truncated to 64 characters.
`custom_exit()` will ignore `exit_profit_only`, and will always be called unless `use_exit_signal=False`, even if there is a new enter signal.
An example of how we can use different indicators depending on the current profit and also sell trades that were open longer than one day:
An example of how we can use different indicators depending on the current profit and also exit trades that were open longer than one day:
``` python
class AwesomeStrategy(IStrategy):
@ -121,11 +147,11 @@ See [Dataframe access](strategy-advanced.md#dataframe-access) for more informati
## Custom stoploss
Called for open trade every throttling iteration (roughly every 5 seconds) until a trade is closed.
Called for open trade every iteration (roughly every 5 seconds) until a trade is closed.
The usage of the custom stoploss method must be enabled by setting `use_custom_stoploss=True` on the strategy object.
The stoploss price can only ever move upwards - if the stoploss value returned from `custom_stoploss` would result in a lower stoploss price than was previously set, it will be ignored. The traditional `stoploss` value serves as an absolute lower level and will be instated as the initial stoploss (before this method is called for the first time for a trade).
The stoploss price can only ever move upwards - if the stoploss value returned from `custom_stoploss` would result in a lower stoploss price than was previously set, it will be ignored. The traditional `stoploss` value serves as an absolute lower level and will be instated as the initial stoploss (before this method is called for the first time for a trade), and is still mandatory.
The method must return a stoploss value (float / number) as a percentage of the current price.
E.g. If the `current_rate` is 200 USD, then returning `0.02` will set the stoploss price 2% lower, at 196 USD.
@ -365,7 +391,7 @@ class AwesomeStrategy(IStrategy):
# ... populate_* methods
def custom_entry_price(self, pair: str, current_time: datetime, proposed_rate: float,
entry_tag: Optional[str], **kwargs) -> float:
entry_tag: Optional[str], side: str, **kwargs) -> float:
dataframe, last_updated = self.dp.get_analyzed_dataframe(pair=pair,
timeframe=self.timeframe)
@ -375,7 +401,7 @@ class AwesomeStrategy(IStrategy):
def custom_exit_price(self, pair: str, trade: Trade,
current_time: datetime, proposed_rate: float,
current_profit: float, **kwargs) -> float:
current_profit: float, exit_tag: Optional[str], **kwargs) -> float:
dataframe, last_updated = self.dp.get_analyzed_dataframe(pair=pair,
timeframe=self.timeframe)
@ -393,7 +419,7 @@ class AwesomeStrategy(IStrategy):
!!! Warning "Backtesting"
Custom prices are supported in backtesting (starting with 2021.12), and orders will fill if the price falls within the candle's low/high range.
Orders that don't fill immediately are subject to regular timeout handling, which happens once per (detail) candle.
`custom_exit_price()` is only called for sells of type Sell_signal and Custom sell. All other sell-types will use regular backtesting prices.
`custom_exit_price()` is only called for sells of type exit_signal and Custom exit. All other exit-types will use regular backtesting prices.
## Custom order timeout rules
@ -417,7 +443,7 @@ The function must return either `True` (cancel order) or `False` (keep order ali
``` python
from datetime import datetime, timedelta
from freqtrade.persistence import Trade
from freqtrade.persistence import Trade, Order
class AwesomeStrategy(IStrategy):
@ -429,7 +455,7 @@ class AwesomeStrategy(IStrategy):
'exit': 60 * 25
}
def check_entry_timeout(self, pair: str, trade: 'Trade', order: dict,
def check_entry_timeout(self, pair: str, trade: 'Trade', order: 'Order',
current_time: datetime, **kwargs) -> bool:
if trade.open_rate > 100 and trade.open_date_utc < current_time - timedelta(minutes=5):
return True
@ -440,7 +466,7 @@ class AwesomeStrategy(IStrategy):
return False
def check_exit_timeout(self, pair: str, trade: Trade, order: dict,
def check_exit_timeout(self, pair: str, trade: Trade, order: 'Order',
current_time: datetime, **kwargs) -> bool:
if trade.open_rate > 100 and trade.open_date_utc < current_time - timedelta(minutes=5):
return True
@ -458,7 +484,7 @@ class AwesomeStrategy(IStrategy):
``` python
from datetime import datetime
from freqtrade.persistence import Trade
from freqtrade.persistence import Trade, Order
class AwesomeStrategy(IStrategy):
@ -470,22 +496,22 @@ class AwesomeStrategy(IStrategy):
'exit': 60 * 25
}
def check_entry_timeout(self, pair: str, trade: Trade, order: dict,
def check_entry_timeout(self, pair: str, trade: 'Trade', order: 'Order',
current_time: datetime, **kwargs) -> bool:
ob = self.dp.orderbook(pair, 1)
current_price = ob['bids'][0][0]
# Cancel buy order if price is more than 2% above the order.
if current_price > order['price'] * 1.02:
if current_price > order.price * 1.02:
return True
return False
def check_exit_timeout(self, pair: str, trade: Trade, order: dict,
def check_exit_timeout(self, pair: str, trade: 'Trade', order: 'Order',
current_time: datetime, **kwargs) -> bool:
ob = self.dp.orderbook(pair, 1)
current_price = ob['asks'][0][0]
# Cancel sell order if price is more than 2% below the order.
if current_price < order['price'] * 0.98:
if current_price < order.price * 0.98:
return True
return False
```
@ -564,13 +590,13 @@ class AwesomeStrategy(IStrategy):
:param time_in_force: Time in force. Defaults to GTC (Good-til-cancelled).
:param exit_reason: Exit reason.
Can be any of ['roi', 'stop_loss', 'stoploss_on_exchange', 'trailing_stop_loss',
'sell_signal', 'force_sell', 'emergency_sell']
'exit_signal', 'force_exit', 'emergency_exit']
:param current_time: datetime object, containing the current datetime
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
:return bool: When True is returned, then the sell-order is placed on the exchange.
:return bool: When True is returned, then the exit-order is placed on the exchange.
False aborts the process
"""
if exit_reason == 'force_sell' and trade.calc_profit_ratio(rate) < 0:
if exit_reason == 'force_exit' and trade.calc_profit_ratio(rate) < 0:
# Reject force-sells with negative profit
# This is just a sample, please adjust to your needs
# (this does not necessarily make sense, assuming you know when you're force-selling)
@ -665,7 +691,7 @@ class DigDeeperStrategy(IStrategy):
if last_candle['close'] < previous_candle['close']:
return None
filled_entries = trade.select_filled_orders(trade.enter_side)
filled_entries = trade.select_filled_orders(trade.entry_side)
count_of_entries = trade.nr_of_successful_entries
# Allow up to 3 additional increasingly larger buys (4 in total)
# Initial buy is 1x
@ -688,6 +714,69 @@ class DigDeeperStrategy(IStrategy):
```
## Adjust Entry Price
The `adjust_entry_price()` callback may be used by strategy developer to refresh/replace limit orders upon arrival of new candles.
Be aware that `custom_entry_price()` is still the one dictating initial entry limit order price target at the time of entry trigger.
Orders can be cancelled out of this callback by returning `None`.
Returning `current_order_rate` will keep the order on the exchange "as is".
Returning any other price will cancel the existing order, and replace it with a new order.
The trade open-date (`trade.open_date_utc`) will remain at the time of the very first order placed.
Please make sure to be aware of this - and eventually adjust your logic in other callbacks to account for this, and use the date of the first filled order instead.
!!! Warning "Regular timeout"
Entry `unfilledtimeout` mechanism (as well as `check_entry_timeout()`) takes precedence over this.
Entry Orders that are cancelled via the above methods will not have this callback called. Be sure to update timeout values to match your expectations.
```python
from freqtrade.persistence import Trade
from datetime import timedelta
class AwesomeStrategy(IStrategy):
# ... populate_* methods
def adjust_entry_price(self, trade: Trade, order: Optional[Order], pair: str,
current_time: datetime, proposed_rate: float, current_order_rate: float,
entry_tag: Optional[str], side: str, **kwargs) -> float:
"""
Entry price re-adjustment logic, returning the user desired limit price.
This only executes when a order was already placed, still open (unfilled fully or partially)
and not timed out on subsequent candles after entry trigger.
When not implemented by a strategy, returns current_order_rate as default.
If current_order_rate is returned then the existing order is maintained.
If None is returned then order gets canceled but not replaced by a new one.
:param pair: Pair that's currently analyzed
:param trade: Trade object.
:param order: Order object
:param current_time: datetime object, containing the current datetime
:param proposed_rate: Rate, calculated based on pricing settings in entry_pricing.
:param current_order_rate: Rate of the existing order in place.
:param entry_tag: Optional entry_tag (buy_tag) if provided with the buy signal.
:param side: 'long' or 'short' - indicating the direction of the proposed trade
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
:return float: New entry price value if provided
"""
# Limit orders to use and follow SMA200 as price target for the first 10 minutes since entry trigger for BTC/USDT pair.
if pair == 'BTC/USDT' and entry_tag == 'long_sma200' and side == 'long' and (current_time - timedelta(minutes=10) > trade.open_date_utc:
# just cancel the order if it has been filled more than half of the amount
if order.filled > order.remaining:
return None
else:
dataframe, _ = self.dp.get_analyzed_dataframe(pair=pair, timeframe=self.timeframe)
current_candle = dataframe.iloc[-1].squeeze()
# desired price
return current_candle['sma_200']
# default: maintain existing order
return current_order_rate
```
## Leverage Callback
When trading in markets that allow leverage, this method must return the desired Leverage (Defaults to 1 -> No leverage).

View File

@ -99,7 +99,7 @@ With this section, you have a new column in your dataframe, which has `1` assign
### Customize Indicators
Buy and sell strategies need indicators. You can add more indicators by extending the list contained in the method `populate_indicators()` from your strategy file.
Buy and sell signals need indicators. You can add more indicators by extending the list contained in the method `populate_indicators()` from your strategy file.
You should only add the indicators used in either `populate_entry_trend()`, `populate_exit_trend()`, or to populate another indicator, otherwise performance may suffer.
@ -205,7 +205,7 @@ Edit the method `populate_entry_trend()` in your strategy file to update your en
It's important to always return the dataframe without removing/modifying the columns `"open", "high", "low", "close", "volume"`, otherwise these fields would contain something unexpected.
This method will also define a new column, `"enter_long"`, which needs to contain 1 for entries, and 0 for "no action". `enter_long` column is a mandatory column that must be set even if the strategy is shorting only.
This method will also define a new column, `"enter_long"` (`"enter_short"` for shorts), which needs to contain 1 for entries, and 0 for "no action". `enter_long` is a mandatory column that must be set even if the strategy is shorting only.
Sample from `user_data/strategies/sample_strategy.py`:
@ -263,19 +263,19 @@ def populate_entry_trend(self, dataframe: DataFrame, metadata: dict) -> DataFram
### Exit signal rules
Edit the method `populate_exit_trend()` into your strategy file to update your sell strategy.
Please note that the sell-signal is only used if `use_sell_signal` is set to true in the configuration.
Edit the method `populate_exit_trend()` into your strategy file to update your exit strategy.
Please note that the exit-signal is only used if `use_exit_signal` is set to true in the configuration.
It's important to always return the dataframe without removing/modifying the columns `"open", "high", "low", "close", "volume"`, otherwise these fields would contain something unexpected.
This method will also define a new column, `"exit_long"`, which needs to contain 1 for sells, and 0 for "no action".
This method will also define a new column, `"exit_long"` (`"exit_short"` for shorts), which needs to contain 1 for exits, and 0 for "no action".
Sample from `user_data/strategies/sample_strategy.py`:
```python
def populate_exit_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Based on TA indicators, populates the sell signal for the given dataframe
Based on TA indicators, populates the exit signal for the given dataframe
:param dataframe: DataFrame populated with indicators
:param metadata: Additional information, like the currently traded pair
:return: DataFrame with buy column
@ -319,7 +319,7 @@ def populate_exit_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame
### Minimal ROI
This dict defines the minimal Return On Investment (ROI) a trade should reach before selling, independent from the sell signal.
This dict defines the minimal Return On Investment (ROI) a trade should reach before exiting, independent from the exit signal.
It is of the following format, with the dict key (left side of the colon) being the minutes passed since the trade opened, and the value (right side of the colon) being the percentage.
@ -334,10 +334,10 @@ minimal_roi = {
The above configuration would therefore mean:
- Sell whenever 4% profit was reached
- Sell when 2% profit was reached (in effect after 20 minutes)
- Sell when 1% profit was reached (in effect after 30 minutes)
- Sell when trade is non-loosing (in effect after 40 minutes)
- Exit whenever 4% profit was reached
- Exit when 2% profit was reached (in effect after 20 minutes)
- Exit when 1% profit was reached (in effect after 30 minutes)
- Exit when trade is non-loosing (in effect after 40 minutes)
The calculation does include fees.
@ -349,7 +349,7 @@ minimal_roi = {
}
```
While technically not completely disabled, this would sell once the trade reaches 10000% Profit.
While technically not completely disabled, this would exit once the trade reaches 10000% Profit.
To use times based on candle duration (timeframe), the following snippet can be handy.
This will allow you to change the timeframe for the strategy, and ROI times will still be set as candles (e.g. after 3 candles ...)
@ -385,7 +385,7 @@ For the full documentation on stoploss features, look at the dedicated [stoploss
This is the set of candles the bot should download and use for the analysis.
Common values are `"1m"`, `"5m"`, `"15m"`, `"1h"`, however all values supported by your exchange should work.
Please note that the same buy/sell signals may work well with one timeframe, but not with the others.
Please note that the same entry/exit signals may work well with one timeframe, but not with the others.
This setting is accessible within the strategy methods as the `self.timeframe` attribute.
@ -898,7 +898,7 @@ Stoploss values returned from `custom_stoploss` must specify a percentage relati
!!! Note
Providing invalid input to `stoploss_from_open()` may produce "CustomStoploss function did not return valid stoploss" warnings.
This may happen if `current_profit` parameter is below specified `open_relative_stop`. Such situations may arise when closing trade
is blocked by `confirm_trade_exit()` method. Warnings can be solved by never blocking stop loss sells by checking `sell_reason` in
is blocked by `confirm_trade_exit()` method. Warnings can be solved by never blocking stop loss sells by checking `exit_reason` in
`confirm_trade_exit()`, or by using `return stoploss_from_open(...) or 1` idiom, which will request to not change stop loss when
`current_profit < open_relative_stop`.
@ -1088,7 +1088,7 @@ The following lists some common patterns which should be avoided to prevent frus
### Colliding signals
When conflicting signals collide (e.g. both `'enter_long'` and `'exit_long'` are 1), freqtrade will do nothing and ignore the entry signal. This will avoid trades that buy, and sell immediately. Obviously, this can potentially lead to missed entries.
When conflicting signals collide (e.g. both `'enter_long'` and `'exit_long'` are 1), freqtrade will do nothing and ignore the entry signal. This will avoid trades that enter, and exit immediately. Obviously, this can potentially lead to missed entries.
The following rules apply, and entry signals will be ignored if more than one of the 3 signals is set:

View File

@ -129,7 +129,7 @@ print(stats['strategy_comparison'])
trades = load_backtest_data(backtest_dir)
# Show value-counts per pair
trades.groupby("pair")["sell_reason"].value_counts()
trades.groupby("pair")["exit_reason"].value_counts()
```
## Plotting daily profit / equity line
@ -182,7 +182,7 @@ from freqtrade.data.btanalysis import load_trades_from_db
trades = load_trades_from_db("sqlite:///tradesv3.sqlite")
# Display results
trades.groupby("pair")["sell_reason"].value_counts()
trades.groupby("pair")["exit_reason"].value_counts()
```
## Analyze the loaded trades for trade parallelism

View File

@ -9,6 +9,8 @@ You can use the quick summary as checklist. Please refer to the detailed section
## Quick summary / migration checklist
Note : `forcesell`, `forcebuy`, `emergencysell` are changed to `force_exit`, `force_enter`, `emergency_exit` respectively.
* Strategy methods:
* [`populate_buy_trend()` -> `populate_entry_trend()`](#populate_buy_trend)
* [`populate_sell_trend()` -> `populate_exit_trend()`](#populate_sell_trend)
@ -18,13 +20,19 @@ You can use the quick summary as checklist. Please refer to the detailed section
* New `side` argument to callbacks without trade object
* [`custom_stake_amount`](#custom-stake-amount)
* [`confirm_trade_entry`](#confirm_trade_entry)
* [`custom_entry_price`](#custom_entry_price)
* [Changed argument name in `confirm_trade_exit`](#confirm_trade_exit)
* Dataframe columns:
* [`buy` -> `enter_long`](#populate_buy_trend)
* [`sell` -> `exit_long`](#populate_sell_trend)
* [`buy_tag` -> `enter_tag` (used for both long and short trades)](#populate_buy_trend)
* [New column `enter_short` and corresponding new column `exit_short`](#populate_sell_trend)
* trade-object now has the following new properties: `is_short`, `enter_side`, `exit_side` and `trade_direction`.
* trade-object now has the following new properties:
* `is_short`
* `entry_side`
* `exit_side`
* `trade_direction`
* renamed: `sell_reason` -> `exit_reason`
* [Renamed `trade.nr_of_successful_buys` to `trade.nr_of_successful_entries` (mostly relevant for `adjust_trade_position()`)](#adjust-trade-position-changes)
* Introduced new [`leverage` callback](strategy-callbacks.md#leverage-callback).
* Informative pairs can now pass a 3rd element in the Tuple, defining the candle type.
@ -35,6 +43,32 @@ You can use the quick summary as checklist. Please refer to the detailed section
* `order_time_in_force` buy -> entry, sell -> exit.
* `order_types` buy -> entry, sell -> exit.
* `unfilledtimeout` buy -> entry, sell -> exit.
* Terminology changes
* Sell reasons changed to reflect the new naming of "exit" instead of sells. Be careful in your strategy if you're using `exit_reason` checks and eventually update your strategy.
* `sell_signal` -> `exit_signal`
* `custom_sell` -> `custom_exit`
* `force_sell` -> `force_exit`
* `emergency_sell` -> `emergency_exit`
* Webhook terminology changed from "sell" to "exit", and from "buy" to entry
* `webhookbuy` -> `webhookentry`
* `webhookbuyfill` -> `webhookentryfill`
* `webhookbuycancel` -> `webhookentrycancel`
* `webhooksell` -> `webhookexit`
* `webhooksellfill` -> `webhookexitfill`
* `webhooksellcancel` -> `webhookexitcancel`
* Telegram notification settings
* `buy` -> `entry`
* `buy_fill` -> `entry_fill`
* `buy_cancel` -> `entry_cancel`
* `sell` -> `exit`
* `sell_fill` -> `exit_fill`
* `sell_cancel` -> `exit_cancel`
* Strategy/config settings:
* `use_sell_signal` -> `use_exit_signal`
* `sell_profit_only` -> `exit_profit_only`
* `sell_profit_offset` -> `exit_profit_offset`
* `ignore_roi_if_buy_signal` -> `ignore_roi_if_entry_signal`
* `forcebuy_enable` -> `force_entry_enable`
## Extensive explanation
@ -111,6 +145,9 @@ Please refer to the [Strategy documentation](strategy-customization.md#exit-sign
### `custom_sell`
`custom_sell` has been renamed to `custom_exit`.
It's now also being called for every iteration, independent of current profit and `exit_profit_only` settings.
``` python hl_lines="2"
class AwesomeStrategy(IStrategy):
def custom_sell(self, pair: str, trade: 'Trade', current_time: 'datetime', current_rate: float,
@ -146,11 +183,11 @@ class AwesomeStrategy(IStrategy):
``` python hl_lines="2 6"
class AwesomeStrategy(IStrategy):
def check_entry_timeout(self, pair: str, trade: 'Trade', order: dict,
def check_entry_timeout(self, pair: str, trade: 'Trade', order: 'Order',
current_time: datetime, **kwargs) -> bool:
return False
def check_exit_timeout(self, pair: str, trade: 'Trade', order: dict,
def check_exit_timeout(self, pair: str, trade: 'Trade', order: 'Order',
current_time: datetime, **kwargs) -> bool:
return False
```
@ -222,6 +259,26 @@ class AwesomeStrategy(IStrategy):
return True
```
### `custom_entry_price`
New string argument `side` - which can be either `"long"` or `"short"`.
``` python hl_lines="3"
class AwesomeStrategy(IStrategy):
def custom_entry_price(self, pair: str, current_time: datetime, proposed_rate: float,
entry_tag: Optional[str], **kwargs) -> float:
return proposed_rate
```
After:
``` python hl_lines="3"
class AwesomeStrategy(IStrategy):
def custom_entry_price(self, pair: str, current_time: datetime, proposed_rate: float,
entry_tag: Optional[str], side: str, **kwargs) -> float:
return proposed_rate
```
### Adjust trade position changes
While adjust-trade-position itself did not change, you should no longer use `trade.nr_of_successful_buys` - and instead use `trade.nr_of_successful_entries`, which will also include short entries.
@ -283,6 +340,7 @@ After:
#### `order_types`
`order_types` have changed all wordings from `buy` to `entry` - and `sell` to `exit`.
And two words are joined with `_`.
``` python hl_lines="2-6"
order_types = {
@ -303,15 +361,40 @@ After:
order_types = {
"entry": "limit",
"exit": "limit",
"emergencyexit": "market",
"forceexit": "market",
"forceentry": "market",
"emergency_exit": "market",
"force_exit": "market",
"force_entry": "market",
"stoploss": "market",
"stoploss_on_exchange": false,
"stoploss_on_exchange_interval": 60
}
```
#### Strategy level settings
* `use_sell_signal` -> `use_exit_signal`
* `sell_profit_only` -> `exit_profit_only`
* `sell_profit_offset` -> `exit_profit_offset`
* `ignore_roi_if_buy_signal` -> `ignore_roi_if_entry_signal`
``` python hl_lines="2-5"
# These values can be overridden in the config.
use_sell_signal = True
sell_profit_only = True
sell_profit_offset: 0.01
ignore_roi_if_buy_signal = False
```
After:
``` python hl_lines="2-5"
# These values can be overridden in the config.
use_exit_signal = True
exit_profit_only = True
exit_profit_offset: 0.01
ignore_roi_if_entry_signal = False
```
#### `unfilledtimeout`
`unfilledtimeout` have changed all wordings from `buy` to `entry` - and `sell` to `exit`.

View File

@ -81,21 +81,21 @@ Example configuration showing the different settings:
"status": "silent",
"warning": "on",
"startup": "off",
"buy": "silent",
"sell": {
"entry": "silent",
"exit": {
"roi": "silent",
"emergency_sell": "on",
"force_sell": "on",
"sell_signal": "silent",
"emergency_exit": "on",
"force_exit": "on",
"exit_signal": "silent",
"trailing_stop_loss": "on",
"stop_loss": "on",
"stoploss_on_exchange": "on",
"custom_sell": "silent"
"custom_exit": "silent"
},
"buy_cancel": "silent",
"sell_cancel": "on",
"buy_fill": "off",
"sell_fill": "off",
"entry_cancel": "silent",
"exit_cancel": "on",
"entry_fill": "off",
"exit_fill": "off",
"protection_trigger": "off",
"protection_trigger_global": "on"
},
@ -104,8 +104,8 @@ Example configuration showing the different settings:
},
```
`buy` notifications are sent when the order is placed, while `buy_fill` notifications are sent when the order is filled on the exchange.
`sell` notifications are sent when the order is placed, while `sell_fill` notifications are sent when the order is filled on the exchange.
`entry` notifications are sent when the order is placed, while `entry_fill` notifications are sent when the order is filled on the exchange.
`exit` notifications are sent when the order is placed, while `exit_fill` notifications are sent when the order is filled on the exchange.
`*_fill` notifications are off by default and must be explicitly enabled.
`protection_trigger` notifications are sent when a protection triggers and `protection_trigger_global` notifications trigger when global protections are triggered.
@ -173,14 +173,17 @@ official commands. You can ask at any moment for help with `/help`.
| `/profit [<n>]` | Display a summary of your profit/loss from close trades and some stats about your performance, over the last n days (all trades by default)
| `/forceexit <trade_id>` | Instantly exits the given trade (Ignoring `minimum_roi`).
| `/forceexit all` | Instantly exits all open trades (Ignoring `minimum_roi`).
| `/forcelong <pair> [rate]` | Instantly buys the given pair. Rate is optional and only applies to limit orders. (`forcebuy_enable` must be set to True)
| `/forceshort <pair> [rate]` | Instantly shorts the given pair. Rate is optional and only applies to limit orders. This will only work on non-spot markets. (`forcebuy_enable` must be set to True)
| `/fx` | alias for `/forceexit`
| `/forcelong <pair> [rate]` | Instantly buys the given pair. Rate is optional and only applies to limit orders. (`force_entry_enable` must be set to True)
| `/forceshort <pair> [rate]` | Instantly shorts the given pair. Rate is optional and only applies to limit orders. This will only work on non-spot markets. (`force_entry_enable` must be set to True)
| `/performance` | Show performance of each finished trade grouped by pair
| `/balance` | Show account balance per currency
| `/daily <n>` | Shows profit or loss per day, over the last n days (n defaults to 7)
| `/weekly <n>` | Shows profit or loss per week, over the last n weeks (n defaults to 8)
| `/monthly <n>` | Shows profit or loss per month, over the last n months (n defaults to 6)
| `/stats` | Shows Wins / losses by Sell reason as well as Avg. holding durations for buys and sells
| `/stats` | Shows Wins / losses by Exit reason as well as Avg. holding durations for buys and sells
| `/exits` | Shows Wins / losses by Exit reason as well as Avg. holding durations for buys and sells
| `/entries` | Shows Wins / losses by Exit reason as well as Avg. holding durations for buys and sells
| `/whitelist` | Show the current whitelist
| `/blacklist [pair]` | Show the current blacklist, or adds a pair to the blacklist.
| `/edge` | Show validated pairs by Edge if it is enabled.
@ -272,9 +275,12 @@ The relative profit of `1.2%` is the average profit per trade.
The relative profit of `15.2 Σ%` is be based on the starting capital - so in this case, the starting capital was `0.00485701 * 1.152 = 0.00738 BTC`.
Starting capital is either taken from the `available_capital` setting, or calculated by using current wallet size - profits.
### /forcesell <trade_id>
### /forceexit <trade_id>
> **BINANCE:** Selling BTC/LTC with limit `0.01650000 (profit: ~-4.07%, -0.00008168)`
> **BINANCE:** Exiting BTC/LTC with limit `0.01650000 (profit: ~-4.07%, -0.00008168)`
!!! Tip
You can get a list of all open trades by calling `/forceexit` without parameter, which will show a list of buttons to simply exit a trade.
### /forcelong <pair> [rate] | /forceshort <pair> [rate]
@ -283,13 +289,13 @@ Starting capital is either taken from the `available_capital` setting, or calcul
> **BINANCE:** Long ETH/BTC with limit `0.03400000` (`1.000000 ETH`, `225.290 USD`)
Omitting the pair will open a query asking for the pair to trade (based on the current whitelist).
Trades crated through `/forceentry` will have the buy-tag of `forceentry`.
Trades created through `/forcelong` will have the buy-tag of `force_entry`.
![Telegram force-buy screenshot](assets/telegram_forcebuy.png)
Note that for this to work, `forcebuy_enable` needs to be set to true.
Note that for this to work, `force_entry_enable` needs to be set to true.
[More details](configuration.md#understand-forcebuy_enable)
[More details](configuration.md#understand-force_entry_enable)
### /performance

View File

@ -2,6 +2,10 @@
To update your freqtrade installation, please use one of the below methods, corresponding to your installation method.
!!! Note "Tracking changes"
Breaking changes / changed behavior will be documented in the changelog that is posted alongside every release.
For the develop branch, please follow PR's to avoid being surprised by changes.
## docker-compose
!!! Note "Legacy installations using the `master` image"

View File

@ -119,6 +119,7 @@ This subcommand is useful for finding problems in your environment with loading
usage: freqtrade list-strategies [-h] [-v] [--logfile FILE] [-V] [-c PATH]
[-d PATH] [--userdir PATH]
[--strategy-path PATH] [-1] [--no-color]
[--recursive-strategy-search]
optional arguments:
-h, --help show this help message and exit
@ -126,6 +127,9 @@ optional arguments:
-1, --one-column Print output in one column.
--no-color Disable colorization of hyperopt results. May be
useful if you are redirecting output to a file.
--recursive-strategy-search
Recursively search for a strategy in the strategies
folder.
Common arguments:
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
@ -134,9 +138,10 @@ Common arguments:
details.
-V, --version show program's version number and exit
-c PATH, --config PATH
Specify configuration file (default: `config.json`).
Multiple --config options may be used. Can be set to
`-` to read config from stdin.
Specify configuration file (default:
`userdir/config.json` or `config.json` whichever
exists). Multiple --config options may be used. Can be
set to `-` to read config from stdin.
-d PATH, --datadir PATH
Path to directory with historical backtesting data.
--userdir PATH, --user-data-dir PATH
@ -549,6 +554,27 @@ Show whitelist when using a [dynamic pairlist](plugins.md#pairlists).
freqtrade test-pairlist --config config.json --quote USDT BTC
```
## Convert database
`freqtrade convert-db` can be used to convert your database from one system to another (sqlite -> postgres, postgres -> other postgres), migrating all trades, orders and Pairlocks.
Please refer to the [SQL cheatsheet](sql_cheatsheet.md#use-a-different-database-system) to learn about requirements for different database systems.
```
usage: freqtrade convert-db [-h] [--db-url PATH] [--db-url-from PATH]
optional arguments:
-h, --help show this help message and exit
--db-url PATH Override trades database URL, this is useful in custom
deployments (default: `sqlite:///tradesv3.sqlite` for
Live Run mode, `sqlite:///tradesv3.dryrun.sqlite` for
Dry Run).
--db-url-from PATH Source db url to use when migrating a database.
```
!!! Warning
Please ensure to only use this on an empty target database. Freqtrade will perform a regular migration, but may fail if entries already existed.
## Webserver mode
!!! Warning "Experimental"

View File

@ -10,33 +10,33 @@ Sample configuration (tested using IFTTT).
"webhook": {
"enabled": true,
"url": "https://maker.ifttt.com/trigger/<YOUREVENT>/with/key/<YOURKEY>/",
"webhookbuy": {
"webhookentry": {
"value1": "Buying {pair}",
"value2": "limit {limit:8f}",
"value3": "{stake_amount:8f} {stake_currency}"
},
"webhookbuycancel": {
"webhookentrycancel": {
"value1": "Cancelling Open Buy Order for {pair}",
"value2": "limit {limit:8f}",
"value3": "{stake_amount:8f} {stake_currency}"
},
"webhookbuyfill": {
"webhookentryfill": {
"value1": "Buy Order for {pair} filled",
"value2": "at {open_rate:8f}",
"value3": ""
},
"webhooksell": {
"value1": "Selling {pair}",
"webhookexit": {
"value1": "Exiting {pair}",
"value2": "limit {limit:8f}",
"value3": "profit: {profit_amount:8f} {stake_currency} ({profit_ratio})"
},
"webhooksellcancel": {
"value1": "Cancelling Open Sell Order for {pair}",
"webhookexitcancel": {
"value1": "Cancelling Open Exit Order for {pair}",
"value2": "limit {limit:8f}",
"value3": "profit: {profit_amount:8f} {stake_currency} ({profit_ratio})"
},
"webhooksellfill": {
"value1": "Sell Order for {pair} filled",
"webhookexitfill": {
"value1": "Exit Order for {pair} filled",
"value2": "at {close_rate:8f}.",
"value3": ""
},
@ -96,9 +96,9 @@ Optional parameters are available to enable automatic retries for webhook messag
Different payloads can be configured for different events. Not all fields are necessary, but you should configure at least one of the dicts, otherwise the webhook will never be called.
### Webhookbuy
### Webhookentry
The fields in `webhook.webhookbuy` are filled when the bot executes a long/short. Parameters are filled using string.format.
The fields in `webhook.webhookentry` are filled when the bot executes a long/short. Parameters are filled using string.format.
Possible parameters are:
* `trade_id`
@ -118,9 +118,9 @@ Possible parameters are:
* `current_rate`
* `enter_tag`
### Webhookbuycancel
### Webhookentrycancel
The fields in `webhook.webhookbuycancel` are filled when the bot cancels a long/short order. Parameters are filled using string.format.
The fields in `webhook.webhookentrycancel` are filled when the bot cancels a long/short order. Parameters are filled using string.format.
Possible parameters are:
* `trade_id`
@ -139,9 +139,9 @@ Possible parameters are:
* `current_rate`
* `enter_tag`
### Webhookbuyfill
### Webhookentryfill
The fields in `webhook.webhookbuyfill` are filled when the bot filled a long/short order. Parameters are filled using string.format.
The fields in `webhook.webhookentryfill` are filled when the bot filled a long/short order. Parameters are filled using string.format.
Possible parameters are:
* `trade_id`
@ -160,8 +160,9 @@ Possible parameters are:
* `current_rate`
* `enter_tag`
### Webhooksell
The fields in `webhook.webhooksell` are filled when the bot sells a trade. Parameters are filled using string.format.
### Webhookexit
The fields in `webhook.webhookexit` are filled when the bot exits a trade. Parameters are filled using string.format.
Possible parameters are:
* `trade_id`
@ -178,14 +179,14 @@ Possible parameters are:
* `stake_currency`
* `base_currency`
* `fiat_currency`
* `sell_reason`
* `exit_reason`
* `order_type`
* `open_date`
* `close_date`
### Webhooksellfill
### Webhookexitfill
The fields in `webhook.webhooksellfill` are filled when the bot fills a sell order (closes a Trae). Parameters are filled using string.format.
The fields in `webhook.webhookexitfill` are filled when the bot fills a exit order (closes a Trade). Parameters are filled using string.format.
Possible parameters are:
* `trade_id`
@ -203,14 +204,14 @@ Possible parameters are:
* `stake_currency`
* `base_currency`
* `fiat_currency`
* `sell_reason`
* `exit_reason`
* `order_type`
* `open_date`
* `close_date`
### Webhooksellcancel
### Webhookexitcancel
The fields in `webhook.webhooksellcancel` are filled when the bot cancels a sell order. Parameters are filled using string.format.
The fields in `webhook.webhookexitcancel` are filled when the bot cancels a exit order. Parameters are filled using string.format.
Possible parameters are:
* `trade_id`
@ -228,7 +229,7 @@ Possible parameters are:
* `stake_currency`
* `base_currency`
* `fiat_currency`
* `sell_reason`
* `exit_reason`
* `order_type`
* `open_date`
* `close_date`

View File

@ -32,6 +32,7 @@ dependencies:
- prompt-toolkit
- schedule
- python-dateutil
- joblib
# ============================
@ -54,7 +55,6 @@ dependencies:
- scikit-learn
- filelock
- scikit-optimize
- joblib
- progressbar2
# ============================
# 4/4 req plot

View File

@ -11,4 +11,3 @@ Restart=on-failure
[Install]
WantedBy=default.target

View File

@ -27,4 +27,3 @@ WatchdogSec=20
[Install]
WantedBy=default.target

View File

@ -10,6 +10,7 @@ from freqtrade.commands.arguments import Arguments
from freqtrade.commands.build_config_commands import start_new_config
from freqtrade.commands.data_commands import (start_convert_data, start_convert_trades,
start_download_data, start_list_data)
from freqtrade.commands.db_commands import start_convert_db
from freqtrade.commands.deploy_commands import (start_create_userdir, start_install_ui,
start_new_strategy)
from freqtrade.commands.hyperopt_commands import start_hyperopt_list, start_hyperopt_show

View File

@ -12,7 +12,7 @@ from freqtrade.constants import DEFAULT_CONFIG
ARGS_COMMON = ["verbosity", "logfile", "version", "config", "datadir", "user_data_dir"]
ARGS_STRATEGY = ["strategy", "strategy_path"]
ARGS_STRATEGY = ["strategy", "strategy_path", "recursive_strategy_search"]
ARGS_TRADE = ["db_url", "sd_notify", "dry_run", "dry_run_wallet", "fee"]
@ -37,7 +37,8 @@ ARGS_HYPEROPT = ARGS_COMMON_OPTIMIZE + ["hyperopt", "hyperopt_path",
ARGS_EDGE = ARGS_COMMON_OPTIMIZE + ["stoploss_range"]
ARGS_LIST_STRATEGIES = ["strategy_path", "print_one_column", "print_colorized"]
ARGS_LIST_STRATEGIES = ["strategy_path", "print_one_column", "print_colorized",
"recursive_strategy_search"]
ARGS_LIST_HYPEROPTS = ["hyperopt_path", "print_one_column", "print_colorized"]
@ -71,7 +72,8 @@ ARGS_LIST_DATA = ["exchange", "dataformat_ohlcv", "pairs", "trading_mode"]
ARGS_DOWNLOAD_DATA = ["pairs", "pairs_file", "days", "new_pairs_days", "include_inactive",
"timerange", "download_trades", "exchange", "timeframes",
"erase", "dataformat_ohlcv", "dataformat_trades", "trading_mode"]
"erase", "dataformat_ohlcv", "dataformat_trades", "trading_mode",
"prepend_data"]
ARGS_PLOT_DATAFRAME = ["pairs", "indicators1", "indicators2", "plot_limit",
"db_url", "trade_source", "export", "exportfilename",
@ -80,7 +82,9 @@ ARGS_PLOT_DATAFRAME = ["pairs", "indicators1", "indicators2", "plot_limit",
ARGS_PLOT_PROFIT = ["pairs", "timerange", "export", "exportfilename", "db_url",
"trade_source", "timeframe", "plot_auto_open", ]
ARGS_INSTALL_UI = ["erase_ui_only", 'ui_version']
ARGS_CONVERT_DB = ["db_url", "db_url_from"]
ARGS_INSTALL_UI = ["erase_ui_only", "ui_version"]
ARGS_SHOW_TRADES = ["db_url", "trade_ids", "print_json"]
@ -179,7 +183,7 @@ class Arguments:
self._build_args(optionlist=['version'], parser=self.parser)
from freqtrade.commands import (start_backtesting, start_backtesting_show,
start_convert_data, start_convert_trades,
start_convert_data, start_convert_db, start_convert_trades,
start_create_userdir, start_download_data, start_edge,
start_hyperopt, start_hyperopt_list, start_hyperopt_show,
start_install_ui, start_list_data, start_list_exchanges,
@ -372,6 +376,14 @@ class Arguments:
test_pairlist_cmd.set_defaults(func=start_test_pairlist)
self._build_args(optionlist=ARGS_TEST_PAIRLIST, parser=test_pairlist_cmd)
# Add db-convert subcommand
convert_db = subparsers.add_parser(
"convert-db",
help="Migrate database to different system",
)
convert_db.set_defaults(func=start_convert_db)
self._build_args(optionlist=ARGS_CONVERT_DB, parser=convert_db)
# Add install-ui subcommand
install_ui_cmd = subparsers.add_parser(
'install-ui',

View File

@ -202,6 +202,8 @@ def ask_user_config() -> Dict[str, Any]:
if not answers:
# Interrupted questionary sessions return an empty dict.
raise OperationalException("User interrupted interactive questions.")
# Ensure default is set for non-futures exchanges
answers['trading_mode'] = answers.get('trading_mode', "spot")
answers['margin_mode'] = (
'isolated'
if answers.get('trading_mode') == 'futures'

View File

@ -83,6 +83,11 @@ AVAILABLE_CLI_OPTIONS = {
help='Reset sample files to their original state.',
action='store_true',
),
"recursive_strategy_search": Arg(
'--recursive-strategy-search',
help='Recursively search for a strategy in the strategies folder.',
action='store_true',
),
# Main options
"strategy": Arg(
'-s', '--strategy',
@ -101,6 +106,11 @@ AVAILABLE_CLI_OPTIONS = {
f'`{constants.DEFAULT_DB_DRYRUN_URL}` for Dry Run).',
metavar='PATH',
),
"db_url_from": Arg(
'--db-url-from',
help='Source db url to use when migrating a database.',
metavar='PATH',
),
"sd_notify": Arg(
'--sd-notify',
help='Notify systemd service manager.',
@ -438,6 +448,11 @@ AVAILABLE_CLI_OPTIONS = {
default=['1m', '5m'],
nargs='+',
),
"prepend_data": Arg(
'--prepend',
help='Allow data prepending.',
action='store_true',
),
"erase": Arg(
'--erase',
help='Clean all existing data for the selected exchange/pairs/timeframes.',

View File

@ -79,12 +79,19 @@ def start_download_data(args: Dict[str, Any]) -> None:
data_format_trades=config['dataformat_trades'],
)
else:
if not exchange._ft_has.get('ohlcv_has_history', True):
raise OperationalException(
f"Historic klines not available for {exchange.name}. "
"Please use `--dl-trades` instead for this exchange "
"(will unfortunately take a long time)."
)
pairs_not_available = refresh_backtest_ohlcv_data(
exchange, pairs=expanded_pairs, timeframes=config['timeframes'],
datadir=config['datadir'], timerange=timerange,
new_pairs_days=config['new_pairs_days'],
erase=bool(config.get('erase')), data_format=config['dataformat_ohlcv'],
trading_mode=config.get('trading_mode', 'spot'),
prepend=config.get('prepend_data', False)
)
except KeyboardInterrupt:

View File

@ -0,0 +1,55 @@
import logging
from typing import Any, Dict
from sqlalchemy import func
from freqtrade.configuration.config_setup import setup_utils_configuration
from freqtrade.enums.runmode import RunMode
logger = logging.getLogger(__name__)
def start_convert_db(args: Dict[str, Any]) -> None:
from sqlalchemy.orm import make_transient
from freqtrade.persistence import Order, Trade, init_db
from freqtrade.persistence.migrations import set_sequence_ids
from freqtrade.persistence.pairlock import PairLock
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
init_db(config['db_url'], False)
session_target = Trade._session
init_db(config['db_url_from'], False)
logger.info("Starting db migration.")
trade_count = 0
pairlock_count = 0
for trade in Trade.get_trades():
trade_count += 1
make_transient(trade)
for o in trade.orders:
make_transient(o)
session_target.add(trade)
session_target.commit()
for pairlock in PairLock.query:
pairlock_count += 1
make_transient(pairlock)
session_target.add(pairlock)
session_target.commit()
# Update sequences
max_trade_id = session_target.query(func.max(Trade.id)).scalar()
max_order_id = session_target.query(func.max(Order.id)).scalar()
max_pairlock_id = session_target.query(func.max(PairLock.id)).scalar()
set_sequence_ids(session_target.get_bind(),
trade_id=max_trade_id,
order_id=max_order_id,
pairlock_id=max_pairlock_id)
logger.info(f"Migrated {trade_count} Trades, and {pairlock_count} Pairlocks.")

View File

@ -41,7 +41,7 @@ def start_list_exchanges(args: Dict[str, Any]) -> None:
print(tabulate(exchanges, headers=['Exchange name', 'Valid', 'reason']))
def _print_objs_tabular(objs: List, print_colorized: bool) -> None:
def _print_objs_tabular(objs: List, print_colorized: bool, base_dir: Path) -> None:
if print_colorized:
colorama_init(autoreset=True)
red = Fore.RED
@ -55,7 +55,7 @@ def _print_objs_tabular(objs: List, print_colorized: bool) -> None:
names = [s['name'] for s in objs]
objs_to_print = [{
'name': s['name'] if s['name'] else "--",
'location': s['location'].name,
'location': s['location'].relative_to(base_dir),
'status': (red + "LOAD FAILED" + reset if s['class'] is None
else "OK" if names.count(s['name']) == 1
else yellow + "DUPLICATE NAME" + reset)
@ -77,7 +77,8 @@ def start_list_strategies(args: Dict[str, Any]) -> None:
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
directory = Path(config.get('strategy_path', config['user_data_dir'] / USERPATH_STRATEGIES))
strategy_objs = StrategyResolver.search_all_objects(directory, not args['print_one_column'])
strategy_objs = StrategyResolver.search_all_objects(
directory, not args['print_one_column'], config.get('recursive_strategy_search', False))
# Sort alphabetically
strategy_objs = sorted(strategy_objs, key=lambda x: x['name'])
for obj in strategy_objs:
@ -89,7 +90,7 @@ def start_list_strategies(args: Dict[str, Any]) -> None:
if args['print_one_column']:
print('\n'.join([s['name'] for s in strategy_objs]))
else:
_print_objs_tabular(strategy_objs, config.get('print_colorized', False))
_print_objs_tabular(strategy_objs, config.get('print_colorized', False), directory)
def start_list_timeframes(args: Dict[str, Any]) -> None:

View File

@ -16,4 +16,4 @@ class PeriodicCache(TTLCache):
return ts - offset
# Init with smlight offset
super().__init__(maxsize=maxsize, ttl=ttl-1e-5, timer=local_timer, getsizeof=getsizeof)
super().__init__(maxsize=maxsize, ttl=ttl - 1e-5, timer=local_timer, getsizeof=getsizeof)

View File

@ -22,6 +22,6 @@ def setup_utils_configuration(args: Dict[str, Any], method: RunMode) -> Dict[str
# Ensure these modes are using Dry-run
config['dry_run'] = True
validate_config_consistency(config)
validate_config_consistency(config, preliminary=True)
return config

View File

@ -39,7 +39,7 @@ def _extend_validator(validator_class):
FreqtradeValidator = _extend_validator(Draft4Validator)
def validate_config_schema(conf: Dict[str, Any]) -> Dict[str, Any]:
def validate_config_schema(conf: Dict[str, Any], preliminary: bool = False) -> Dict[str, Any]:
"""
Validate the configuration follow the Config Schema
:param conf: Config in JSON format
@ -49,7 +49,10 @@ def validate_config_schema(conf: Dict[str, Any]) -> Dict[str, Any]:
if conf.get('runmode', RunMode.OTHER) in (RunMode.DRY_RUN, RunMode.LIVE):
conf_schema['required'] = constants.SCHEMA_TRADE_REQUIRED
elif conf.get('runmode', RunMode.OTHER) in (RunMode.BACKTEST, RunMode.HYPEROPT):
if preliminary:
conf_schema['required'] = constants.SCHEMA_BACKTEST_REQUIRED
else:
conf_schema['required'] = constants.SCHEMA_BACKTEST_REQUIRED_FINAL
else:
conf_schema['required'] = constants.SCHEMA_MINIMAL_REQUIRED
try:
@ -64,7 +67,7 @@ def validate_config_schema(conf: Dict[str, Any]) -> Dict[str, Any]:
)
def validate_config_consistency(conf: Dict[str, Any]) -> None:
def validate_config_consistency(conf: Dict[str, Any], preliminary: bool = False) -> None:
"""
Validate the configuration consistency.
Should be ran after loading both configuration and strategy,
@ -85,7 +88,7 @@ def validate_config_consistency(conf: Dict[str, Any]) -> None:
# validate configuration before returning
logger.info('Validating configuration ...')
validate_config_schema(conf)
validate_config_schema(conf, preliminary=preliminary)
def _validate_unlimited_amount(conf: Dict[str, Any]) -> None:
@ -154,9 +157,9 @@ def _validate_edge(conf: Dict[str, Any]) -> None:
if not conf.get('edge', {}).get('enabled'):
return
if not conf.get('use_sell_signal', True):
if not conf.get('use_exit_signal', True):
raise OperationalException(
"Edge requires `use_sell_signal` to be True, otherwise no sells will happen."
"Edge requires `use_exit_signal` to be True, otherwise no sells will happen."
)
@ -219,6 +222,7 @@ def validate_migrated_strategy_settings(conf: Dict[str, Any]) -> None:
_validate_order_types(conf)
_validate_unfilledtimeout(conf)
_validate_pricing_rules(conf)
_strategy_settings(conf)
def _validate_time_in_force(conf: Dict[str, Any]) -> None:
@ -243,7 +247,9 @@ def _validate_time_in_force(conf: Dict[str, Any]) -> None:
def _validate_order_types(conf: Dict[str, Any]) -> None:
order_types = conf.get('order_types', {})
if any(x in order_types for x in ['buy', 'sell', 'emergencysell', 'forcebuy', 'forcesell']):
old_order_types = ['buy', 'sell', 'emergencysell', 'forcebuy',
'forcesell', 'emergencyexit', 'forceexit', 'forceentry']
if any(x in order_types for x in old_order_types):
if conf.get('trading_mode', TradingMode.SPOT) != TradingMode.SPOT:
raise OperationalException(
"Please migrate your order_types settings to use the new wording.")
@ -255,9 +261,12 @@ def _validate_order_types(conf: Dict[str, Any]) -> None:
for o, n in [
('buy', 'entry'),
('sell', 'exit'),
('emergencysell', 'emergencyexit'),
('forcesell', 'forceexit'),
('forcebuy', 'forceentry'),
('emergencysell', 'emergency_exit'),
('forcesell', 'force_exit'),
('forcebuy', 'force_entry'),
('emergencyexit', 'emergency_exit'),
('forceexit', 'force_exit'),
('forceentry', 'force_entry'),
]:
process_deprecated_setting(conf, 'order_types', o, 'order_types', n)
@ -312,3 +321,12 @@ def _validate_pricing_rules(conf: Dict[str, Any]) -> None:
else:
process_deprecated_setting(conf, 'ask_strategy', obj, 'exit_pricing', obj)
del conf['ask_strategy']
def _strategy_settings(conf: Dict[str, Any]) -> None:
process_deprecated_setting(conf, None, 'use_sell_signal', None, 'use_exit_signal')
process_deprecated_setting(conf, None, 'sell_profit_only', None, 'exit_profit_only')
process_deprecated_setting(conf, None, 'sell_profit_offset', None, 'exit_profit_offset')
process_deprecated_setting(conf, None, 'ignore_roi_if_buy_signal',
None, 'ignore_roi_if_entry_signal')

View File

@ -12,7 +12,7 @@ from freqtrade.configuration.check_exchange import check_exchange
from freqtrade.configuration.deprecated_settings import process_temporary_deprecated_settings
from freqtrade.configuration.directory_operations import create_datadir, create_userdata_dir
from freqtrade.configuration.environment_vars import enironment_vars_to_dict
from freqtrade.configuration.load_config import load_config_file, load_file
from freqtrade.configuration.load_config import load_file, load_from_files
from freqtrade.enums import NON_UTIL_MODES, TRADING_MODES, CandleType, RunMode, TradingMode
from freqtrade.exceptions import OperationalException
from freqtrade.loggers import setup_logging
@ -55,45 +55,28 @@ class Configuration:
:param files: List of file paths
:return: configuration dictionary
"""
# Keep this method as staticmethod, so it can be used from interactive environments
c = Configuration({'config': files}, RunMode.OTHER)
return c.get_config()
def load_from_files(self, files: List[str]) -> Dict[str, Any]:
# Keep this method as staticmethod, so it can be used from interactive environments
config: Dict[str, Any] = {}
if not files:
return deepcopy(constants.MINIMAL_CONFIG)
# We expect here a list of config filenames
for path in files:
logger.info(f'Using config: {path} ...')
# Merge config options, overwriting old values
config = deep_merge_dicts(load_config_file(path), config)
# Load environment variables
env_data = enironment_vars_to_dict()
config = deep_merge_dicts(env_data, config)
config['config_files'] = files
# Normalize config
if 'internals' not in config:
config['internals'] = {}
if 'pairlists' not in config:
config['pairlists'] = []
return config
def load_config(self) -> Dict[str, Any]:
"""
Extract information for sys.argv and load the bot configuration
:return: Configuration dictionary
"""
# Load all configs
config: Dict[str, Any] = self.load_from_files(self.args.get("config", []))
config: Dict[str, Any] = load_from_files(self.args.get("config", []))
# Load environment variables
env_data = enironment_vars_to_dict()
config = deep_merge_dicts(env_data, config)
# Normalize config
if 'internals' not in config:
config['internals'] = {}
if 'pairlists' not in config:
config['pairlists'] = []
# Keep a copy of the original configuration file
config['original_config'] = deepcopy(config)
@ -164,8 +147,11 @@ class Configuration:
config.update({'db_url': self.args['db_url']})
logger.info('Parameter --db-url detected ...')
if config.get('forcebuy_enable', False):
logger.warning('`forcebuy` RPC message enabled.')
self._args_to_config(config, argname='db_url_from',
logstring='Parameter --db-url-from detected ...')
if config.get('force_entry_enable', False):
logger.warning('`force_entry_enable` RPC message enabled.')
# Support for sd_notify
if 'sd_notify' in self.args and self.args['sd_notify']:
@ -265,6 +251,12 @@ class Configuration:
self._args_to_config(config, argname='strategy_list',
logstring='Using strategy list of {} strategies', logfun=len)
self._args_to_config(
config,
argname='recursive_strategy_search',
logstring='Recursively searching for a strategy in the strategies folder.',
)
self._args_to_config(config, argname='timeframe',
logstring='Overriding timeframe with Command line argument')
@ -404,6 +396,8 @@ class Configuration:
self._args_to_config(config, argname='trade_source',
logstring='Using trades from: {}')
self._args_to_config(config, argname='prepend_data',
logstring='Prepend detected. Allowing data prepending.')
self._args_to_config(config, argname='erase',
logstring='Erase detected. Deleting existing data.')
@ -433,8 +427,9 @@ class Configuration:
logstring='Detected --new-pairs-days: {}')
self._args_to_config(config, argname='trading_mode',
logstring='Detected --trading-mode: {}')
config['candle_type_def'] = CandleType.get_default(config.get('trading_mode', 'spot'))
config['trading_mode'] = TradingMode(config.get('trading_mode', 'spot'))
config['candle_type_def'] = CandleType.get_default(
config.get('trading_mode', 'spot') or 'spot')
config['trading_mode'] = TradingMode(config.get('trading_mode', 'spot') or 'spot')
self._args_to_config(config, argname='candle_types',
logstring='Detected --candle-types: {}')

View File

@ -12,14 +12,15 @@ logger = logging.getLogger(__name__)
def check_conflicting_settings(config: Dict[str, Any],
section_old: str, name_old: str,
section_old: Optional[str], name_old: str,
section_new: Optional[str], name_new: str) -> None:
section_new_config = config.get(section_new, {}) if section_new else config
section_old_config = config.get(section_old, {})
section_old_config = config.get(section_old, {}) if section_old else config
if name_new in section_new_config and name_old in section_old_config:
new_name = f"{section_new}.{name_new}" if section_new else f"{name_new}"
old_name = f"{section_old}.{name_old}" if section_old else f"{name_old}"
raise OperationalException(
f"Conflicting settings `{new_name}` and `{section_old}.{name_old}` "
f"Conflicting settings `{new_name}` and `{old_name}` "
"(DEPRECATED) detected in the configuration file. "
"This deprecated setting will be removed in the next versions of Freqtrade. "
f"Please delete it from your configuration and use the `{new_name}` "
@ -47,17 +48,18 @@ def process_removed_setting(config: Dict[str, Any],
def process_deprecated_setting(config: Dict[str, Any],
section_old: str, name_old: str,
section_old: Optional[str], name_old: str,
section_new: Optional[str], name_new: str
) -> None:
check_conflicting_settings(config, section_old, name_old, section_new, name_new)
section_old_config = config.get(section_old, {})
section_old_config = config.get(section_old, {}) if section_old else config
if name_old in section_old_config:
section_1 = f"{section_old}.{name_old}" if section_old else f"{name_old}"
section_2 = f"{section_new}.{name_new}" if section_new else f"{name_new}"
logger.warning(
"DEPRECATED: "
f"The `{section_old}.{name_old}` setting is deprecated and "
f"The `{section_1}` setting is deprecated and "
"will be removed in the next versions of Freqtrade. "
f"Please use the `{section_2}` setting in your configuration instead."
)
@ -72,25 +74,51 @@ def process_temporary_deprecated_settings(config: Dict[str, Any]) -> None:
# Kept for future deprecated / moved settings
# check_conflicting_settings(config, 'ask_strategy', 'use_sell_signal',
# 'experimental', 'use_sell_signal')
process_deprecated_setting(config, 'ask_strategy', 'use_sell_signal',
None, 'use_sell_signal')
process_deprecated_setting(config, 'ask_strategy', 'sell_profit_only',
None, 'sell_profit_only')
process_deprecated_setting(config, 'ask_strategy', 'sell_profit_offset',
None, 'sell_profit_offset')
process_deprecated_setting(config, 'ask_strategy', 'ignore_roi_if_buy_signal',
None, 'ignore_roi_if_buy_signal')
process_deprecated_setting(config, 'ask_strategy', 'ignore_buying_expired_candle_after',
None, 'ignore_buying_expired_candle_after')
# Legacy way - having them in experimental ...
process_removed_setting(config, 'experimental', 'use_sell_signal',
None, 'use_sell_signal')
process_removed_setting(config, 'experimental', 'sell_profit_only',
None, 'sell_profit_only')
process_removed_setting(config, 'experimental', 'ignore_roi_if_buy_signal',
None, 'ignore_roi_if_buy_signal')
process_deprecated_setting(config, None, 'forcebuy_enable', None, 'force_entry_enable')
# New settings
if config.get('telegram'):
process_deprecated_setting(config['telegram'], 'notification_settings', 'sell',
'notification_settings', 'exit')
process_deprecated_setting(config['telegram'], 'notification_settings', 'sell_fill',
'notification_settings', 'exit_fill')
process_deprecated_setting(config['telegram'], 'notification_settings', 'sell_cancel',
'notification_settings', 'exit_cancel')
process_deprecated_setting(config['telegram'], 'notification_settings', 'buy',
'notification_settings', 'entry')
process_deprecated_setting(config['telegram'], 'notification_settings', 'buy_fill',
'notification_settings', 'entry_fill')
process_deprecated_setting(config['telegram'], 'notification_settings', 'buy_cancel',
'notification_settings', 'entry_cancel')
if config.get('webhook'):
process_deprecated_setting(config, 'webhook', 'webhookbuy', 'webhook', 'webhookentry')
process_deprecated_setting(config, 'webhook', 'webhookbuycancel',
'webhook', 'webhookentrycancel')
process_deprecated_setting(config, 'webhook', 'webhookbuyfill',
'webhook', 'webhookentryfill')
process_deprecated_setting(config, 'webhook', 'webhooksell', 'webhook', 'webhookexit')
process_deprecated_setting(config, 'webhook', 'webhooksellcancel',
'webhook', 'webhookexitcancel')
process_deprecated_setting(config, 'webhook', 'webhooksellfill',
'webhook', 'webhookexitfill')
# Legacy way - having them in experimental ...
process_removed_setting(config, 'experimental', 'use_sell_signal', None, 'use_exit_signal')
process_removed_setting(config, 'experimental', 'sell_profit_only', None, 'exit_profit_only')
process_removed_setting(config, 'experimental', 'ignore_roi_if_buy_signal',
None, 'ignore_roi_if_entry_signal')
process_removed_setting(config, 'ask_strategy', 'use_sell_signal', None, 'exit_sell_signal')
process_removed_setting(config, 'ask_strategy', 'sell_profit_only', None, 'exit_profit_only')
process_removed_setting(config, 'ask_strategy', 'sell_profit_offset',
None, 'exit_profit_offset')
process_removed_setting(config, 'ask_strategy', 'ignore_roi_if_buy_signal',
None, 'ignore_roi_if_entry_signal')
if (config.get('edge', {}).get('enabled', False)
and 'capital_available_percentage' in config.get('edge', {})):
raise OperationalException(

View File

@ -4,12 +4,15 @@ This module contain functions to load the configuration file
import logging
import re
import sys
from copy import deepcopy
from pathlib import Path
from typing import Any, Dict
from typing import Any, Dict, List
import rapidjson
from freqtrade.constants import MINIMAL_CONFIG
from freqtrade.exceptions import OperationalException
from freqtrade.misc import deep_merge_dicts
logger = logging.getLogger(__name__)
@ -28,7 +31,7 @@ def log_config_error_range(path: str, errmsg: str) -> str:
offset = int(offsetlist[0])
text = Path(path).read_text()
# Fetch an offset of 80 characters around the error line
subtext = text[offset-min(80, offset):offset+80]
subtext = text[offset - min(80, offset):offset + 80]
segments = subtext.split('\n')
if len(segments) > 3:
# Remove first and last lines, to avoid odd truncations
@ -70,3 +73,43 @@ def load_config_file(path: str) -> Dict[str, Any]:
)
return config
def load_from_files(files: List[str], base_path: Path = None, level: int = 0) -> Dict[str, Any]:
"""
Recursively load configuration files if specified.
Sub-files are assumed to be relative to the initial config.
"""
config: Dict[str, Any] = {}
if level > 5:
raise OperationalException("Config loop detected.")
if not files:
return deepcopy(MINIMAL_CONFIG)
files_loaded = []
# We expect here a list of config filenames
for filename in files:
logger.info(f'Using config: {filename} ...')
if filename == '-':
# Immediately load stdin and return
return load_config_file(filename)
file = Path(filename)
if base_path:
# Prepend basepath to allow for relative assignments
file = base_path / file
config_tmp = load_config_file(str(file))
if 'add_config_files' in config_tmp:
config_sub = load_from_files(
config_tmp['add_config_files'], file.resolve().parent, level + 1)
files_loaded.extend(config_sub.get('config_files', []))
config_tmp = deep_merge_dicts(config_tmp, config_sub)
files_loaded.insert(0, str(file))
# Merge config options, overwriting prior values
config = deep_merge_dicts(config_tmp, config)
config['config_files'] = files_loaded
return config

View File

@ -3,7 +3,7 @@
"""
bot constants
"""
from typing import List, Tuple
from typing import List, Literal, Tuple
from freqtrade.enums import CandleType
@ -14,7 +14,7 @@ PROCESS_THROTTLE_SECS = 5 # sec
HYPEROPT_EPOCH = 100 # epochs
RETRY_TIMEOUT = 30 # sec
TIMEOUT_UNITS = ['minutes', 'seconds']
EXPORT_OPTIONS = ['none', 'trades']
EXPORT_OPTIONS = ['none', 'trades', 'signals']
DEFAULT_DB_PROD_URL = 'sqlite:///tradesv3.sqlite'
DEFAULT_DB_DRYRUN_URL = 'sqlite:///tradesv3.dryrun.sqlite'
UNLIMITED_STAKE_AMOUNT = 'unlimited'
@ -28,7 +28,8 @@ HYPEROPT_LOSS_BUILTIN = ['ShortTradeDurHyperOptLoss', 'OnlyProfitHyperOptLoss',
'SharpeHyperOptLoss', 'SharpeHyperOptLossDaily',
'SortinoHyperOptLoss', 'SortinoHyperOptLossDaily',
'CalmarHyperOptLoss',
'MaxDrawDownHyperOptLoss', 'ProfitDrawDownHyperOptLoss']
'MaxDrawDownHyperOptLoss', 'MaxDrawDownRelativeHyperOptLoss',
'ProfitDrawDownHyperOptLoss']
AVAILABLE_PAIRLISTS = ['StaticPairList', 'VolumePairList',
'AgeFilter', 'OffsetFilter', 'PerformanceFilter',
'PrecisionFilter', 'PriceFilter', 'RangeStabilityFilter',
@ -86,20 +87,19 @@ SUPPORTED_FIAT = [
"AUD", "BRL", "CAD", "CHF", "CLP", "CNY", "CZK", "DKK",
"EUR", "GBP", "HKD", "HUF", "IDR", "ILS", "INR", "JPY",
"KRW", "MXN", "MYR", "NOK", "NZD", "PHP", "PKR", "PLN",
"RUB", "SEK", "SGD", "THB", "TRY", "TWD", "ZAR", "USD",
"BTC", "ETH", "XRP", "LTC", "BCH"
"RUB", "UAH", "SEK", "SGD", "THB", "TRY", "TWD", "ZAR",
"USD", "BTC", "ETH", "XRP", "LTC", "BCH"
]
MINIMAL_CONFIG = {
'stake_currency': '',
'dry_run': True,
'exchange': {
'name': '',
'key': '',
'secret': '',
'pair_whitelist': [],
'ccxt_async_config': {
'enableRateLimit': True,
"stake_currency": "",
"dry_run": True,
"exchange": {
"name": "",
"key": "",
"secret": "",
"pair_whitelist": [],
"ccxt_async_config": {
}
}
}
@ -149,10 +149,10 @@ CONF_SCHEMA = {
'trailing_stop_positive': {'type': 'number', 'minimum': 0, 'maximum': 1},
'trailing_stop_positive_offset': {'type': 'number', 'minimum': 0, 'maximum': 1},
'trailing_only_offset_is_reached': {'type': 'boolean'},
'use_sell_signal': {'type': 'boolean'},
'sell_profit_only': {'type': 'boolean'},
'sell_profit_offset': {'type': 'number'},
'ignore_roi_if_buy_signal': {'type': 'boolean'},
'use_exit_signal': {'type': 'boolean'},
'exit_profit_only': {'type': 'boolean'},
'exit_profit_offset': {'type': 'number'},
'ignore_roi_if_entry_signal': {'type': 'boolean'},
'ignore_buying_expired_candle_after': {'type': 'number'},
'trading_mode': {'type': 'string', 'enum': TRADING_MODES},
'margin_mode': {'type': 'string', 'enum': MARGIN_MODES},
@ -216,9 +216,9 @@ CONF_SCHEMA = {
'properties': {
'entry': {'type': 'string', 'enum': ORDERTYPE_POSSIBILITIES},
'exit': {'type': 'string', 'enum': ORDERTYPE_POSSIBILITIES},
'forceexit': {'type': 'string', 'enum': ORDERTYPE_POSSIBILITIES},
'forceentry': {'type': 'string', 'enum': ORDERTYPE_POSSIBILITIES},
'emergencyexit': {
'force_exit': {'type': 'string', 'enum': ORDERTYPE_POSSIBILITIES},
'force_entry': {'type': 'string', 'enum': ORDERTYPE_POSSIBILITIES},
'emergency_exit': {
'type': 'string',
'enum': ORDERTYPE_POSSIBILITIES,
'default': 'market'},
@ -285,21 +285,21 @@ CONF_SCHEMA = {
'status': {'type': 'string', 'enum': TELEGRAM_SETTING_OPTIONS},
'warning': {'type': 'string', 'enum': TELEGRAM_SETTING_OPTIONS},
'startup': {'type': 'string', 'enum': TELEGRAM_SETTING_OPTIONS},
'buy': {'type': 'string', 'enum': TELEGRAM_SETTING_OPTIONS},
'buy_cancel': {'type': 'string', 'enum': TELEGRAM_SETTING_OPTIONS},
'buy_fill': {'type': 'string',
'entry': {'type': 'string', 'enum': TELEGRAM_SETTING_OPTIONS},
'entry_cancel': {'type': 'string', 'enum': TELEGRAM_SETTING_OPTIONS},
'entry_fill': {'type': 'string',
'enum': TELEGRAM_SETTING_OPTIONS,
'default': 'off'
},
'sell': {
'exit': {
'type': ['string', 'object'],
'additionalProperties': {
'type': 'string',
'enum': TELEGRAM_SETTING_OPTIONS
}
},
'sell_cancel': {'type': 'string', 'enum': TELEGRAM_SETTING_OPTIONS},
'sell_fill': {
'exit_cancel': {'type': 'string', 'enum': TELEGRAM_SETTING_OPTIONS},
'exit_fill': {
'type': 'string',
'enum': TELEGRAM_SETTING_OPTIONS,
'default': 'off'
@ -327,12 +327,12 @@ CONF_SCHEMA = {
'format': {'type': 'string', 'enum': WEBHOOK_FORMAT_OPTIONS, 'default': 'form'},
'retries': {'type': 'integer', 'minimum': 0},
'retry_delay': {'type': 'number', 'minimum': 0},
'webhookbuy': {'type': 'object'},
'webhookbuycancel': {'type': 'object'},
'webhookbuyfill': {'type': 'object'},
'webhooksell': {'type': 'object'},
'webhooksellcancel': {'type': 'object'},
'webhooksellfill': {'type': 'object'},
'webhookentry': {'type': 'object'},
'webhookentrycancel': {'type': 'object'},
'webhookentryfill': {'type': 'object'},
'webhookexit': {'type': 'object'},
'webhookexitcancel': {'type': 'object'},
'webhookexitfill': {'type': 'object'},
'webhookstatus': {'type': 'object'},
},
},
@ -358,7 +358,7 @@ CONF_SCHEMA = {
'export': {'type': 'string', 'enum': EXPORT_OPTIONS, 'default': 'trades'},
'disableparamexport': {'type': 'boolean'},
'initial_state': {'type': 'string', 'enum': ['running', 'stopped']},
'forcebuy_enable': {'type': 'boolean'},
'force_entry_enable': {'type': 'boolean'},
'disable_dataframe_checks': {'type': 'boolean'},
'internals': {
'type': 'object',
@ -463,6 +463,10 @@ SCHEMA_BACKTEST_REQUIRED = [
'dataformat_ohlcv',
'dataformat_trades',
]
SCHEMA_BACKTEST_REQUIRED_FINAL = SCHEMA_BACKTEST_REQUIRED + [
'stoploss',
'minimal_roi',
]
SCHEMA_MINIMAL_REQUIRED = [
'exchange',
@ -478,7 +482,9 @@ CANCEL_REASON = {
"FULLY_CANCELLED": "fully cancelled",
"ALL_CANCELLED": "cancelled (all unfilled and partially filled open orders cancelled)",
"CANCELLED_ON_EXCHANGE": "cancelled on exchange",
"FORCE_SELL": "forcesold",
"FORCE_EXIT": "forcesold",
"REPLACE": "cancelled to be replaced by new limit order",
"USER_CANCEL": "user requested order cancel"
}
# List of pairs with their timeframes
@ -487,3 +493,7 @@ ListPairsWithTimeframes = List[PairWithTimeframe]
# Type for trades list
TradeList = List[List]
LongShort = Literal['long', 'short']
EntryExit = Literal['entry', 'exit']
BuySell = Literal['buy', 'sell']

View File

@ -5,14 +5,15 @@ import logging
from copy import copy
from datetime import datetime, timezone
from pathlib import Path
from typing import Any, Dict, List, Optional, Tuple, Union
from typing import Any, Dict, List, Optional, Union
import numpy as np
import pandas as pd
from freqtrade.constants import LAST_BT_RESULT_FN
from freqtrade.exceptions import OperationalException
from freqtrade.misc import get_backtest_metadata_filename, json_load
from freqtrade.misc import json_load
from freqtrade.optimize.backtest_caching import get_backtest_metadata_filename
from freqtrade.persistence import LocalTrade, Trade, init_db
@ -22,7 +23,7 @@ logger = logging.getLogger(__name__)
BT_DATA_COLUMNS = ['pair', 'stake_amount', 'amount', 'open_date', 'close_date',
'open_rate', 'close_rate',
'fee_open', 'fee_close', 'trade_duration',
'profit_ratio', 'profit_abs', 'sell_reason',
'profit_ratio', 'profit_abs', 'exit_reason',
'initial_stop_loss_abs', 'initial_stop_loss_ratio', 'stop_loss_abs',
'stop_loss_ratio', 'min_rate', 'max_rate', 'is_open', 'enter_tag',
'is_short'
@ -149,7 +150,14 @@ def load_backtest_stats(filename: Union[Path, str]) -> Dict[str, Any]:
return data
def _load_and_merge_backtest_result(strategy_name: str, filename: Path, results: Dict[str, Any]):
def load_and_merge_backtest_result(strategy_name: str, filename: Path, results: Dict[str, Any]):
"""
Load one strategy from multi-strategy result
and merge it with results
:param strategy_name: Name of the strategy contained in the result
:param filename: Backtest-result-filename to load
:param results: dict to merge the result to.
"""
bt_data = load_backtest_stats(filename)
for k in ('metadata', 'strategy'):
results[k][strategy_name] = bt_data[k][strategy_name]
@ -160,6 +168,30 @@ def _load_and_merge_backtest_result(strategy_name: str, filename: Path, results:
break
def _get_backtest_files(dirname: Path) -> List[Path]:
return list(reversed(sorted(dirname.glob('backtest-result-*-[0-9][0-9].json'))))
def get_backtest_resultlist(dirname: Path):
"""
Get list of backtest results read from metadata files
"""
results = []
for filename in _get_backtest_files(dirname):
metadata = load_backtest_metadata(filename)
if not metadata:
continue
for s, v in metadata.items():
results.append({
'filename': filename.name,
'strategy': s,
'run_id': v['run_id'],
'backtest_start_time': v['backtest_start_time'],
})
return results
def find_existing_backtest_stats(dirname: Union[Path, str], run_ids: Dict[str, str],
min_backtest_date: datetime = None) -> Dict[str, Any]:
"""
@ -179,7 +211,7 @@ def find_existing_backtest_stats(dirname: Union[Path, str], run_ids: Dict[str, s
}
# Weird glob expression here avoids including .meta.json files.
for filename in reversed(sorted(dirname.glob('backtest-result-*-[0-9][0-9].json'))):
for filename in _get_backtest_files(dirname):
metadata = load_backtest_metadata(filename)
if not metadata:
# Files are sorted from newest to oldest. When file without metadata is encountered it
@ -193,14 +225,7 @@ def find_existing_backtest_stats(dirname: Union[Path, str], run_ids: Dict[str, s
continue
if min_backtest_date is not None:
try:
backtest_date = strategy_metadata['backtest_start_time']
except KeyError:
# TODO: this can be removed starting from feb 2022
# The metadata-file without start_time was only available in develop
# and was never included in an official release.
# Older metadata format without backtest time, too old to consider.
return results
backtest_date = datetime.fromtimestamp(backtest_date, tz=timezone.utc)
if backtest_date < min_backtest_date:
# Do not use a cached result for this strategy as first result is too old.
@ -209,7 +234,7 @@ def find_existing_backtest_stats(dirname: Union[Path, str], run_ids: Dict[str, s
if strategy_metadata['run_id'] == run_id:
del run_ids[strategy_name]
_load_and_merge_backtest_result(strategy_name, filename, results)
load_and_merge_backtest_result(strategy_name, filename, results)
if len(run_ids) == 0:
break
@ -375,157 +400,3 @@ def extract_trades_of_period(dataframe: pd.DataFrame, trades: pd.DataFrame,
trades = trades.loc[(trades['open_date'] >= trades_start) &
(trades['close_date'] <= trades_stop)]
return trades
def calculate_market_change(data: Dict[str, pd.DataFrame], column: str = "close") -> float:
"""
Calculate market change based on "column".
Calculation is done by taking the first non-null and the last non-null element of each column
and calculating the pctchange as "(last - first) / first".
Then the results per pair are combined as mean.
:param data: Dict of Dataframes, dict key should be pair.
:param column: Column in the original dataframes to use
:return:
"""
tmp_means = []
for pair, df in data.items():
start = df[column].dropna().iloc[0]
end = df[column].dropna().iloc[-1]
tmp_means.append((end - start) / start)
return float(np.mean(tmp_means))
def combine_dataframes_with_mean(data: Dict[str, pd.DataFrame],
column: str = "close") -> pd.DataFrame:
"""
Combine multiple dataframes "column"
:param data: Dict of Dataframes, dict key should be pair.
:param column: Column in the original dataframes to use
:return: DataFrame with the column renamed to the dict key, and a column
named mean, containing the mean of all pairs.
:raise: ValueError if no data is provided.
"""
df_comb = pd.concat([data[pair].set_index('date').rename(
{column: pair}, axis=1)[pair] for pair in data], axis=1)
df_comb['mean'] = df_comb.mean(axis=1)
return df_comb
def create_cum_profit(df: pd.DataFrame, trades: pd.DataFrame, col_name: str,
timeframe: str) -> pd.DataFrame:
"""
Adds a column `col_name` with the cumulative profit for the given trades array.
:param df: DataFrame with date index
:param trades: DataFrame containing trades (requires columns close_date and profit_abs)
:param col_name: Column name that will be assigned the results
:param timeframe: Timeframe used during the operations
:return: Returns df with one additional column, col_name, containing the cumulative profit.
:raise: ValueError if trade-dataframe was found empty.
"""
if len(trades) == 0:
raise ValueError("Trade dataframe empty.")
from freqtrade.exchange import timeframe_to_minutes
timeframe_minutes = timeframe_to_minutes(timeframe)
# Resample to timeframe to make sure trades match candles
_trades_sum = trades.resample(f'{timeframe_minutes}min', on='close_date'
)[['profit_abs']].sum()
df.loc[:, col_name] = _trades_sum['profit_abs'].cumsum()
# Set first value to 0
df.loc[df.iloc[0].name, col_name] = 0
# FFill to get continuous
df[col_name] = df[col_name].ffill()
return df
def _calc_drawdown_series(profit_results: pd.DataFrame, *, date_col: str, value_col: str
) -> pd.DataFrame:
max_drawdown_df = pd.DataFrame()
max_drawdown_df['cumulative'] = profit_results[value_col].cumsum()
max_drawdown_df['high_value'] = max_drawdown_df['cumulative'].cummax()
max_drawdown_df['drawdown'] = max_drawdown_df['cumulative'] - max_drawdown_df['high_value']
max_drawdown_df['date'] = profit_results.loc[:, date_col]
return max_drawdown_df
def calculate_underwater(trades: pd.DataFrame, *, date_col: str = 'close_date',
value_col: str = 'profit_ratio'
):
"""
Calculate max drawdown and the corresponding close dates
:param trades: DataFrame containing trades (requires columns close_date and profit_ratio)
:param date_col: Column in DataFrame to use for dates (defaults to 'close_date')
:param value_col: Column in DataFrame to use for values (defaults to 'profit_ratio')
:return: Tuple (float, highdate, lowdate, highvalue, lowvalue) with absolute max drawdown,
high and low time and high and low value.
:raise: ValueError if trade-dataframe was found empty.
"""
if len(trades) == 0:
raise ValueError("Trade dataframe empty.")
profit_results = trades.sort_values(date_col).reset_index(drop=True)
max_drawdown_df = _calc_drawdown_series(profit_results, date_col=date_col, value_col=value_col)
return max_drawdown_df
def calculate_max_drawdown(trades: pd.DataFrame, *, date_col: str = 'close_date',
value_col: str = 'profit_abs', starting_balance: float = 0
) -> Tuple[float, pd.Timestamp, pd.Timestamp, float, float, float]:
"""
Calculate max drawdown and the corresponding close dates
:param trades: DataFrame containing trades (requires columns close_date and profit_ratio)
:param date_col: Column in DataFrame to use for dates (defaults to 'close_date')
:param value_col: Column in DataFrame to use for values (defaults to 'profit_abs')
:param starting_balance: Portfolio starting balance - properly calculate relative drawdown.
:return: Tuple (float, highdate, lowdate, highvalue, lowvalue, relative_drawdown)
with absolute max drawdown, high and low time and high and low value,
and the relative account drawdown
:raise: ValueError if trade-dataframe was found empty.
"""
if len(trades) == 0:
raise ValueError("Trade dataframe empty.")
profit_results = trades.sort_values(date_col).reset_index(drop=True)
max_drawdown_df = _calc_drawdown_series(profit_results, date_col=date_col, value_col=value_col)
idxmin = max_drawdown_df['drawdown'].idxmin()
if idxmin == 0:
raise ValueError("No losing trade, therefore no drawdown.")
high_date = profit_results.loc[max_drawdown_df.iloc[:idxmin]['high_value'].idxmax(), date_col]
low_date = profit_results.loc[idxmin, date_col]
high_val = max_drawdown_df.loc[max_drawdown_df.iloc[:idxmin]
['high_value'].idxmax(), 'cumulative']
low_val = max_drawdown_df.loc[idxmin, 'cumulative']
max_drawdown_rel = 0.0
if high_val + starting_balance != 0:
max_drawdown_rel = (high_val - low_val) / (high_val + starting_balance)
return (
abs(min(max_drawdown_df['drawdown'])),
high_date,
low_date,
high_val,
low_val,
max_drawdown_rel
)
def calculate_csum(trades: pd.DataFrame, starting_balance: float = 0) -> Tuple[float, float]:
"""
Calculate min/max cumsum of trades, to show if the wallet/stake amount ratio is sane
:param trades: DataFrame containing trades (requires columns close_date and profit_percent)
:param starting_balance: Add starting balance to results, to show the wallets high / low points
:return: Tuple (float, float) with cumsum of profit_abs
:raise: ValueError if trade-dataframe was found empty.
"""
if len(trades) == 0:
raise ValueError("Trade dataframe empty.")
csum_df = pd.DataFrame()
csum_df['sum'] = trades['profit_abs'].cumsum()
csum_min = csum_df['sum'].min() + starting_balance
csum_max = csum_df['sum'].max() + starting_balance
return csum_min, csum_max

View File

@ -139,8 +139,9 @@ def _load_cached_data_for_updating(
timeframe: str,
timerange: Optional[TimeRange],
data_handler: IDataHandler,
candle_type: CandleType
) -> Tuple[DataFrame, Optional[int]]:
candle_type: CandleType,
prepend: bool = False,
) -> Tuple[DataFrame, Optional[int], Optional[int]]:
"""
Load cached data to download more data.
If timerange is passed in, checks whether data from an before the stored data will be
@ -150,9 +151,12 @@ def _load_cached_data_for_updating(
Note: Only used by download_pair_history().
"""
start = None
end = None
if timerange:
if timerange.starttype == 'date':
start = datetime.fromtimestamp(timerange.startts, tz=timezone.utc)
if timerange.stoptype == 'date':
end = datetime.fromtimestamp(timerange.stopts, tz=timezone.utc)
# Intentionally don't pass timerange in - since we need to load the full dataset.
data = data_handler.ohlcv_load(pair, timeframe=timeframe,
@ -160,14 +164,17 @@ def _load_cached_data_for_updating(
drop_incomplete=True, warn_no_data=False,
candle_type=candle_type)
if not data.empty:
if start and start < data.iloc[0]['date']:
if not prepend and start and start < data.iloc[0]['date']:
# Earlier data than existing data requested, redownload all
data = DataFrame(columns=DEFAULT_DATAFRAME_COLUMNS)
else:
if prepend:
end = data.iloc[0]['date']
else:
start = data.iloc[-1]['date']
start_ms = int(start.timestamp() * 1000) if start else None
return data, start_ms
end_ms = int(end.timestamp() * 1000) if end else None
return data, start_ms, end_ms
def _download_pair_history(pair: str, *,
@ -179,6 +186,8 @@ def _download_pair_history(pair: str, *,
data_handler: IDataHandler = None,
timerange: Optional[TimeRange] = None,
candle_type: CandleType,
erase: bool = False,
prepend: bool = False,
) -> bool:
"""
Download latest candles from the exchange for the pair and timeframe passed in parameters
@ -186,25 +195,31 @@ def _download_pair_history(pair: str, *,
exists in a cache. If timerange starts earlier than the data in the cache,
the full data will be redownloaded
Based on @Rybolov work: https://github.com/rybolov/freqtrade-data
:param pair: pair to download
:param timeframe: Timeframe (e.g "5m")
:param timerange: range of time to download
:param candle_type: Any of the enum CandleType (must match trading mode!)
:param erase: Erase existing data
:return: bool with success state
"""
data_handler = get_datahandler(datadir, data_handler=data_handler)
try:
logger.info(
f'Download history data for pair: "{pair}" ({process}), timeframe: {timeframe}, '
f'candle type: {candle_type} and store in {datadir}.'
)
if erase:
if data_handler.ohlcv_purge(pair, timeframe, candle_type=candle_type):
logger.info(f'Deleting existing data for pair {pair}, {timeframe}, {candle_type}.')
data, since_ms = _load_cached_data_for_updating(pair, timeframe, timerange,
data, since_ms, until_ms = _load_cached_data_for_updating(
pair, timeframe, timerange,
data_handler=data_handler,
candle_type=candle_type)
candle_type=candle_type,
prepend=prepend)
logger.info(f'({process}) - Download history data for "{pair}", {timeframe}, '
f'{candle_type} and store in {datadir}.'
f'From {format_ms_time(since_ms) if since_ms else "start"} to '
f'{format_ms_time(until_ms) if until_ms else "now"}'
)
logger.debug("Current Start: %s",
f"{data.iloc[0]['date']:%Y-%m-%d %H:%M:%S}" if not data.empty else 'None')
@ -219,6 +234,7 @@ def _download_pair_history(pair: str, *,
days=-new_pairs_days).int_timestamp * 1000,
is_new_pair=data.empty,
candle_type=candle_type,
until_ms=until_ms if until_ms else None
)
# TODO: Maybe move parsing to exchange class (?)
new_dataframe = ohlcv_to_dataframe(new_data, timeframe, pair,
@ -251,6 +267,7 @@ def refresh_backtest_ohlcv_data(exchange: Exchange, pairs: List[str], timeframes
timerange: Optional[TimeRange] = None,
new_pairs_days: int = 30, erase: bool = False,
data_format: str = None,
prepend: bool = False,
) -> List[str]:
"""
Refresh stored ohlcv data for backtesting and hyperopt operations.
@ -267,35 +284,28 @@ def refresh_backtest_ohlcv_data(exchange: Exchange, pairs: List[str], timeframes
continue
for timeframe in timeframes:
if erase:
if data_handler.ohlcv_purge(pair, timeframe, candle_type=candle_type):
logger.info(f'Deleting existing data for pair {pair}, interval {timeframe}.')
logger.info(f'Downloading pair {pair}, interval {timeframe}.')
process = f'{idx}/{len(pairs)}'
_download_pair_history(pair=pair, process=process,
datadir=datadir, exchange=exchange,
timerange=timerange, data_handler=data_handler,
timeframe=str(timeframe), new_pairs_days=new_pairs_days,
candle_type=candle_type)
candle_type=candle_type,
erase=erase, prepend=prepend)
if trading_mode == 'futures':
# Predefined candletype (and timeframe) depending on exchange
# Downloads what is necessary to backtest based on futures data.
timeframe = exchange._ft_has['mark_ohlcv_timeframe']
tf_mark = exchange._ft_has['mark_ohlcv_timeframe']
fr_candle_type = CandleType.from_string(exchange._ft_has['mark_ohlcv_price'])
# All exchanges need FundingRate for futures trading.
# The timeframe is aligned to the mark-price timeframe.
for funding_candle_type in (CandleType.FUNDING_RATE, fr_candle_type):
# TODO: this could be in most parts to the above.
if erase:
if data_handler.ohlcv_purge(pair, timeframe, candle_type=funding_candle_type):
logger.info(
f'Deleting existing data for pair {pair}, interval {timeframe}.')
_download_pair_history(pair=pair, process=process,
datadir=datadir, exchange=exchange,
timerange=timerange, data_handler=data_handler,
timeframe=str(timeframe), new_pairs_days=new_pairs_days,
candle_type=funding_candle_type)
timeframe=str(tf_mark), new_pairs_days=new_pairs_days,
candle_type=funding_candle_type,
erase=erase, prepend=prepend)
return pairs_not_available
@ -313,7 +323,8 @@ def _download_trades_history(exchange: Exchange,
try:
until = None
if (timerange and timerange.starttype == 'date'):
if timerange:
if timerange.starttype == 'date':
since = timerange.startts * 1000
if timerange.stoptype == 'date':
until = timerange.stopts * 1000

View File

@ -5,7 +5,7 @@ It's subclasses handle and storing data from disk.
"""
import logging
import re
from abc import ABC, abstractclassmethod, abstractmethod
from abc import ABC, abstractmethod
from copy import deepcopy
from datetime import datetime, timezone
from pathlib import Path
@ -38,7 +38,8 @@ class IDataHandler(ABC):
"""
raise NotImplementedError()
@abstractclassmethod
@classmethod
@abstractmethod
def ohlcv_get_available_data(
cls, datadir: Path, trading_mode: TradingMode) -> ListPairsWithTimeframes:
"""
@ -48,7 +49,8 @@ class IDataHandler(ABC):
:return: List of Tuples of (pair, timeframe)
"""
@abstractclassmethod
@classmethod
@abstractmethod
def ohlcv_get_pairs(cls, datadir: Path, timeframe: str, candle_type: CandleType) -> List[str]:
"""
Returns a list of all pairs with ohlcv data available in this datadir
@ -118,7 +120,8 @@ class IDataHandler(ABC):
:param candle_type: Any of the enum CandleType (must match trading mode!)
"""
@abstractclassmethod
@classmethod
@abstractmethod
def trades_get_pairs(cls, datadir: Path) -> List[str]:
"""
Returns a list of all pairs for which trade data is available in this

192
freqtrade/data/metrics.py Normal file
View File

@ -0,0 +1,192 @@
import logging
from typing import Dict, Tuple
import numpy as np
import pandas as pd
logger = logging.getLogger(__name__)
def calculate_market_change(data: Dict[str, pd.DataFrame], column: str = "close") -> float:
"""
Calculate market change based on "column".
Calculation is done by taking the first non-null and the last non-null element of each column
and calculating the pctchange as "(last - first) / first".
Then the results per pair are combined as mean.
:param data: Dict of Dataframes, dict key should be pair.
:param column: Column in the original dataframes to use
:return:
"""
tmp_means = []
for pair, df in data.items():
start = df[column].dropna().iloc[0]
end = df[column].dropna().iloc[-1]
tmp_means.append((end - start) / start)
return float(np.mean(tmp_means))
def combine_dataframes_with_mean(data: Dict[str, pd.DataFrame],
column: str = "close") -> pd.DataFrame:
"""
Combine multiple dataframes "column"
:param data: Dict of Dataframes, dict key should be pair.
:param column: Column in the original dataframes to use
:return: DataFrame with the column renamed to the dict key, and a column
named mean, containing the mean of all pairs.
:raise: ValueError if no data is provided.
"""
df_comb = pd.concat([data[pair].set_index('date').rename(
{column: pair}, axis=1)[pair] for pair in data], axis=1)
df_comb['mean'] = df_comb.mean(axis=1)
return df_comb
def create_cum_profit(df: pd.DataFrame, trades: pd.DataFrame, col_name: str,
timeframe: str) -> pd.DataFrame:
"""
Adds a column `col_name` with the cumulative profit for the given trades array.
:param df: DataFrame with date index
:param trades: DataFrame containing trades (requires columns close_date and profit_abs)
:param col_name: Column name that will be assigned the results
:param timeframe: Timeframe used during the operations
:return: Returns df with one additional column, col_name, containing the cumulative profit.
:raise: ValueError if trade-dataframe was found empty.
"""
if len(trades) == 0:
raise ValueError("Trade dataframe empty.")
from freqtrade.exchange import timeframe_to_minutes
timeframe_minutes = timeframe_to_minutes(timeframe)
# Resample to timeframe to make sure trades match candles
_trades_sum = trades.resample(f'{timeframe_minutes}min', on='close_date'
)[['profit_abs']].sum()
df.loc[:, col_name] = _trades_sum['profit_abs'].cumsum()
# Set first value to 0
df.loc[df.iloc[0].name, col_name] = 0
# FFill to get continuous
df[col_name] = df[col_name].ffill()
return df
def _calc_drawdown_series(profit_results: pd.DataFrame, *, date_col: str, value_col: str,
starting_balance: float) -> pd.DataFrame:
max_drawdown_df = pd.DataFrame()
max_drawdown_df['cumulative'] = profit_results[value_col].cumsum()
max_drawdown_df['high_value'] = max_drawdown_df['cumulative'].cummax()
max_drawdown_df['drawdown'] = max_drawdown_df['cumulative'] - max_drawdown_df['high_value']
max_drawdown_df['date'] = profit_results.loc[:, date_col]
if starting_balance:
cumulative_balance = starting_balance + max_drawdown_df['cumulative']
max_balance = starting_balance + max_drawdown_df['high_value']
max_drawdown_df['drawdown_relative'] = ((max_balance - cumulative_balance) / max_balance)
else:
# NOTE: This is not completely accurate,
# but might good enough if starting_balance is not available
max_drawdown_df['drawdown_relative'] = (
(max_drawdown_df['high_value'] - max_drawdown_df['cumulative'])
/ max_drawdown_df['high_value'])
return max_drawdown_df
def calculate_underwater(trades: pd.DataFrame, *, date_col: str = 'close_date',
value_col: str = 'profit_ratio', starting_balance: float = 0.0
):
"""
Calculate max drawdown and the corresponding close dates
:param trades: DataFrame containing trades (requires columns close_date and profit_ratio)
:param date_col: Column in DataFrame to use for dates (defaults to 'close_date')
:param value_col: Column in DataFrame to use for values (defaults to 'profit_ratio')
:return: Tuple (float, highdate, lowdate, highvalue, lowvalue) with absolute max drawdown,
high and low time and high and low value.
:raise: ValueError if trade-dataframe was found empty.
"""
if len(trades) == 0:
raise ValueError("Trade dataframe empty.")
profit_results = trades.sort_values(date_col).reset_index(drop=True)
max_drawdown_df = _calc_drawdown_series(
profit_results,
date_col=date_col,
value_col=value_col,
starting_balance=starting_balance)
return max_drawdown_df
def calculate_max_drawdown(trades: pd.DataFrame, *, date_col: str = 'close_date',
value_col: str = 'profit_abs', starting_balance: float = 0,
relative: bool = False
) -> Tuple[float, pd.Timestamp, pd.Timestamp, float, float, float]:
"""
Calculate max drawdown and the corresponding close dates
:param trades: DataFrame containing trades (requires columns close_date and profit_ratio)
:param date_col: Column in DataFrame to use for dates (defaults to 'close_date')
:param value_col: Column in DataFrame to use for values (defaults to 'profit_abs')
:param starting_balance: Portfolio starting balance - properly calculate relative drawdown.
:return: Tuple (float, highdate, lowdate, highvalue, lowvalue, relative_drawdown)
with absolute max drawdown, high and low time and high and low value,
and the relative account drawdown
:raise: ValueError if trade-dataframe was found empty.
"""
if len(trades) == 0:
raise ValueError("Trade dataframe empty.")
profit_results = trades.sort_values(date_col).reset_index(drop=True)
max_drawdown_df = _calc_drawdown_series(
profit_results,
date_col=date_col,
value_col=value_col,
starting_balance=starting_balance
)
idxmin = max_drawdown_df['drawdown_relative'].idxmax() if relative \
else max_drawdown_df['drawdown'].idxmin()
if idxmin == 0:
raise ValueError("No losing trade, therefore no drawdown.")
high_date = profit_results.loc[max_drawdown_df.iloc[:idxmin]['high_value'].idxmax(), date_col]
low_date = profit_results.loc[idxmin, date_col]
high_val = max_drawdown_df.loc[max_drawdown_df.iloc[:idxmin]
['high_value'].idxmax(), 'cumulative']
low_val = max_drawdown_df.loc[idxmin, 'cumulative']
max_drawdown_rel = max_drawdown_df.loc[idxmin, 'drawdown_relative']
return (
abs(max_drawdown_df.loc[idxmin, 'drawdown']),
high_date,
low_date,
high_val,
low_val,
max_drawdown_rel
)
def calculate_csum(trades: pd.DataFrame, starting_balance: float = 0) -> Tuple[float, float]:
"""
Calculate min/max cumsum of trades, to show if the wallet/stake amount ratio is sane
:param trades: DataFrame containing trades (requires columns close_date and profit_percent)
:param starting_balance: Add starting balance to results, to show the wallets high / low points
:return: Tuple (float, float) with cumsum of profit_abs
:raise: ValueError if trade-dataframe was found empty.
"""
if len(trades) == 0:
raise ValueError("Trade dataframe empty.")
csum_df = pd.DataFrame()
csum_df['sum'] = trades['profit_abs'].cumsum()
csum_min = csum_df['sum'].min() + starting_balance
csum_max = csum_df['sum'].max() + starting_balance
return csum_min, csum_max
def calculate_cagr(days_passed: int, starting_balance: float, final_balance: float) -> float:
"""
Calculate CAGR
:param days_passed: Days passed between start and ending balance
:param starting_balance: Starting balance
:param final_balance: Final balance to calculate CAGR against
:return: CAGR
"""
return (final_balance / starting_balance) ** (1 / (days_passed / 365)) - 1

View File

@ -470,7 +470,7 @@ class Edge:
if len(ohlc_columns) - 1 < exit_index:
break
exit_type = ExitType.SELL_SIGNAL
exit_type = ExitType.EXIT_SIGNAL
exit_price = ohlc_columns[exit_index, 0]
trade = {'pair': pair,

View File

@ -3,16 +3,16 @@ from enum import Enum
class ExitType(Enum):
"""
Enum to distinguish between sell reasons
Enum to distinguish between exit reasons
"""
ROI = "roi"
STOP_LOSS = "stop_loss"
STOPLOSS_ON_EXCHANGE = "stoploss_on_exchange"
TRAILING_STOP_LOSS = "trailing_stop_loss"
SELL_SIGNAL = "sell_signal"
FORCE_SELL = "force_sell"
EMERGENCY_SELL = "emergency_sell"
CUSTOM_SELL = "custom_sell"
EXIT_SIGNAL = "exit_signal"
FORCE_EXIT = "force_exit"
EMERGENCY_EXIT = "emergency_exit"
CUSTOM_EXIT = "custom_exit"
NONE = ""
def __str__(self):

View File

@ -6,19 +6,13 @@ class RPCMessageType(Enum):
WARNING = 'warning'
STARTUP = 'startup'
BUY = 'buy'
BUY_FILL = 'buy_fill'
BUY_CANCEL = 'buy_cancel'
ENTRY = 'entry'
ENTRY_FILL = 'entry_fill'
ENTRY_CANCEL = 'entry_cancel'
SHORT = 'short'
SHORT_FILL = 'short_fill'
SHORT_CANCEL = 'short_cancel'
# TODO: The below messagetypes should be renamed to "exit"!
# Careful - has an impact on webhooks, therefore needs proper communication
SELL = 'sell'
SELL_FILL = 'sell_fill'
SELL_CANCEL = 'sell_cancel'
EXIT = 'exit'
EXIT_FILL = 'exit_fill'
EXIT_CANCEL = 'exit_cancel'
PROTECTION_TRIGGER = 'protection_trigger'
PROTECTION_TRIGGER_GLOBAL = 'protection_trigger_global'

View File

@ -95,6 +95,7 @@ class Binance(Exchange):
async def _async_get_historic_ohlcv(self, pair: str, timeframe: str,
since_ms: int, candle_type: CandleType,
is_new_pair: bool = False, raise_: bool = False,
until_ms: int = None
) -> Tuple[str, str, str, List]:
"""
Overwrite to introduce "fast new pair" functionality by detecting the pair's listing date
@ -115,7 +116,8 @@ class Binance(Exchange):
since_ms=since_ms,
is_new_pair=is_new_pair,
raise_=raise_,
candle_type=candle_type
candle_type=candle_type,
until_ms=until_ms,
)
def funding_fee_cutoff(self, open_date: datetime):

File diff suppressed because it is too large Load Diff

View File

@ -102,7 +102,7 @@ def calculate_backoff(retrycount, max_retries):
def retrier_async(f):
async def wrapper(*args, **kwargs):
count = kwargs.pop('count', API_RETRY_COUNT)
kucoin = args[0].name == "Kucoin" # Check if the exchange is KuCoin.
kucoin = args[0].name == "KuCoin" # Check if the exchange is KuCoin.
try:
return await f(*args, **kwargs)
except TemporaryError as ex:

View File

@ -9,6 +9,7 @@ import logging
from copy import deepcopy
from datetime import datetime, timedelta, timezone
from math import ceil
from threading import Lock
from typing import Any, Coroutine, Dict, List, Literal, Optional, Tuple, Union
import arrow
@ -19,8 +20,8 @@ from ccxt.base.decimal_to_precision import (ROUND_DOWN, ROUND_UP, TICK_SIZE, TRU
decimal_to_precision)
from pandas import DataFrame
from freqtrade.constants import (DEFAULT_AMOUNT_RESERVE_PERCENT, NON_OPEN_EXCHANGE_STATES,
ListPairsWithTimeframes, PairWithTimeframe)
from freqtrade.constants import (DEFAULT_AMOUNT_RESERVE_PERCENT, NON_OPEN_EXCHANGE_STATES, BuySell,
EntryExit, ListPairsWithTimeframes, PairWithTimeframe)
from freqtrade.data.converter import ohlcv_to_dataframe, trades_dict_to_list
from freqtrade.enums import OPTIMIZE_MODES, CandleType, MarginMode, TradingMode
from freqtrade.exceptions import (DDosProtection, ExchangeError, InsufficientFundsError,
@ -63,7 +64,9 @@ class Exchange:
"time_in_force_parameter": "timeInForce",
"ohlcv_params": {},
"ohlcv_candle_limit": 500,
"ohlcv_has_history": True, # Some exchanges (Kraken) don't provide history via ohlcv
"ohlcv_partial_candle": True,
"ohlcv_require_since": False,
# Check https://github.com/ccxt/ccxt/issues/10767 for removal of ohlcv_volume_currency
"ohlcv_volume_currency": "base", # "base" or "quote"
"tickers_have_quoteVolume": True,
@ -95,6 +98,9 @@ class Exchange:
self._markets: Dict = {}
self._trading_fees: Dict[str, Any] = {}
self._leverage_tiers: Dict[str, List[Dict]] = {}
# Lock event loop. This is necessary to avoid race-conditions when using force* commands
# Due to funding fee fetching.
self._loop_lock = Lock()
self.loop = asyncio.new_event_loop()
asyncio.set_event_loop(self.loop)
self._config: Dict = {}
@ -166,7 +172,7 @@ class Exchange:
self._api_async = self._init_ccxt(
exchange_config, ccxt_async, ccxt_kwargs=ccxt_async_config)
logger.info('Using Exchange "%s"', self.name)
logger.info(f'Using Exchange "{self.name}"')
if validate:
# Check if timeframe is available
@ -193,6 +199,7 @@ class Exchange:
if self.trading_mode != TradingMode.SPOT:
self.fill_leverage_tiers()
self.additional_exchange_init()
def __del__(self):
"""
@ -289,17 +296,28 @@ class Exchange:
"""exchange ccxt precisionMode"""
return self._api.precisionMode
def additional_exchange_init(self) -> None:
"""
Additional exchange initialization logic.
.api will be available at this point.
Must be overridden in child methods if required.
"""
pass
def _log_exchange_response(self, endpoint, response) -> None:
""" Log exchange responses """
if self.log_responses:
logger.info(f"API {endpoint}: {response}")
def ohlcv_candle_limit(self, timeframe: str) -> int:
def ohlcv_candle_limit(
self, timeframe: str, candle_type: CandleType, since_ms: Optional[int] = None) -> int:
"""
Exchange ohlcv candle limit
Uses ohlcv_candle_limit_per_timeframe if the exchange has different limits
per timeframe (e.g. bittrex), otherwise falls back to ohlcv_candle_limit
:param timeframe: Timeframe to check
:param candle_type: Candle-type
:param since_ms: Starting timestamp
:return: Candle limit as integer
"""
return int(self._ft_has.get('ohlcv_candle_limit_per_timeframe', {}).get(
@ -341,15 +359,11 @@ class Exchange:
return sorted(set([x['quote'] for _, x in markets.items()]))
def get_pair_quote_currency(self, pair: str) -> str:
"""
Return a pair's quote currency
"""
""" Return a pair's quote currency (base/quote:settlement) """
return self.markets.get(pair, {}).get('quote', '')
def get_pair_base_currency(self, pair: str) -> str:
"""
Return a pair's base currency
"""
""" Return a pair's base currency (base/quote:settlement) """
return self.markets.get(pair, {}).get('base', '')
def market_is_future(self, market: Dict[str, Any]) -> bool:
@ -372,6 +386,9 @@ class Exchange:
return (
market.get('quote', None) is not None
and market.get('base', None) is not None
and (self.precisionMode != TICK_SIZE
# Too low precision will falsify calculations
or market.get('precision', {}).get('price', None) > 1e-11)
and ((self.trading_mode == TradingMode.SPOT and self.market_is_spot(market))
or (self.trading_mode == TradingMode.MARGIN and self.market_is_margin(market))
or (self.trading_mode == TradingMode.FUTURES and self.market_is_future(market)))
@ -555,7 +572,7 @@ class Exchange:
# Therefore we also show that.
raise OperationalException(
f"The ccxt library does not provide the list of timeframes "
f"for the exchange \"{self.name}\" and this exchange "
f"for the exchange {self.name} and this exchange "
f"is therefore not supported. ccxt fetchOHLCV: {self.exchange_has('fetchOHLCV')}")
if timeframe and (timeframe not in self.timeframes):
@ -602,19 +619,28 @@ class Exchange:
Checks if required startup_candles is more than ohlcv_candle_limit().
Requires a grace-period of 5 candles - so a startup-period up to 494 is allowed by default.
"""
candle_limit = self.ohlcv_candle_limit(timeframe)
candle_limit = self.ohlcv_candle_limit(
timeframe, self._config['candle_type_def'],
int(date_minus_candles(timeframe, startup_candles).timestamp() * 1000)
if timeframe else None)
# Require one more candle - to account for the still open candle.
candle_count = startup_candles + 1
# Allow 5 calls to the exchange per pair
required_candle_call_count = int(
(candle_count / candle_limit) + (0 if candle_count % candle_limit == 0 else 1))
if self._ft_has['ohlcv_has_history']:
if required_candle_call_count > 5:
# Only allow 5 calls per pair to somewhat limit the impact
raise OperationalException(
f"This strategy requires {startup_candles} candles to start, which is more than 5x "
f"This strategy requires {startup_candles} candles to start, "
"which is more than 5x "
f"the amount of candles {self.name} provides for {timeframe}.")
elif required_candle_call_count > 1:
raise OperationalException(
f"This strategy requires {startup_candles} candles to start, which is more than "
f"the amount of candles {self.name} provides for {timeframe}.")
if required_candle_call_count > 1:
logger.warning(f"Using {required_candle_call_count} calls to get OHLCV. "
f"This can result in slower operations for the bot. Please check "
@ -655,7 +681,7 @@ class Exchange:
Re-implementation of ccxt internal methods - ensuring we can test the result is correct
based on our definitions.
"""
if self.markets[pair]['precision']['amount']:
if self.markets[pair]['precision']['amount'] is not None:
amount = float(decimal_to_precision(amount, rounding_mode=TRUNCATE,
precision=self.markets[pair]['precision']['amount'],
counting_mode=self.precisionMode,
@ -785,7 +811,9 @@ class Exchange:
rate: float, leverage: float, params: Dict = {},
stop_loss: bool = False) -> Dict[str, Any]:
order_id = f'dry_run_{side}_{datetime.now().timestamp()}'
_amount = self.amount_to_precision(pair, amount)
# Rounding here must respect to contract sizes
_amount = self._contracts_to_amount(
pair, self.amount_to_precision(pair, self._amount_to_contracts(pair, amount)))
dry_order: Dict[str, Any] = {
'id': order_id,
'symbol': pair,
@ -931,13 +959,14 @@ class Exchange:
# Order handling
def _lev_prep(self, pair: str, leverage: float, side: str):
def _lev_prep(self, pair: str, leverage: float, side: BuySell):
if self.trading_mode != TradingMode.SPOT:
self.set_margin_mode(pair, self.margin_mode)
self._set_leverage(leverage, pair)
def _get_params(
self,
side: BuySell,
ordertype: str,
leverage: float,
reduceOnly: bool,
@ -956,7 +985,7 @@ class Exchange:
*,
pair: str,
ordertype: str,
side: str,
side: BuySell,
amount: float,
rate: float,
leverage: float,
@ -967,7 +996,7 @@ class Exchange:
dry_order = self.create_dry_run_order(pair, ordertype, side, amount, rate, leverage)
return dry_order
params = self._get_params(ordertype, leverage, reduceOnly, time_in_force)
params = self._get_params(side, ordertype, leverage, reduceOnly, time_in_force)
try:
# Set the precision for amount and price(rate) as accepted by the exchange
@ -1052,7 +1081,7 @@ class Exchange:
@retrier(retries=0)
def stoploss(self, pair: str, amount: float, stop_price: float, order_types: Dict,
side: str, leverage: float) -> Dict:
side: BuySell, leverage: float) -> Dict:
"""
creates a stoploss order.
requires `_ft_has['stoploss_order_types']` to be set as a dict mapping limit and market
@ -1429,7 +1458,7 @@ class Exchange:
raise OperationalException(e) from e
def get_rate(self, pair: str, refresh: bool,
side: Literal['entry', 'exit'], is_short: bool) -> float:
side: EntryExit, is_short: bool) -> float:
"""
Calculates bid/ask target
bid rate - between current ask price and last price
@ -1607,7 +1636,9 @@ class Exchange:
order['fee']['cost'] / safe_value_fallback2(order, order, 'filled', 'amount'), 8)
elif fee_curr in self.get_pair_quote_currency(order['symbol']):
# Quote currency - divide by cost
return round(order['fee']['cost'] / order['cost'], 8) if order['cost'] else None
return round(self._contracts_to_amount(
order['symbol'], order['fee']['cost']) / order['cost'],
8) if order['cost'] else None
else:
# If Fee currency is a different currency
if not order['cost']:
@ -1622,7 +1653,8 @@ class Exchange:
fee_to_quote_rate = self._config['exchange'].get('unknown_fee_rate', None)
if not fee_to_quote_rate:
return None
return round((order['fee']['cost'] * fee_to_quote_rate) / order['cost'], 8)
return round((self._contracts_to_amount(
order['symbol'], order['fee']['cost']) * fee_to_quote_rate) / order['cost'], 8)
def extract_cost_curr_rate(self, order: Dict) -> Tuple[float, str, Optional[float]]:
"""
@ -1639,7 +1671,8 @@ class Exchange:
def get_historic_ohlcv(self, pair: str, timeframe: str,
since_ms: int, candle_type: CandleType,
is_new_pair: bool = False) -> List:
is_new_pair: bool = False,
until_ms: int = None) -> List:
"""
Get candle history using asyncio and returns the list of candles.
Handles all async work for this.
@ -1647,13 +1680,14 @@ class Exchange:
:param pair: Pair to download
:param timeframe: Timeframe to get data for
:param since_ms: Timestamp in milliseconds to get history from
:param until_ms: Timestamp in milliseconds to get history up to
:param candle_type: '', mark, index, premiumIndex, or funding_rate
:return: List with candle (OHLCV) data
"""
pair, _, _, data = self.loop.run_until_complete(
self._async_get_historic_ohlcv(pair=pair, timeframe=timeframe,
since_ms=since_ms, is_new_pair=is_new_pair,
candle_type=candle_type))
since_ms=since_ms, until_ms=until_ms,
is_new_pair=is_new_pair, candle_type=candle_type))
logger.info(f"Downloaded data for {pair} with length {len(data)}.")
return data
@ -1674,6 +1708,7 @@ class Exchange:
async def _async_get_historic_ohlcv(self, pair: str, timeframe: str,
since_ms: int, candle_type: CandleType,
is_new_pair: bool = False, raise_: bool = False,
until_ms: int = None
) -> Tuple[str, str, str, List]:
"""
Download historic ohlcv
@ -1681,7 +1716,8 @@ class Exchange:
:param candle_type: Any of the enum CandleType (must match trading mode!)
"""
one_call = timeframe_to_msecs(timeframe) * self.ohlcv_candle_limit(timeframe)
one_call = timeframe_to_msecs(timeframe) * self.ohlcv_candle_limit(
timeframe, candle_type, since_ms)
logger.debug(
"one_call: %s msecs (%s)",
one_call,
@ -1689,7 +1725,7 @@ class Exchange:
)
input_coroutines = [self._async_get_candle_history(
pair, timeframe, candle_type, since) for since in
range(since_ms, arrow.utcnow().int_timestamp * 1000, one_call)]
range(since_ms, until_ms or (arrow.utcnow().int_timestamp * 1000), one_call)]
data: List = []
# Chunk requests into batches of 100 to avoid overwelming ccxt Throttling
@ -1714,9 +1750,11 @@ class Exchange:
def _build_coroutine(self, pair: str, timeframe: str, candle_type: CandleType,
since_ms: Optional[int]) -> Coroutine:
if not since_ms and self.required_candle_call_count > 1:
if (not since_ms
and (self._ft_has["ohlcv_require_since"] or self.required_candle_call_count > 1)):
# Multiple calls for one pair - to get more history
one_call = timeframe_to_msecs(timeframe) * self.ohlcv_candle_limit(timeframe)
one_call = timeframe_to_msecs(timeframe) * self.ohlcv_candle_limit(
timeframe, candle_type, since_ms)
move_to = one_call * self.required_candle_call_count
now = timeframe_to_next_date(timeframe)
since_ms = int((now - timedelta(seconds=move_to // 1000)).timestamp() * 1000)
@ -1774,6 +1812,7 @@ class Exchange:
async def gather_stuff():
return await asyncio.gather(*input_coro, return_exceptions=True)
with self._loop_lock:
results = self.loop.run_until_complete(gather_stuff())
for res in results:
@ -1833,17 +1872,20 @@ class Exchange:
pair, timeframe, since_ms, s
)
params = deepcopy(self._ft_has.get('ohlcv_params', {}))
candle_limit = self.ohlcv_candle_limit(
timeframe, candle_type=candle_type, since_ms=since_ms)
if candle_type != CandleType.SPOT:
params.update({'price': candle_type})
if candle_type != CandleType.FUNDING_RATE:
data = await self._api_async.fetch_ohlcv(
pair, timeframe=timeframe, since=since_ms,
limit=self.ohlcv_candle_limit(timeframe), params=params)
limit=candle_limit, params=params)
else:
# Funding rate
data = await self._api_async.fetch_funding_rate_history(
pair, since=since_ms,
limit=self.ohlcv_candle_limit(timeframe))
limit=candle_limit)
# Convert funding rate to candle pattern
data = [[x['timestamp'], x['fundingRate'], 0, 0, 0, 0] for x in data]
# Some exchanges sort OHLCV in ASC order and others in DESC.
@ -2030,6 +2072,7 @@ class Exchange:
if not self.exchange_has("fetchTrades"):
raise OperationalException("This exchange does not support downloading Trades.")
with self._loop_lock:
return self.loop.run_until_complete(
self._async_get_trade_history(pair=pair, since=since,
until=until, from_id=from_id))
@ -2141,8 +2184,8 @@ class Exchange:
def parse_leverage_tier(self, tier) -> Dict:
info = tier.get('info', {})
return {
'min': tier['notionalFloor'],
'max': tier['notionalCap'],
'min': tier['minNotional'],
'max': tier['maxNotional'],
'mmr': tier['maintenanceMarginRate'],
'lev': tier['maxLeverage'],
'maintAmt': float(info['cum']) if 'cum' in info else None,
@ -2181,7 +2224,7 @@ class Exchange:
lev = tier['lev']
if tier_index < len(pair_tiers) - 1:
next_tier = pair_tiers[tier_index+1]
next_tier = pair_tiers[tier_index + 1]
next_floor = next_tier['min'] / next_tier['lev']
if next_floor > stake_amount: # Next tier min too high for stake amount
return min((tier['max'] / stake_amount), lev)
@ -2648,9 +2691,10 @@ def timeframe_to_msecs(timeframe: str) -> int:
def timeframe_to_prev_date(timeframe: str, date: datetime = None) -> datetime:
"""
Use Timeframe and determine last possible candle.
Use Timeframe and determine the candle start date for this date.
Does not round when given a candle start date.
:param timeframe: timeframe in string format (e.g. "5m")
:param date: date to use. Defaults to utcnow()
:param date: date to use. Defaults to now(utc)
:returns: date of previous candle (with utc timezone)
"""
if not date:
@ -2665,7 +2709,7 @@ def timeframe_to_next_date(timeframe: str, date: datetime = None) -> datetime:
"""
Use Timeframe and determine next candle.
:param timeframe: timeframe in string format (e.g. "5m")
:param date: date to use. Defaults to utcnow()
:param date: date to use. Defaults to now(utc)
:returns: date of next candle (with utc timezone)
"""
if not date:
@ -2675,6 +2719,23 @@ def timeframe_to_next_date(timeframe: str, date: datetime = None) -> datetime:
return datetime.fromtimestamp(new_timestamp, tz=timezone.utc)
def date_minus_candles(
timeframe: str, candle_count: int, date: Optional[datetime] = None) -> datetime:
"""
subtract X candles from a date.
:param timeframe: timeframe in string format (e.g. "5m")
:param candle_count: Amount of candles to subtract.
:param date: date to use. Defaults to now(utc)
"""
if not date:
date = datetime.now(timezone.utc)
tf_min = timeframe_to_minutes(timeframe)
new_date = timeframe_to_prev_date(timeframe, date) - timedelta(minutes=tf_min * candle_count)
return new_date
def market_is_active(market: Dict) -> bool:
"""
Return True if the market is active.

View File

@ -4,6 +4,7 @@ from typing import Any, Dict, List, Tuple
import ccxt
from freqtrade.constants import BuySell
from freqtrade.enums import MarginMode, TradingMode
from freqtrade.exceptions import (DDosProtection, InsufficientFundsError, InvalidOrderException,
OperationalException, TemporaryError)
@ -20,6 +21,7 @@ class Ftx(Exchange):
_ft_has: Dict = {
"stoploss_on_exchange": True,
"ohlcv_candle_limit": 1500,
"ohlcv_require_since": True,
"ohlcv_volume_currency": "quote",
"mark_ohlcv_price": "index",
"mark_ohlcv_timeframe": "1h",
@ -43,7 +45,7 @@ class Ftx(Exchange):
@retrier(retries=0)
def stoploss(self, pair: str, amount: float, stop_price: float,
order_types: Dict, side: str, leverage: float) -> Dict:
order_types: Dict, side: BuySell, leverage: float) -> Dict:
"""
Creates a stoploss order.
depending on order_types.stoploss configuration, uses 'market' or limit order.

View File

@ -6,6 +6,7 @@ from typing import Any, Dict, List, Optional, Tuple
import ccxt
from pandas import DataFrame
from freqtrade.constants import BuySell
from freqtrade.enums import MarginMode, TradingMode
from freqtrade.exceptions import (DDosProtection, InsufficientFundsError, InvalidOrderException,
OperationalException, TemporaryError)
@ -22,6 +23,7 @@ class Kraken(Exchange):
_ft_has: Dict = {
"stoploss_on_exchange": True,
"ohlcv_candle_limit": 720,
"ohlcv_has_history": False,
"trades_pagination": "id",
"trades_pagination_arg": "since",
"mark_ohlcv_timeframe": "4h",
@ -95,7 +97,7 @@ class Kraken(Exchange):
@retrier(retries=0)
def stoploss(self, pair: str, amount: float, stop_price: float,
order_types: Dict, side: str, leverage: float) -> Dict:
order_types: Dict, side: BuySell, leverage: float) -> Dict:
"""
Creates a stoploss market order.
Stoploss market orders is the only stoploss type supported by kraken.
@ -165,12 +167,14 @@ class Kraken(Exchange):
def _get_params(
self,
side: BuySell,
ordertype: str,
leverage: float,
reduceOnly: bool,
time_in_force: str = 'gtc'
) -> Dict:
params = super()._get_params(
side=side,
ordertype=ordertype,
leverage=leverage,
reduceOnly=reduceOnly,

View File

@ -1,12 +1,15 @@
import logging
from typing import Dict, List, Tuple
from typing import Dict, List, Optional, Tuple
import ccxt
from freqtrade.constants import BuySell
from freqtrade.enums import MarginMode, TradingMode
from freqtrade.enums.candletype import CandleType
from freqtrade.exceptions import DDosProtection, OperationalException, TemporaryError
from freqtrade.exchange import Exchange
from freqtrade.exchange.common import retrier
from freqtrade.exchange.exchange import date_minus_candles
logger = logging.getLogger(__name__)
@ -19,7 +22,7 @@ class Okx(Exchange):
"""
_ft_has: Dict = {
"ohlcv_candle_limit": 300,
"ohlcv_candle_limit": 100, # Warning, special case with data prior to X months
"mark_ohlcv_timeframe": "4h",
"funding_fee_timeframe": "8h",
}
@ -34,14 +37,69 @@ class Okx(Exchange):
(TradingMode.FUTURES, MarginMode.ISOLATED),
]
net_only = True
def ohlcv_candle_limit(
self, timeframe: str, candle_type: CandleType, since_ms: Optional[int] = None) -> int:
"""
Exchange ohlcv candle limit
OKX has the following behaviour:
* 300 candles for uptodate data
* 100 candles for historic data
* 100 candles for additional candles (not futures or spot).
:param timeframe: Timeframe to check
:param candle_type: Candle-type
:param since_ms: Starting timestamp
:return: Candle limit as integer
"""
if (
candle_type in (CandleType.FUTURES, CandleType.SPOT) and
(not since_ms or since_ms > (date_minus_candles(timeframe, 300).timestamp() * 1000))
):
return 300
return super().ohlcv_candle_limit(timeframe, candle_type, since_ms)
@retrier
def additional_exchange_init(self) -> None:
"""
Additional exchange initialization logic.
.api will be available at this point.
Must be overridden in child methods if required.
"""
try:
if self.trading_mode == TradingMode.FUTURES and not self._config['dry_run']:
accounts = self._api.fetch_accounts()
if len(accounts) > 0:
self.net_only = accounts[0].get('info', {}).get('posMode') == 'net_mode'
except ccxt.DDoSProtection as e:
raise DDosProtection(e) from e
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
raise TemporaryError(
f'Could not set leverage due to {e.__class__.__name__}. Message: {e}') from e
except ccxt.BaseError as e:
raise OperationalException(e) from e
def _get_posSide(self, side: BuySell, reduceOnly: bool):
if self.net_only:
return 'net'
if not reduceOnly:
# Enter
return 'long' if side == 'buy' else 'short'
else:
# Exit
return 'long' if side == 'sell' else 'short'
def _get_params(
self,
side: BuySell,
ordertype: str,
leverage: float,
reduceOnly: bool,
time_in_force: str = 'gtc',
) -> Dict:
params = super()._get_params(
side=side,
ordertype=ordertype,
leverage=leverage,
reduceOnly=reduceOnly,
@ -49,10 +107,11 @@ class Okx(Exchange):
)
if self.trading_mode == TradingMode.FUTURES and self.margin_mode:
params['tdMode'] = self.margin_mode.value
params['posSide'] = self._get_posSide(side, reduceOnly)
return params
@retrier
def _lev_prep(self, pair: str, leverage: float, side: str):
def _lev_prep(self, pair: str, leverage: float, side: BuySell):
if self.trading_mode != TradingMode.SPOT and self.margin_mode is not None:
try:
# TODO-lev: Test me properly (check mgnMode passed)
@ -61,7 +120,7 @@ class Okx(Exchange):
symbol=pair,
params={
"mgnMode": self.margin_mode.value,
# "posSide": "net"",
"posSide": self._get_posSide(side, False),
})
except ccxt.DDoSProtection as e:
raise DDosProtection(e) from e

View File

@ -7,12 +7,13 @@ import traceback
from datetime import datetime, time, timezone
from math import isclose
from threading import Lock
from typing import Any, Dict, List, Literal, Optional, Tuple
from typing import Any, Dict, List, Optional, Tuple
from schedule import Scheduler
from freqtrade import __version__, constants
from freqtrade.configuration import validate_config_consistency
from freqtrade.constants import BuySell, LongShort
from freqtrade.data.converter import order_book_to_dataframe
from freqtrade.data.dataprovider import DataProvider
from freqtrade.edge import Edge
@ -21,6 +22,7 @@ from freqtrade.enums import (ExitCheckTuple, ExitType, RPCMessageType, RunMode,
from freqtrade.exceptions import (DependencyException, ExchangeError, InsufficientFundsError,
InvalidOrderException, PricingError)
from freqtrade.exchange import timeframe_to_minutes, timeframe_to_seconds
from freqtrade.exchange.exchange import timeframe_to_next_date
from freqtrade.misc import safe_value_fallback, safe_value_fallback2
from freqtrade.mixins import LoggingMixin
from freqtrade.persistence import Order, PairLocks, Trade, cleanup_db, init_db
@ -121,6 +123,8 @@ class FreqtradeBot(LoggingMixin):
self._schedule.every().day.at(t).do(update)
self.last_process = datetime(1970, 1, 1, tzinfo=timezone.utc)
self.strategy.bot_start()
def notify_status(self, msg: str) -> None:
"""
Public method for users of this class (worker, etc.) to send notifications
@ -187,10 +191,10 @@ class FreqtradeBot(LoggingMixin):
self.strategy.analyze(self.active_pair_whitelist)
with self._exit_lock:
# Check and handle any timed out open orders
self.check_handle_timedout()
# Check for exchange cancelations, timeouts and user requested replace
self.manage_open_orders()
# Protect from collisions with forceexit.
# Protect from collisions with force_exit.
# Without this, freqtrade my try to recreate stoploss_on_exchange orders
# while exiting is in process, since telegram messages arrive in an different thread.
with self._exit_lock:
@ -329,12 +333,12 @@ class FreqtradeBot(LoggingMixin):
trades: List[Trade] = Trade.get_open_trades_without_assigned_fees()
for trade in trades:
if trade.is_open and not trade.fee_updated(trade.enter_side):
order = trade.select_order(trade.enter_side, False)
open_order = trade.select_order(trade.enter_side, True)
if trade.is_open and not trade.fee_updated(trade.entry_side):
order = trade.select_order(trade.entry_side, False)
open_order = trade.select_order(trade.entry_side, True)
if order and open_order is None:
logger.info(
f"Updating {trade.enter_side}-fee on trade {trade}"
f"Updating {trade.entry_side}-fee on trade {trade}"
f"for order {order.order_id}."
)
self.update_trade_state(trade, order.order_id, send_msg=False)
@ -363,7 +367,7 @@ class FreqtradeBot(LoggingMixin):
if fo and fo['status'] == 'open':
# Assume this as the open order
trade.open_order_id = order.order_id
elif order.ft_order_side == trade.enter_side:
elif order.ft_order_side == trade.entry_side:
if fo and fo['status'] == 'open':
trade.open_order_id = order.order_id
if fo:
@ -398,7 +402,10 @@ class FreqtradeBot(LoggingMixin):
logger.info("No currency pair in active pair whitelist, "
"but checking to exit open trades.")
return trades_created
if PairLocks.is_global_lock():
if PairLocks.is_global_lock(side='*'):
# This only checks for total locks (both sides).
# per-side locks will be evaluated by `is_pair_locked` within create_trade,
# once the direction for the trade is clear.
lock = PairLocks.get_pair_longest_lock('*')
if lock:
self.log_once(f"Global pairlock active until "
@ -432,16 +439,6 @@ class FreqtradeBot(LoggingMixin):
analyzed_df, _ = self.dataprovider.get_analyzed_dataframe(pair, self.strategy.timeframe)
nowtime = analyzed_df.iloc[-1]['date'] if len(analyzed_df) > 0 else None
if self.strategy.is_pair_locked(pair, nowtime):
lock = PairLocks.get_pair_longest_lock(pair, nowtime)
if lock:
self.log_once(f"Pair {pair} is still locked until "
f"{lock.lock_end_time.strftime(constants.DATETIME_PRINT_FORMAT)} "
f"due to {lock.reason}.",
logger.info)
else:
self.log_once(f"Pair {pair} is still locked.", logger.info)
return False
# get_free_open_trades is checked before create_trade is called
# but it is still used here to prevent opening too many trades within one iteration
@ -457,6 +454,16 @@ class FreqtradeBot(LoggingMixin):
)
if signal:
if self.strategy.is_pair_locked(pair, candle_date=nowtime, side=signal):
lock = PairLocks.get_pair_longest_lock(pair, nowtime, signal)
if lock:
self.log_once(f"Pair {pair} {lock.side} is locked until "
f"{lock.lock_end_time.strftime(constants.DATETIME_PRINT_FORMAT)} "
f"due to {lock.reason}.",
logger.info)
else:
self.log_once(f"Pair {pair} is currently locked.", logger.info)
return False
stake_amount = self.wallets.get_trade_stake_amount(pair, self.edge)
bid_check_dom = self.config.get('entry_pricing', {}).get('check_depth_of_market', {})
@ -529,7 +536,8 @@ class FreqtradeBot(LoggingMixin):
if stake_amount is not None and stake_amount > 0.0:
# We should increase our position
self.execute_entry(trade.pair, stake_amount, trade=trade, is_short=trade.is_short)
self.execute_entry(trade.pair, stake_amount, price=current_rate,
trade=trade, is_short=trade.is_short)
if stake_amount is not None and stake_amount < 0.0:
# We should decrease our position
@ -548,9 +556,9 @@ class FreqtradeBot(LoggingMixin):
order_book_bids = order_book_data_frame['b_size'].sum()
order_book_asks = order_book_data_frame['a_size'].sum()
enter_side = order_book_bids if side == SignalDirection.LONG else order_book_asks
entry_side = order_book_bids if side == SignalDirection.LONG else order_book_asks
exit_side = order_book_asks if side == SignalDirection.LONG else order_book_bids
bids_ask_delta = enter_side / exit_side
bids_ask_delta = entry_side / exit_side
bids = f"Bids: {order_book_bids}"
asks = f"Asks: {order_book_asks}"
@ -579,22 +587,23 @@ class FreqtradeBot(LoggingMixin):
ordertype: Optional[str] = None,
enter_tag: Optional[str] = None,
trade: Optional[Trade] = None,
order_adjust: bool = False
) -> bool:
"""
Executes a limit buy for the given pair
:param pair: pair for which we want to create a LIMIT_BUY
:param stake_amount: amount of stake-currency for the pair
:param leverage: amount of leverage applied to this trade
:return: True if a buy order is created, false if it fails.
"""
time_in_force = self.strategy.order_time_in_force['entry']
[side, name] = ['sell', 'Short'] if is_short else ['buy', 'Long']
trade_side: Literal['long', 'short'] = 'short' if is_short else 'long'
side: BuySell = 'sell' if is_short else 'buy'
name = 'Short' if is_short else 'Long'
trade_side: LongShort = 'short' if is_short else 'long'
pos_adjust = trade is not None
enter_limit_requested, stake_amount, leverage = self.get_valid_enter_price_and_stake(
pair, price, stake_amount, trade_side, enter_tag, trade)
pair, price, stake_amount, trade_side, enter_tag, trade, order_adjust)
if not stake_amount:
return False
@ -662,18 +671,9 @@ class FreqtradeBot(LoggingMixin):
amount = safe_value_fallback(order, 'filled', 'amount')
enter_limit_filled_price = safe_value_fallback(order, 'average', 'price')
# TODO: this might be unnecessary, as we're calling it in update_trade_state.
isolated_liq = self.exchange.get_liquidation_price(
leverage=leverage,
pair=pair,
amount=amount,
open_rate=enter_limit_filled_price,
is_short=is_short
)
interest_rate = self.exchange.get_interest_rate()
# Fee is applied twice because we make a LIMIT_BUY and LIMIT_SELL
fee = self.exchange.get_fee(symbol=pair, taker_or_maker='maker')
base_currency = self.exchange.get_pair_base_currency(pair)
open_date = datetime.now(timezone.utc)
funding_fees = self.exchange.get_funding_fees(
pair=pair, amount=amount, is_short=is_short, open_date=open_date)
@ -681,6 +681,8 @@ class FreqtradeBot(LoggingMixin):
if trade is None:
trade = Trade(
pair=pair,
base_currency=base_currency,
stake_currency=self.config['stake_currency'],
stake_amount=stake_amount,
amount=amount,
is_open=True,
@ -697,8 +699,6 @@ class FreqtradeBot(LoggingMixin):
timeframe=timeframe_to_minutes(self.config['timeframe']),
leverage=leverage,
is_short=is_short,
interest_rate=interest_rate,
liquidation_price=isolated_liq,
trading_mode=self.trading_mode,
funding_fees=funding_fees
)
@ -746,23 +746,28 @@ class FreqtradeBot(LoggingMixin):
def get_valid_enter_price_and_stake(
self, pair: str, price: Optional[float], stake_amount: float,
trade_side: Literal['long', 'short'],
trade_side: LongShort,
entry_tag: Optional[str],
trade: Optional[Trade]
trade: Optional[Trade],
order_adjust: bool,
) -> Tuple[float, float, float]:
if price:
enter_limit_requested = price
else:
# Calculate price
proposed_enter_rate = self.exchange.get_rate(
enter_limit_requested = self.exchange.get_rate(
pair, side='entry', is_short=(trade_side == 'short'), refresh=True)
if not order_adjust:
# Don't call custom_entry_price in order-adjust scenario
custom_entry_price = strategy_safe_wrapper(self.strategy.custom_entry_price,
default_retval=proposed_enter_rate)(
default_retval=enter_limit_requested)(
pair=pair, current_time=datetime.now(timezone.utc),
proposed_rate=proposed_enter_rate, entry_tag=entry_tag)
proposed_rate=enter_limit_requested, entry_tag=entry_tag,
side=trade_side,
)
enter_limit_requested = self.get_valid_price(custom_entry_price, proposed_enter_rate)
enter_limit_requested = self.get_valid_price(custom_entry_price, enter_limit_requested)
if not enter_limit_requested:
raise PricingError('Could not determine entry price.')
@ -816,10 +821,7 @@ class FreqtradeBot(LoggingMixin):
"""
Sends rpc notification when a entry order occurred.
"""
if fill:
msg_type = RPCMessageType.SHORT_FILL if trade.is_short else RPCMessageType.BUY_FILL
else:
msg_type = RPCMessageType.SHORT if trade.is_short else RPCMessageType.BUY
msg_type = RPCMessageType.ENTRY_FILL if fill else RPCMessageType.ENTRY
open_rate = safe_value_fallback(order, 'average', 'price')
if open_rate is None:
open_rate = trade.open_rate
@ -834,7 +836,7 @@ class FreqtradeBot(LoggingMixin):
'type': msg_type,
'buy_tag': trade.enter_tag,
'enter_tag': trade.enter_tag,
'exchange': self.exchange.name.capitalize(),
'exchange': trade.exchange.capitalize(),
'pair': trade.pair,
'leverage': trade.leverage if trade.leverage else None,
'direction': 'Short' if trade.is_short else 'Long',
@ -858,13 +860,13 @@ class FreqtradeBot(LoggingMixin):
"""
current_rate = self.exchange.get_rate(
trade.pair, side='entry', is_short=trade.is_short, refresh=False)
msg_type = RPCMessageType.SHORT_CANCEL if trade.is_short else RPCMessageType.BUY_CANCEL
msg = {
'trade_id': trade.id,
'type': msg_type,
'type': RPCMessageType.ENTRY_CANCEL,
'buy_tag': trade.enter_tag,
'enter_tag': trade.enter_tag,
'exchange': self.exchange.name.capitalize(),
'exchange': trade.exchange.capitalize(),
'pair': trade.pair,
'leverage': trade.leverage,
'direction': 'Short' if trade.is_short else 'Long',
@ -926,8 +928,8 @@ class FreqtradeBot(LoggingMixin):
exit_tag = None
exit_signal_type = "exit_short" if trade.is_short else "exit_long"
if (self.config.get('use_sell_signal', True) or
self.config.get('ignore_roi_if_buy_signal', False)):
if (self.config.get('use_exit_signal', True) or
self.config.get('ignore_roi_if_entry_signal', False)):
analyzed_df, _ = self.dataprovider.get_analyzed_dataframe(trade.pair,
self.strategy.timeframe)
@ -978,7 +980,7 @@ class FreqtradeBot(LoggingMixin):
logger.error(f'Unable to place a stoploss order on exchange. {e}')
logger.warning('Exiting the trade forcefully')
self.execute_trade_exit(trade, trade.stop_loss, exit_check=ExitCheckTuple(
exit_type=ExitType.EMERGENCY_SELL))
exit_type=ExitType.EMERGENCY_EXIT))
except ExchangeError:
trade.stoploss_order_id = None
@ -1010,7 +1012,7 @@ class FreqtradeBot(LoggingMixin):
# We check if stoploss order is fulfilled
if stoploss_order and stoploss_order['status'] in ('closed', 'triggered'):
trade.sell_reason = ExitType.STOPLOSS_ON_EXCHANGE.value
trade.exit_reason = ExitType.STOPLOSS_ON_EXCHANGE.value
self.update_trade_state(trade, trade.stoploss_order_id, stoploss_order,
stoploss_order=True)
# Lock pair for one candle to prevent immediate rebuys
@ -1119,13 +1121,13 @@ class FreqtradeBot(LoggingMixin):
return True
return False
def check_handle_timedout(self) -> None:
def manage_open_orders(self) -> None:
"""
Check if any orders are timed out and cancel if necessary
:param timeoutvalue: Number of minutes until order is considered timed out
Management of open orders on exchange. Unfilled orders might be cancelled if timeout
was met or replaced if there's a new candle and user has requested it.
Timeout setting takes priority over limit order adjustment request.
:return: None
"""
for trade in Trade.get_open_order_trades():
try:
if not trade.open_order_id:
@ -1136,34 +1138,89 @@ class FreqtradeBot(LoggingMixin):
continue
fully_cancelled = self.update_trade_state(trade, trade.open_order_id, order)
is_entering = order['side'] == trade.enter_side
not_closed = order['status'] == 'open' or fully_cancelled
max_timeouts = self.config.get('unfilledtimeout', {}).get('exit_timeout_count', 0)
order_obj = trade.select_order_by_order_id(trade.open_order_id)
if not_closed and (fully_cancelled or (order_obj and self.strategy.ft_check_timed_out(
trade, order_obj, datetime.now(timezone.utc)))
):
if is_entering:
if not_closed:
if fully_cancelled or (order_obj and self.strategy.ft_check_timed_out(
trade, order_obj, datetime.now(timezone.utc))):
self.handle_timedout_order(order, trade)
else:
self.replace_order(order, order_obj, trade)
def handle_timedout_order(self, order: Dict, trade: Trade) -> None:
"""
Check if current analyzed order timed out and cancel if necessary.
:param order: Order dict grabbed with exchange.fetch_order()
:param trade: Trade object.
:return: None
"""
if order['side'] == trade.entry_side:
self.handle_cancel_enter(trade, order, constants.CANCEL_REASON['TIMEOUT'])
else:
canceled = self.handle_cancel_exit(
trade, order, constants.CANCEL_REASON['TIMEOUT'])
canceled_count = trade.get_exit_order_count()
max_timeouts = self.config.get(
'unfilledtimeout', {}).get('exit_timeout_count', 0)
max_timeouts = self.config.get('unfilledtimeout', {}).get('exit_timeout_count', 0)
if canceled and max_timeouts > 0 and canceled_count >= max_timeouts:
logger.warning(f'Emergency exiting trade {trade}, as the exit order '
f'timed out {max_timeouts} times.')
try:
self.execute_trade_exit(
trade, order.get('price'),
exit_check=ExitCheckTuple(exit_type=ExitType.EMERGENCY_SELL))
trade, order['price'],
exit_check=ExitCheckTuple(exit_type=ExitType.EMERGENCY_EXIT))
except DependencyException as exception:
logger.warning(
f'Unable to emergency sell trade {trade.pair}: {exception}')
def replace_order(self, order: Dict, order_obj: Optional[Order], trade: Trade) -> None:
"""
Check if current analyzed entry order should be replaced or simply cancelled.
To simply cancel the existing order(no replacement) adjust_entry_price() should return None
To maintain existing order adjust_entry_price() should return order_obj.price
To replace existing order adjust_entry_price() should return desired price for limit order
:param order: Order dict grabbed with exchange.fetch_order()
:param order_obj: Order object.
:param trade: Trade object.
:return: None
"""
analyzed_df, _ = self.dataprovider.get_analyzed_dataframe(trade.pair,
self.strategy.timeframe)
latest_candle_open_date = analyzed_df.iloc[-1]['date'] if len(analyzed_df) > 0 else None
latest_candle_close_date = timeframe_to_next_date(self.strategy.timeframe,
latest_candle_open_date)
# Check if new candle
if order_obj and latest_candle_close_date > order_obj.order_date_utc:
# New candle
proposed_rate = self.exchange.get_rate(
trade.pair, side='entry', is_short=trade.is_short, refresh=True)
adjusted_entry_price = strategy_safe_wrapper(self.strategy.adjust_entry_price,
default_retval=order_obj.price)(
trade=trade, order=order_obj, pair=trade.pair,
current_time=datetime.now(timezone.utc), proposed_rate=proposed_rate,
current_order_rate=order_obj.price, entry_tag=trade.enter_tag,
side=trade.entry_side)
full_cancel = False
cancel_reason = constants.CANCEL_REASON['REPLACE']
if not adjusted_entry_price:
full_cancel = True if trade.nr_of_successful_entries == 0 else False
cancel_reason = constants.CANCEL_REASON['USER_CANCEL']
if order_obj.price != adjusted_entry_price:
# cancel existing order if new price is supplied or None
self.handle_cancel_enter(trade, order, cancel_reason,
allow_full_cancel=full_cancel)
if adjusted_entry_price:
# place new order only if new price is supplied
self.execute_entry(
pair=trade.pair,
stake_amount=(order_obj.remaining * order_obj.price),
price=adjusted_entry_price,
trade=trade,
is_short=trade.is_short,
order_adjust=True,
)
def cancel_all_open_orders(self) -> None:
"""
Cancel all orders that are currently open
@ -1177,14 +1234,17 @@ class FreqtradeBot(LoggingMixin):
logger.info('Cannot query order for %s due to %s', trade, traceback.format_exc())
continue
if order['side'] == trade.enter_side:
if order['side'] == trade.entry_side:
self.handle_cancel_enter(trade, order, constants.CANCEL_REASON['ALL_CANCELLED'])
elif order['side'] == trade.exit_side:
self.handle_cancel_exit(trade, order, constants.CANCEL_REASON['ALL_CANCELLED'])
Trade.commit()
def handle_cancel_enter(self, trade: Trade, order: Dict, reason: str) -> bool:
def handle_cancel_enter(
self, trade: Trade, order: Dict, reason: str,
allow_full_cancel: Optional[bool] = True
) -> bool:
"""
Buy cancel - cancel order
:return: True if order was fully cancelled
@ -1216,15 +1276,16 @@ class FreqtradeBot(LoggingMixin):
corder = order
reason = constants.CANCEL_REASON['CANCELLED_ON_EXCHANGE']
side = trade.enter_side.capitalize()
side = trade.entry_side.capitalize()
logger.info('%s order %s for %s.', side, reason, trade)
# Using filled to determine the filled amount
filled_amount = safe_value_fallback2(corder, order, 'filled', 'filled')
if isclose(filled_amount, 0.0, abs_tol=constants.MATH_CLOSE_PREC):
logger.info(f'{side} order fully cancelled. Removing {trade} from database.')
# if trade is not partially completed and it's the only order, just delete the trade
if len(trade.orders) <= 1:
open_order_count = len([order for order in trade.orders if order.status == 'open'])
if open_order_count <= 1 and allow_full_cancel:
logger.info(f'{side} order fully cancelled. Removing {trade} from database.')
trade.delete()
was_trade_fully_canceled = True
reason += f", {constants.CANCEL_REASON['FULLY_CANCELLED']}"
@ -1247,7 +1308,7 @@ class FreqtradeBot(LoggingMixin):
self.update_trade_state(trade, trade.open_order_id, corder)
trade.open_order_id = None
logger.info(f'Partial {trade.enter_side} order timeout for {trade}.')
logger.info(f'Partial {trade.entry_side} order timeout for {trade}.')
reason += f", {constants.CANCEL_REASON['PARTIALLY_FILLED']}"
self.wallets.update()
@ -1286,7 +1347,7 @@ class FreqtradeBot(LoggingMixin):
trade.close_date = None
trade.is_open = True
trade.open_order_id = None
trade.sell_reason = None
trade.exit_reason = None
cancelled = True
else:
# TODO: figure out how to handle partially complete sell orders
@ -1353,6 +1414,7 @@ class FreqtradeBot(LoggingMixin):
open_date=trade.open_date_utc,
)
exit_type = 'exit'
exit_reason = exit_tag or exit_check.exit_reason
if exit_check.exit_type in (ExitType.STOP_LOSS, ExitType.TRAILING_STOP_LOSS):
exit_type = 'stoploss'
@ -1369,7 +1431,8 @@ class FreqtradeBot(LoggingMixin):
default_retval=proposed_limit_rate)(
pair=trade.pair, trade=trade,
current_time=datetime.now(timezone.utc),
proposed_rate=proposed_limit_rate, current_profit=current_profit)
proposed_rate=proposed_limit_rate, current_profit=current_profit,
exit_tag=exit_reason)
limit = self.get_valid_price(custom_exit_price, proposed_limit_rate)
@ -1377,17 +1440,17 @@ class FreqtradeBot(LoggingMixin):
trade = self.cancel_stoploss_on_exchange(trade)
order_type = ordertype or self.strategy.order_types[exit_type]
if exit_check.exit_type == ExitType.EMERGENCY_SELL:
if exit_check.exit_type == ExitType.EMERGENCY_EXIT:
# Emergency sells (default to market!)
order_type = self.strategy.order_types.get("emergencyexit", "market")
order_type = self.strategy.order_types.get("emergency_exit", "market")
amount = self._safe_exit_amount(trade.pair, trade.amount)
time_in_force = self.strategy.order_time_in_force['exit']
if not strategy_safe_wrapper(self.strategy.confirm_trade_exit, default_retval=True)(
pair=trade.pair, trade=trade, order_type=order_type, amount=amount, rate=limit,
time_in_force=time_in_force, exit_reason=exit_check.exit_reason,
sell_reason=exit_check.exit_reason, # sellreason -> compatibility
time_in_force=time_in_force, exit_reason=exit_reason,
sell_reason=exit_reason, # sellreason -> compatibility
current_time=datetime.now(timezone.utc)):
logger.info(f"User requested abortion of exiting {trade.pair}")
return False
@ -1414,9 +1477,9 @@ class FreqtradeBot(LoggingMixin):
trade.orders.append(order_obj)
trade.open_order_id = order['id']
trade.sell_order_status = ''
trade.exit_order_status = ''
trade.close_rate_requested = limit
trade.sell_reason = exit_tag or exit_check.exit_reason
trade.exit_reason = exit_reason
# Lock pair for one candle to prevent immediate re-trading
self.strategy.lock_pair(trade.pair, datetime.now(timezone.utc),
@ -1443,8 +1506,8 @@ class FreqtradeBot(LoggingMixin):
gain = "profit" if profit_ratio > 0 else "loss"
msg = {
'type': (RPCMessageType.SELL_FILL if fill
else RPCMessageType.SELL),
'type': (RPCMessageType.EXIT_FILL if fill
else RPCMessageType.EXIT),
'trade_id': trade.id,
'exchange': trade.exchange.capitalize(),
'pair': trade.pair,
@ -1461,7 +1524,8 @@ class FreqtradeBot(LoggingMixin):
'profit_ratio': profit_ratio,
'buy_tag': trade.enter_tag,
'enter_tag': trade.enter_tag,
'sell_reason': trade.sell_reason,
'sell_reason': trade.exit_reason, # Deprecated
'exit_reason': trade.exit_reason,
'open_date': trade.open_date,
'close_date': trade.close_date or datetime.utcnow(),
'stake_currency': self.config['stake_currency'],
@ -1480,10 +1544,10 @@ class FreqtradeBot(LoggingMixin):
"""
Sends rpc notification when a sell cancel occurred.
"""
if trade.sell_order_status == reason:
if trade.exit_order_status == reason:
return
else:
trade.sell_order_status = reason
trade.exit_order_status = reason
profit_rate = trade.close_rate if trade.close_rate else trade.close_rate_requested
profit_trade = trade.calc_profit(rate=profit_rate)
@ -1493,7 +1557,7 @@ class FreqtradeBot(LoggingMixin):
gain = "profit" if profit_ratio > 0 else "loss"
msg = {
'type': RPCMessageType.SELL_CANCEL,
'type': RPCMessageType.EXIT_CANCEL,
'trade_id': trade.id,
'exchange': trade.exchange.capitalize(),
'pair': trade.pair,
@ -1509,7 +1573,8 @@ class FreqtradeBot(LoggingMixin):
'profit_ratio': profit_ratio,
'buy_tag': trade.enter_tag,
'enter_tag': trade.enter_tag,
'sell_reason': trade.sell_reason,
'sell_reason': trade.exit_reason, # Deprecated
'exit_reason': trade.exit_reason,
'open_date': trade.open_date,
'close_date': trade.close_date or datetime.now(timezone.utc),
'stake_currency': self.config['stake_currency'],
@ -1575,12 +1640,11 @@ class FreqtradeBot(LoggingMixin):
if order['status'] in constants.NON_OPEN_EXCHANGE_STATES:
# If a entry order was closed, force update on stoploss on exchange
if order.get('side', None) == trade.enter_side:
if order.get('side', None) == trade.entry_side:
trade = self.cancel_stoploss_on_exchange(trade)
# TODO: Margin will need to use interest_rate as well.
# interest_rate = self.exchange.get_interest_rate()
trade.set_isolated_liq(self.exchange.get_liquidation_price(
leverage=trade.leverage,
pair=trade.pair,
amount=trade.amount,
@ -1598,21 +1662,21 @@ class FreqtradeBot(LoggingMixin):
if not trade.is_open:
if send_msg and not stoploss_order and not trade.open_order_id:
self._notify_exit(trade, '', True)
self.handle_protections(trade.pair)
self.handle_protections(trade.pair, trade.trade_direction)
elif send_msg and not trade.open_order_id:
# Enter fill
self._notify_enter(trade, order, fill=True)
return False
def handle_protections(self, pair: str) -> None:
prot_trig = self.protections.stop_per_pair(pair)
def handle_protections(self, pair: str, side: LongShort) -> None:
prot_trig = self.protections.stop_per_pair(pair, side=side)
if prot_trig:
msg = {'type': RPCMessageType.PROTECTION_TRIGGER, }
msg.update(prot_trig.to_json())
self.rpc.send_msg(msg)
prot_trig_glb = self.protections.global_stop()
prot_trig_glb = self.protections.global_stop(side=side)
if prot_trig_glb:
msg = {'type': RPCMessageType.PROTECTION_TRIGGER_GLOBAL, }
msg.update(prot_trig_glb.to_json())

View File

@ -31,13 +31,13 @@ def interest(
"""
exchange_name = exchange_name.lower()
if exchange_name == "binance":
return borrowed * rate * ceil(hours)/twenty_four
return borrowed * rate * ceil(hours) / twenty_four
elif exchange_name == "kraken":
# Rounded based on https://kraken-fees-calculator.github.io/
return borrowed * rate * (one+ceil(hours/four))
return borrowed * rate * (one + ceil(hours / four))
elif exchange_name == "ftx":
# As Explained under #Interest rates section in
# https://help.ftx.com/hc/en-us/articles/360053007671-Spot-Margin-Trading-Explainer
return borrowed * rate * ceil(hours)/twenty_four
return borrowed * rate * ceil(hours) / twenty_four
else:
raise OperationalException(f"Leverage not available on {exchange_name} with freqtrade")

View File

@ -2,13 +2,11 @@
Various tool function for Freqtrade and scripts
"""
import gzip
import hashlib
import logging
import re
from copy import deepcopy
from datetime import datetime
from pathlib import Path
from typing import Any, Iterator, List, Union
from typing import Any, Iterator, List
from typing.io import IO
from urllib.parse import urlparse
@ -86,6 +84,22 @@ def file_dump_json(filename: Path, data: Any, is_zip: bool = False, log: bool =
logger.debug(f'done json to "{filename}"')
def file_dump_joblib(filename: Path, data: Any, log: bool = True) -> None:
"""
Dump object data into a file
:param filename: file to create
:param data: Object data to save
:return:
"""
import joblib
if log:
logger.info(f'dumping joblib to "{filename}"')
with open(filename, 'wb') as fp:
joblib.dump(data, fp)
logger.debug(f'done joblib dump to "{filename}"')
def json_load(datafile: IO) -> Any:
"""
load data with rapidjson
@ -126,7 +140,7 @@ def format_ms_time(date: int) -> str:
convert MS date to readable format.
: epoch-string in ms
"""
return datetime.fromtimestamp(date/1000.0).strftime('%Y-%m-%dT%H:%M:%S')
return datetime.fromtimestamp(date / 1000.0).strftime('%Y-%m-%dT%H:%M:%S')
def deep_merge_dicts(source, destination, allow_null_overrides: bool = True):
@ -235,34 +249,3 @@ def parse_db_uri_for_logging(uri: str):
return uri
pwd = parsed_db_uri.netloc.split(':')[1].split('@')[0]
return parsed_db_uri.geturl().replace(f':{pwd}@', ':*****@')
def get_strategy_run_id(strategy) -> str:
"""
Generate unique identification hash for a backtest run. Identical config and strategy file will
always return an identical hash.
:param strategy: strategy object.
:return: hex string id.
"""
digest = hashlib.sha1()
config = deepcopy(strategy.config)
# Options that have no impact on results of individual backtest.
not_important_keys = ('strategy_list', 'original_config', 'telegram', 'api_server')
for k in not_important_keys:
if k in config:
del config[k]
# Explicitly allow NaN values (e.g. max_open_trades).
# as it does not matter for getting the hash.
digest.update(rapidjson.dumps(config, default=str,
number_mode=rapidjson.NM_NAN).encode('utf-8'))
with open(strategy.__file__, 'rb') as fp:
digest.update(fp.read())
return digest.hexdigest().lower()
def get_backtest_metadata_filename(filename: Union[Path, str]) -> Path:
"""Return metadata filename for specified backtest results file."""
filename = Path(filename)
return filename.parent / Path(f'{filename.stem}.meta{filename.suffix}')

View File

@ -0,0 +1,40 @@
import hashlib
from copy import deepcopy
from pathlib import Path
from typing import Union
import rapidjson
def get_strategy_run_id(strategy) -> str:
"""
Generate unique identification hash for a backtest run. Identical config and strategy file will
always return an identical hash.
:param strategy: strategy object.
:return: hex string id.
"""
digest = hashlib.sha1()
config = deepcopy(strategy.config)
# Options that have no impact on results of individual backtest.
not_important_keys = ('strategy_list', 'original_config', 'telegram', 'api_server')
for k in not_important_keys:
if k in config:
del config[k]
# Explicitly allow NaN values (e.g. max_open_trades).
# as it does not matter for getting the hash.
digest.update(rapidjson.dumps(config, default=str,
number_mode=rapidjson.NM_NAN).encode('utf-8'))
# Include _ft_params_from_file - so changing parameter files cause cache eviction
digest.update(rapidjson.dumps(
strategy._ft_params_from_file, default=str, number_mode=rapidjson.NM_NAN).encode('utf-8'))
with open(strategy.__file__, 'rb') as fp:
digest.update(fp.read())
return digest.hexdigest().lower()
def get_backtest_metadata_filename(filename: Union[Path, str]) -> Path:
"""Return metadata filename for specified backtest results file."""
filename = Path(filename)
return filename.parent / Path(f'{filename.stem}.meta{filename.suffix}')

393
freqtrade/optimize/backtesting.py Normal file → Executable file
View File

@ -9,23 +9,26 @@ from copy import deepcopy
from datetime import datetime, timedelta, timezone
from typing import Any, Dict, List, Optional, Tuple
import pandas as pd
from numpy import nan
from pandas import DataFrame
from freqtrade import constants
from freqtrade.configuration import TimeRange, validate_config_consistency
from freqtrade.constants import DATETIME_PRINT_FORMAT
from freqtrade.constants import DATETIME_PRINT_FORMAT, LongShort
from freqtrade.data import history
from freqtrade.data.btanalysis import find_existing_backtest_stats, trade_list_to_dataframe
from freqtrade.data.converter import trim_dataframe, trim_dataframes
from freqtrade.data.dataprovider import DataProvider
from freqtrade.enums import BacktestState, CandleType, ExitCheckTuple, ExitType, TradingMode
from freqtrade.enums import (BacktestState, CandleType, ExitCheckTuple, ExitType, RunMode,
TradingMode)
from freqtrade.exceptions import DependencyException, OperationalException
from freqtrade.exchange import timeframe_to_minutes, timeframe_to_seconds
from freqtrade.misc import get_strategy_run_id
from freqtrade.mixins import LoggingMixin
from freqtrade.optimize.backtest_caching import get_strategy_run_id
from freqtrade.optimize.bt_progress import BTProgress
from freqtrade.optimize.optimize_reports import (generate_backtest_stats, show_backtest_results,
store_backtest_signal_candles,
store_backtest_stats)
from freqtrade.persistence import LocalTrade, Order, PairLocks, Trade
from freqtrade.plugins.pairlistmanager import PairListManager
@ -51,6 +54,11 @@ ESHORT_IDX = 8 # Exit short
ENTER_TAG_IDX = 9
EXIT_TAG_IDX = 10
# Every change to this headers list must evaluate further usages of the resulting tuple
# and eventually change the constants for indexes at the top
HEADERS = ['date', 'open', 'high', 'low', 'close', 'enter_long', 'exit_long',
'enter_short', 'exit_short', 'enter_tag', 'exit_tag']
class Backtesting:
"""
@ -73,6 +81,8 @@ class Backtesting:
self.run_ids: Dict[str, str] = {}
self.strategylist: List[IStrategy] = []
self.all_results: Dict[str, Dict] = {}
self.processed_dfs: Dict[str, Dict] = {}
self._exchange_name = self.config['exchange']['name']
self.exchange = ExchangeResolver.load_exchange(self._exchange_name, self.config)
self.dataprovider = DataProvider(self.config, self.exchange)
@ -174,9 +184,10 @@ class Backtesting:
# Attach Wallets to Strategy baseclass
strategy.wallets = self.wallets
# Set stoploss_on_exchange to false for backtesting,
# since a "perfect" stoploss-sell is assumed anyway
# since a "perfect" stoploss-exit is assumed anyway
# And the regular "stoploss" function would not apply to that case
self.strategy.order_types['stoploss_on_exchange'] = False
self.strategy.bot_start()
def _load_protections(self, strategy: IStrategy):
if self.config.get('enable_protections', False):
@ -259,10 +270,18 @@ class Backtesting:
candle_type=CandleType.from_string(self.exchange._ft_has["mark_ohlcv_price"])
)
# Combine data to avoid combining the data per trade.
unavailable_pairs = []
for pair in self.pairlists.whitelist:
if pair not in self.exchange._leverage_tiers:
unavailable_pairs.append(pair)
continue
self.futures_data[pair] = funding_rates_dict[pair].merge(
mark_rates_dict[pair], on='date', how="inner", suffixes=["_fund", "_mark"])
if unavailable_pairs:
raise OperationalException(
f"Pairs {', '.join(unavailable_pairs)} got no leverage tiers available. "
"It is therefore impossible to backtest with this pair at the moment.")
else:
self.futures_data = {}
@ -300,10 +319,7 @@ class Backtesting:
:param processed: a processed dictionary with format {pair, data}, which gets cleared to
optimize memory usage!
"""
# Every change to this headers list must evaluate further usages of the resulting tuple
# and eventually change the constants for indexes at the top
headers = ['date', 'open', 'high', 'low', 'close', 'enter_long', 'exit_long',
'enter_short', 'exit_short', 'enter_tag', 'exit_tag']
data: Dict = {}
self.progress.init_step(BacktestState.CONVERT, len(processed))
@ -315,7 +331,7 @@ class Backtesting:
if not pair_data.empty:
# Cleanup from prior runs
pair_data.drop(headers[5:] + ['buy', 'sell'], axis=1, errors='ignore')
pair_data.drop(HEADERS[5:] + ['buy', 'sell'], axis=1, errors='ignore')
df_analyzed = self.strategy.advise_exit(
self.strategy.advise_entry(pair_data, {'pair': pair}),
@ -328,59 +344,59 @@ class Backtesting:
self.dataprovider._set_cached_df(
pair, self.timeframe, df_analyzed, self.config['candle_type_def'])
# Create a copy of the dataframe before shifting, that way the buy signal/tag
# Create a copy of the dataframe before shifting, that way the entry signal/tag
# remains on the correct candle for callbacks.
df_analyzed = df_analyzed.copy()
# To avoid using data from future, we use buy/sell signals shifted
# To avoid using data from future, we use entry/exit signals shifted
# from the previous candle
for col in headers[5:]:
for col in HEADERS[5:]:
tag_col = col in ('enter_tag', 'exit_tag')
if col in df_analyzed.columns:
df_analyzed.loc[:, col] = df_analyzed.loc[:, col].replace(
[nan], [0 if not tag_col else None]).shift(1)
else:
elif not df_analyzed.empty:
df_analyzed.loc[:, col] = 0 if not tag_col else None
df_analyzed = df_analyzed.drop(df_analyzed.head(1).index)
# Convert from Pandas to list for performance reasons
# (Looping Pandas is slow.)
data[pair] = df_analyzed[headers].values.tolist()
data[pair] = df_analyzed[HEADERS].values.tolist() if not df_analyzed.empty else []
return data
def _get_close_rate(self, sell_row: Tuple, trade: LocalTrade, sell: ExitCheckTuple,
def _get_close_rate(self, row: Tuple, trade: LocalTrade, exit: ExitCheckTuple,
trade_dur: int) -> float:
"""
Get close rate for backtesting result
"""
# Special handling if high or low hit STOP_LOSS or ROI
if sell.exit_type in (ExitType.STOP_LOSS, ExitType.TRAILING_STOP_LOSS):
return self._get_close_rate_for_stoploss(sell_row, trade, sell, trade_dur)
elif sell.exit_type == (ExitType.ROI):
return self._get_close_rate_for_roi(sell_row, trade, sell, trade_dur)
if exit.exit_type in (ExitType.STOP_LOSS, ExitType.TRAILING_STOP_LOSS):
return self._get_close_rate_for_stoploss(row, trade, exit, trade_dur)
elif exit.exit_type == (ExitType.ROI):
return self._get_close_rate_for_roi(row, trade, exit, trade_dur)
else:
return sell_row[OPEN_IDX]
return row[OPEN_IDX]
def _get_close_rate_for_stoploss(self, sell_row: Tuple, trade: LocalTrade, sell: ExitCheckTuple,
def _get_close_rate_for_stoploss(self, row: Tuple, trade: LocalTrade, exit: ExitCheckTuple,
trade_dur: int) -> float:
# our stoploss was already lower than candle high,
# possibly due to a cancelled trade exit.
# sell at open price.
# exit at open price.
is_short = trade.is_short or False
leverage = trade.leverage or 1.0
side_1 = -1 if is_short else 1
if is_short:
if trade.stop_loss < sell_row[LOW_IDX]:
return sell_row[OPEN_IDX]
if trade.stop_loss < row[LOW_IDX]:
return row[OPEN_IDX]
else:
if trade.stop_loss > sell_row[HIGH_IDX]:
return sell_row[OPEN_IDX]
if trade.stop_loss > row[HIGH_IDX]:
return row[OPEN_IDX]
# Special case: trailing triggers within same candle as trade opened. Assume most
# pessimistic price movement, which is moving just enough to arm stoploss and
# immediately going down to stop price.
if sell.exit_type == ExitType.TRAILING_STOP_LOSS and trade_dur == 0:
if exit.exit_type == ExitType.TRAILING_STOP_LOSS and trade_dur == 0:
if (
not self.strategy.use_custom_stoploss and self.strategy.trailing_stop
and self.strategy.trailing_only_offset_is_reached
@ -388,29 +404,28 @@ class Backtesting:
and self.strategy.trailing_stop_positive
):
# Worst case: price reaches stop_positive_offset and dives down.
stop_rate = (sell_row[OPEN_IDX] *
stop_rate = (row[OPEN_IDX] *
(1 + side_1 * abs(self.strategy.trailing_stop_positive_offset) -
side_1 * abs(self.strategy.trailing_stop_positive / leverage)))
else:
# Worst case: price ticks tiny bit above open and dives down.
stop_rate = sell_row[OPEN_IDX] * (1 -
side_1 * abs(trade.stop_loss_pct / leverage))
stop_rate = row[OPEN_IDX] * (1 - side_1 * abs(trade.stop_loss_pct / leverage))
if is_short:
assert stop_rate > sell_row[LOW_IDX]
assert stop_rate > row[LOW_IDX]
else:
assert stop_rate < sell_row[HIGH_IDX]
assert stop_rate < row[HIGH_IDX]
# Limit lower-end to candle low to avoid sells below the low.
# Limit lower-end to candle low to avoid exits below the low.
# This still remains "worst case" - but "worst realistic case".
if is_short:
return min(sell_row[HIGH_IDX], stop_rate)
return min(row[HIGH_IDX], stop_rate)
else:
return max(sell_row[LOW_IDX], stop_rate)
return max(row[LOW_IDX], stop_rate)
# Set close_rate to stoploss
return trade.stop_loss
def _get_close_rate_for_roi(self, sell_row: Tuple, trade: LocalTrade, sell: ExitCheckTuple,
def _get_close_rate_for_roi(self, row: Tuple, trade: LocalTrade, exit: ExitCheckTuple,
trade_dur: int) -> float:
is_short = trade.is_short or False
leverage = trade.leverage or 1.0
@ -418,57 +433,57 @@ class Backtesting:
roi_entry, roi = self.strategy.min_roi_reached_entry(trade_dur)
if roi is not None and roi_entry is not None:
if roi == -1 and roi_entry % self.timeframe_min == 0:
# When forceselling with ROI=-1, the roi time will always be equal to trade_dur.
# When force_exiting with ROI=-1, the roi time will always be equal to trade_dur.
# If that entry is a multiple of the timeframe (so on candle open)
# - we'll use open instead of close
return sell_row[OPEN_IDX]
return row[OPEN_IDX]
# - (Expected abs profit - open_rate - open_fee) / (fee_close -1)
roi_rate = trade.open_rate * roi / leverage
open_fee_rate = side_1 * trade.open_rate * (1 + side_1 * trade.fee_open)
close_rate = -(roi_rate + open_fee_rate) / (trade.fee_close - side_1 * 1)
if is_short:
is_new_roi = sell_row[OPEN_IDX] < close_rate
is_new_roi = row[OPEN_IDX] < close_rate
else:
is_new_roi = sell_row[OPEN_IDX] > close_rate
is_new_roi = row[OPEN_IDX] > close_rate
if (trade_dur > 0 and trade_dur == roi_entry
and roi_entry % self.timeframe_min == 0
and is_new_roi):
# new ROI entry came into effect.
# use Open rate if open_rate > calculated sell rate
return sell_row[OPEN_IDX]
# use Open rate if open_rate > calculated exit rate
return row[OPEN_IDX]
if (trade_dur == 0 and (
(
is_short
# Red candle (for longs)
and sell_row[OPEN_IDX] < sell_row[CLOSE_IDX] # Red candle
and trade.open_rate > sell_row[OPEN_IDX] # trade-open above open_rate
and close_rate < sell_row[CLOSE_IDX] # closes below close
and row[OPEN_IDX] < row[CLOSE_IDX] # Red candle
and trade.open_rate > row[OPEN_IDX] # trade-open above open_rate
and close_rate < row[CLOSE_IDX] # closes below close
)
or
(
not is_short
# green candle (for shorts)
and sell_row[OPEN_IDX] > sell_row[CLOSE_IDX] # green candle
and trade.open_rate < sell_row[OPEN_IDX] # trade-open below open_rate
and close_rate > sell_row[CLOSE_IDX] # closes above close
and row[OPEN_IDX] > row[CLOSE_IDX] # green candle
and trade.open_rate < row[OPEN_IDX] # trade-open below open_rate
and close_rate > row[CLOSE_IDX] # closes above close
)
)):
# ROI on opening candles with custom pricing can only
# trigger if the entry was at Open or lower wick.
# details: https: // github.com/freqtrade/freqtrade/issues/6261
# If open_rate is < open, only allow sells below the close on red candles.
# If open_rate is < open, only allow exits below the close on red candles.
raise ValueError("Opening candle ROI on red candles.")
# Use the maximum between close_rate and low as we
# cannot sell outside of a candle.
# cannot exit outside of a candle.
# Applies when a new ROI setting comes in place and the whole candle is above that.
return min(max(close_rate, sell_row[LOW_IDX]), sell_row[HIGH_IDX])
return min(max(close_rate, row[LOW_IDX]), row[HIGH_IDX])
else:
# This should not be reached...
return sell_row[OPEN_IDX]
return row[OPEN_IDX]
def _get_adjust_trade_entry_for_candle(self, trade: LocalTrade, row: Tuple
) -> LocalTrade:
@ -497,8 +512,8 @@ class Backtesting:
""" Rate is within candle, therefore filled"""
return row[LOW_IDX] <= rate <= row[HIGH_IDX]
def _get_sell_trade_entry_for_candle(self, trade: LocalTrade,
sell_row: Tuple) -> Optional[LocalTrade]:
def _get_exit_trade_entry_for_candle(self, trade: LocalTrade,
row: Tuple) -> Optional[LocalTrade]:
# Check if we need to adjust our current positions
if self.strategy.position_adjustment_enable:
@ -507,42 +522,53 @@ class Backtesting:
entry_count = trade.nr_of_successful_entries
check_adjust_entry = (entry_count <= self.strategy.max_entry_position_adjustment)
if check_adjust_entry:
trade = self._get_adjust_trade_entry_for_candle(trade, sell_row)
trade = self._get_adjust_trade_entry_for_candle(trade, row)
sell_candle_time: datetime = sell_row[DATE_IDX].to_pydatetime()
enter = sell_row[SHORT_IDX] if trade.is_short else sell_row[LONG_IDX]
exit_ = sell_row[ESHORT_IDX] if trade.is_short else sell_row[ELONG_IDX]
sell = self.strategy.should_exit(
trade, sell_row[OPEN_IDX], sell_candle_time, # type: ignore
enter=enter, exit_=exit_,
low=sell_row[LOW_IDX], high=sell_row[HIGH_IDX]
exit_candle_time: datetime = row[DATE_IDX].to_pydatetime()
enter = row[SHORT_IDX] if trade.is_short else row[LONG_IDX]
exit_sig = row[ESHORT_IDX] if trade.is_short else row[ELONG_IDX]
exit_ = self.strategy.should_exit(
trade, row[OPEN_IDX], exit_candle_time, # type: ignore
enter=enter, exit_=exit_sig,
low=row[LOW_IDX], high=row[HIGH_IDX]
)
if sell.exit_flag:
trade.close_date = sell_candle_time
if exit_.exit_flag:
trade.close_date = exit_candle_time
exit_reason = exit_.exit_reason
trade_dur = int((trade.close_date_utc - trade.open_date_utc).total_seconds() // 60)
try:
closerate = self._get_close_rate(sell_row, trade, sell, trade_dur)
closerate = self._get_close_rate(row, trade, exit_, trade_dur)
except ValueError:
return None
# call the custom exit price,with default value as previous closerate
current_profit = trade.calc_profit_ratio(closerate)
order_type = self.strategy.order_types['exit']
if sell.exit_type in (ExitType.SELL_SIGNAL, ExitType.CUSTOM_SELL):
# Custom exit pricing only for sell-signals
if exit_.exit_type in (ExitType.EXIT_SIGNAL, ExitType.CUSTOM_EXIT):
# Checks and adds an exit tag, after checking that the length of the
# row has the length for an exit tag column
if(
len(row) > EXIT_TAG_IDX
and row[EXIT_TAG_IDX] is not None
and len(row[EXIT_TAG_IDX]) > 0
and exit_.exit_type in (ExitType.EXIT_SIGNAL,)
):
exit_reason = row[EXIT_TAG_IDX]
# Custom exit pricing only for exit-signals
if order_type == 'limit':
closerate = strategy_safe_wrapper(self.strategy.custom_exit_price,
default_retval=closerate)(
pair=trade.pair, trade=trade,
current_time=sell_candle_time,
proposed_rate=closerate, current_profit=current_profit)
current_time=exit_candle_time,
proposed_rate=closerate, current_profit=current_profit,
exit_tag=exit_reason)
# We can't place orders lower than current low.
# freqtrade does not support this in live, and the order would fill immediately
if trade.is_short:
closerate = min(closerate, sell_row[HIGH_IDX])
closerate = min(closerate, row[HIGH_IDX])
else:
closerate = max(closerate, sell_row[LOW_IDX])
closerate = max(closerate, row[LOW_IDX])
# Confirm trade exit:
time_in_force = self.strategy.order_time_in_force['exit']
@ -550,28 +576,19 @@ class Backtesting:
pair=trade.pair, trade=trade, order_type='limit', amount=trade.amount,
rate=closerate,
time_in_force=time_in_force,
sell_reason=sell.exit_reason, # deprecated
exit_reason=sell.exit_reason,
current_time=sell_candle_time):
sell_reason=exit_reason, # deprecated
exit_reason=exit_reason,
current_time=exit_candle_time):
return None
trade.sell_reason = sell.exit_reason
# Checks and adds an exit tag, after checking that the length of the
# sell_row has the length for an exit tag column
if(
len(sell_row) > EXIT_TAG_IDX
and sell_row[EXIT_TAG_IDX] is not None
and len(sell_row[EXIT_TAG_IDX]) > 0
):
trade.sell_reason = sell_row[EXIT_TAG_IDX]
trade.exit_reason = exit_reason
self.order_id_counter += 1
order = Order(
id=self.order_id_counter,
ft_trade_id=trade.id,
order_date=sell_candle_time,
order_update_date=sell_candle_time,
order_date=exit_candle_time,
order_update_date=exit_candle_time,
ft_is_open=True,
ft_pair=trade.pair,
order_id=str(self.order_id_counter),
@ -592,8 +609,8 @@ class Backtesting:
return None
def _get_sell_trade_entry(self, trade: LocalTrade, sell_row: Tuple) -> Optional[LocalTrade]:
sell_candle_time: datetime = sell_row[DATE_IDX].to_pydatetime()
def _get_exit_trade_entry(self, trade: LocalTrade, row: Tuple) -> Optional[LocalTrade]:
exit_candle_time: datetime = row[DATE_IDX].to_pydatetime()
if self.trading_mode == TradingMode.FUTURES:
trade.funding_fees = self.exchange.calculate_funding_fees(
@ -601,41 +618,39 @@ class Backtesting:
amount=trade.amount,
is_short=trade.is_short,
open_date=trade.open_date_utc,
close_date=sell_candle_time,
close_date=exit_candle_time,
)
if self.timeframe_detail and trade.pair in self.detail_data:
sell_candle_end = sell_candle_time + timedelta(minutes=self.timeframe_min)
exit_candle_end = exit_candle_time + timedelta(minutes=self.timeframe_min)
detail_data = self.detail_data[trade.pair]
detail_data = detail_data.loc[
(detail_data['date'] >= sell_candle_time) &
(detail_data['date'] < sell_candle_end)
(detail_data['date'] >= exit_candle_time) &
(detail_data['date'] < exit_candle_end)
].copy()
if len(detail_data) == 0:
# Fall back to "regular" data if no detail data was found for this candle
return self._get_sell_trade_entry_for_candle(trade, sell_row)
detail_data.loc[:, 'enter_long'] = sell_row[LONG_IDX]
detail_data.loc[:, 'exit_long'] = sell_row[ELONG_IDX]
detail_data.loc[:, 'enter_short'] = sell_row[SHORT_IDX]
detail_data.loc[:, 'exit_short'] = sell_row[ESHORT_IDX]
detail_data.loc[:, 'enter_tag'] = sell_row[ENTER_TAG_IDX]
detail_data.loc[:, 'exit_tag'] = sell_row[EXIT_TAG_IDX]
headers = ['date', 'open', 'high', 'low', 'close', 'enter_long', 'exit_long',
'enter_short', 'exit_short', 'enter_tag', 'exit_tag']
for det_row in detail_data[headers].values.tolist():
res = self._get_sell_trade_entry_for_candle(trade, det_row)
return self._get_exit_trade_entry_for_candle(trade, row)
detail_data.loc[:, 'enter_long'] = row[LONG_IDX]
detail_data.loc[:, 'exit_long'] = row[ELONG_IDX]
detail_data.loc[:, 'enter_short'] = row[SHORT_IDX]
detail_data.loc[:, 'exit_short'] = row[ESHORT_IDX]
detail_data.loc[:, 'enter_tag'] = row[ENTER_TAG_IDX]
detail_data.loc[:, 'exit_tag'] = row[EXIT_TAG_IDX]
for det_row in detail_data[HEADERS].values.tolist():
res = self._get_exit_trade_entry_for_candle(trade, det_row)
if res:
return res
return None
else:
return self._get_sell_trade_entry_for_candle(trade, sell_row)
return self._get_exit_trade_entry_for_candle(trade, row)
def get_valid_price_and_stake(
self, pair: str, row: Tuple, propose_rate: float, stake_amount: Optional[float],
direction: str, current_time: datetime, entry_tag: Optional[str],
direction: LongShort, current_time: datetime, entry_tag: Optional[str],
trade: Optional[LocalTrade], order_type: str
) -> Tuple[float, float, float, float]:
@ -643,8 +658,10 @@ class Backtesting:
propose_rate = strategy_safe_wrapper(self.strategy.custom_entry_price,
default_retval=propose_rate)(
pair=pair, current_time=current_time,
proposed_rate=propose_rate, entry_tag=entry_tag) # default value is the open rate
# We can't place orders higher than current high (otherwise it'd be a stop limit buy)
proposed_rate=propose_rate, entry_tag=entry_tag,
side=direction,
) # default value is the open rate
# We can't place orders higher than current high (otherwise it'd be a stop limit entry)
# which freqtrade does not support in live.
if direction == "short":
propose_rate = max(propose_rate, row[LOW_IDX])
@ -694,21 +711,27 @@ class Backtesting:
return propose_rate, stake_amount_val, leverage, min_stake_amount
def _enter_trade(self, pair: str, row: Tuple, direction: str,
def _enter_trade(self, pair: str, row: Tuple, direction: LongShort,
stake_amount: Optional[float] = None,
trade: Optional[LocalTrade] = None) -> Optional[LocalTrade]:
trade: Optional[LocalTrade] = None,
requested_rate: Optional[float] = None,
requested_stake: Optional[float] = None) -> Optional[LocalTrade]:
current_time = row[DATE_IDX].to_pydatetime()
entry_tag = row[ENTER_TAG_IDX] if len(row) >= ENTER_TAG_IDX + 1 else None
# let's call the custom entry price, using the open price as default price
order_type = self.strategy.order_types['entry']
pos_adjust = trade is not None
pos_adjust = trade is not None and requested_rate is None
propose_rate, stake_amount, leverage, min_stake_amount = self.get_valid_price_and_stake(
pair, row, row[OPEN_IDX], stake_amount, direction, current_time, entry_tag, trade,
order_type
)
# replace proposed rate if another rate was requested
propose_rate = requested_rate if requested_rate else propose_rate
stake_amount = requested_stake if requested_stake else stake_amount
if not stake_amount:
# In case of pos adjust, still return the original trade
# If not pos adjust, trade is None
@ -725,6 +748,7 @@ class Backtesting:
if stake_amount and (not min_stake_amount or stake_amount > min_stake_amount):
self.order_id_counter += 1
base_currency = self.exchange.get_pair_base_currency(pair)
amount = round((stake_amount / propose_rate) * leverage, 8)
is_short = (direction == 'short')
# Necessary for Margin trading. Disabled until support is enabled.
@ -737,6 +761,8 @@ class Backtesting:
id=self.trade_id_counter,
open_order_id=self.order_id_counter,
pair=pair,
base_currency=base_currency,
stake_currency=self.config['stake_currency'],
open_rate=propose_rate,
open_rate_requested=propose_rate,
open_date=current_time,
@ -772,8 +798,8 @@ class Backtesting:
ft_pair=trade.pair,
order_id=str(self.order_id_counter),
symbol=trade.pair,
ft_order_side=trade.enter_side,
side=trade.enter_side,
ft_order_side=trade.entry_side,
side=trade.entry_side,
order_type=order_type,
status="open",
order_date=current_time,
@ -786,11 +812,11 @@ class Backtesting:
remaining=amount,
cost=stake_amount + trade.fee_open,
)
trade.orders.append(order)
if pos_adjust and self._get_order_filled(order.price, row):
order.close_bt_order(current_time)
order.close_bt_order(current_time, trade)
else:
trade.open_order_id = str(self.order_id_counter)
trade.orders.append(order)
trade.recalc_trade_from_orders()
return trade
@ -805,13 +831,13 @@ class Backtesting:
if len(open_trades[pair]) > 0:
for trade in open_trades[pair]:
if trade.open_order_id and trade.nr_of_successful_entries == 0:
# Ignore trade if buy-order did not fill yet
# Ignore trade if entry-order did not fill yet
continue
sell_row = data[pair][-1]
exit_row = data[pair][-1]
trade.close_date = sell_row[DATE_IDX].to_pydatetime()
trade.sell_reason = ExitType.FORCE_SELL.value
trade.close(sell_row[OPEN_IDX], show_msg=False)
trade.close_date = exit_row[DATE_IDX].to_pydatetime()
trade.exit_reason = ExitType.FORCE_EXIT.value
trade.close(exit_row[OPEN_IDX], show_msg=False)
LocalTrade.close_bt_trade(trade)
# Deepcopy object to have wallets update correctly
trade1 = deepcopy(trade)
@ -827,7 +853,7 @@ class Backtesting:
self.rejected_trades += 1
return False
def check_for_trade_entry(self, row) -> Optional[str]:
def check_for_trade_entry(self, row) -> Optional[LongShort]:
enter_long = row[LONG_IDX] == 1
exit_long = row[ELONG_IDX] == 1
enter_short = self._can_short and row[SHORT_IDX] == 1
@ -841,27 +867,41 @@ class Backtesting:
return 'short'
return None
def run_protections(self, enable_protections, pair: str, current_time: datetime):
def run_protections(
self, enable_protections, pair: str, current_time: datetime, side: LongShort):
if enable_protections:
self.protections.stop_per_pair(pair, current_time)
self.protections.global_stop(current_time)
self.protections.stop_per_pair(pair, current_time, side)
self.protections.global_stop(current_time, side)
def check_order_cancel(self, trade: LocalTrade, current_time) -> bool:
def manage_open_orders(self, trade: LocalTrade, current_time, row: Tuple) -> bool:
"""
Check if an order has been canceled.
Returns True if the trade should be Deleted (initial order was canceled).
Check if any open order needs to be cancelled or replaced.
Returns True if the trade should be deleted.
"""
for order in [o for o in trade.orders if o.ft_is_open]:
if self.check_order_cancel(trade, order, current_time):
# delete trade due to order timeout
return True
elif self.check_order_replace(trade, order, current_time, row):
# delete trade due to user request
return True
# default maintain trade
return False
def check_order_cancel(self, trade: LocalTrade, order: Order, current_time) -> bool:
"""
Check if current analyzed order has to be canceled.
Returns True if the trade should be Deleted (initial order was canceled).
"""
timedout = self.strategy.ft_check_timed_out(trade, order, current_time)
if timedout:
if order.side == trade.enter_side:
if order.side == trade.entry_side:
self.timedout_entry_orders += 1
if trade.nr_of_successful_entries == 0:
# Remove trade due to entry timeout expiration.
return True
else:
# Close additional buy order
# Close additional entry order
del trade.orders[trade.orders.index(order)]
if order.side == trade.exit_side:
self.timedout_exit_orders += 1
@ -870,11 +910,46 @@ class Backtesting:
return False
def check_order_replace(self, trade: LocalTrade, order: Order, current_time,
row: Tuple) -> bool:
"""
Check if current analyzed entry order has to be replaced and do so.
If user requested cancellation and there are no filled orders in the trade will
instruct caller to delete the trade.
Returns True if the trade should be deleted.
"""
# only check on new candles for open entry orders
if order.side == trade.entry_side and current_time > order.order_date_utc:
requested_rate = strategy_safe_wrapper(self.strategy.adjust_entry_price,
default_retval=order.price)(
trade=trade, order=order, pair=trade.pair, current_time=current_time,
proposed_rate=row[OPEN_IDX], current_order_rate=order.price,
entry_tag=trade.enter_tag, side=trade.trade_direction
) # default value is current order price
# cancel existing order whenever a new rate is requested (or None)
if requested_rate == order.price:
# assumption: there can't be multiple open entry orders at any given time
return False
else:
del trade.orders[trade.orders.index(order)]
# place new order if result was not None
if requested_rate:
self._enter_trade(pair=trade.pair, row=row, trade=trade,
requested_rate=requested_rate,
requested_stake=(order.remaining * order.price),
direction='short' if trade.is_short else 'long')
else:
# assumption: there can't be multiple open entry orders at any given time
return (trade.nr_of_successful_entries == 0)
return False
def validate_row(
self, data: Dict, pair: str, row_index: int, current_time: datetime) -> Optional[Tuple]:
try:
# Row is treated as "current incomplete candle".
# Buy / sell signals are shifted by 1 to compensate for this.
# entry / exit signals are shifted by 1 to compensate for this.
row = data[pair][row_index]
except IndexError:
# missing Data for one pair at the end.
@ -939,14 +1014,14 @@ class Backtesting:
self.dataprovider._set_dataframe_max_index(row_index)
for t in list(open_trades[pair]):
# 1. Cancel expired buy/sell orders.
if self.check_order_cancel(t, current_time):
# Close trade due to buy timeout expiration.
# 1. Manage currently open orders of active trades
if self.manage_open_orders(t, current_time, row):
# Close trade
open_trade_count -= 1
open_trades[pair].remove(t)
self.wallets.update()
# 2. Process buys.
# 2. Process entries.
# without positionstacking, we can only have one open trade per pair.
# max_open_trades must be respected
# don't open on the last row
@ -956,13 +1031,13 @@ class Backtesting:
and self.trade_slot_available(max_open_trades, open_trade_count_start)
and current_time != end_date
and trade_dir is not None
and not PairLocks.is_pair_locked(pair, row[DATE_IDX])
and not PairLocks.is_pair_locked(pair, row[DATE_IDX], trade_dir)
):
trade = self._enter_trade(pair, row, trade_dir)
if trade:
# TODO: hacky workaround to avoid opening > max_open_trades
# This emulates previous behavior - not sure if this is correct
# Prevents buying if the trade-slot was freed in this candle
# Prevents entering if the trade-slot was freed in this candle
open_trade_count_start += 1
open_trade_count += 1
# logger.debug(f"{pair} - Emulate creation of new trade: {trade}.")
@ -970,31 +1045,32 @@ class Backtesting:
for trade in list(open_trades[pair]):
# 3. Process entry orders.
order = trade.select_order(trade.enter_side, is_open=True)
order = trade.select_order(trade.entry_side, is_open=True)
if order and self._get_order_filled(order.price, row):
order.close_bt_order(current_time)
order.close_bt_order(current_time, trade)
trade.open_order_id = None
LocalTrade.add_bt_trade(trade)
self.wallets.update()
# 4. Create sell orders (if any)
# 4. Create exit orders (if any)
if not trade.open_order_id:
self._get_sell_trade_entry(trade, row) # Place sell order if necessary
self._get_exit_trade_entry(trade, row) # Place exit order if necessary
# 5. Process sell orders.
# 5. Process exit orders.
order = trade.select_order(trade.exit_side, is_open=True)
if order and self._get_order_filled(order.price, row):
trade.open_order_id = None
trade.close_date = current_time
trade.close(order.price, show_msg=False)
# logger.debug(f"{pair} - Backtesting sell {trade}")
# logger.debug(f"{pair} - Backtesting exit {trade}")
open_trade_count -= 1
open_trades[pair].remove(trade)
LocalTrade.close_bt_trade(trade)
trades.append(trade)
self.wallets.update()
self.run_protections(enable_protections, pair, current_time)
self.run_protections(
enable_protections, pair, current_time, trade.trade_direction)
# Move time one configured time_interval ahead.
self.progress.increment()
@ -1018,7 +1094,7 @@ class Backtesting:
timerange: TimeRange):
self.progress.init_step(BacktestState.ANALYZE, 0)
logger.info("Running backtesting for Strategy %s", strat.get_strategy_name())
logger.info(f"Running backtesting for Strategy {strat.get_strategy_name()}")
backtest_start_time = datetime.now(timezone.utc)
self._set_strategy(strat)
@ -1044,7 +1120,7 @@ class Backtesting:
"No data left after adjusting for startup candles.")
# Use preprocessed_tmp for date generation (the trimmed dataframe).
# Backtesting will re-trim the dataframes after buy/sell signal generation.
# Backtesting will re-trim the dataframes after entry/exit signal generation.
min_date, max_date = history.get_timerange(preprocessed_tmp)
logger.info(f'Backtesting with data from {min_date.strftime(DATETIME_PRINT_FORMAT)} '
f'up to {max_date.strftime(DATETIME_PRINT_FORMAT)} '
@ -1066,8 +1142,31 @@ class Backtesting:
})
self.all_results[self.strategy.get_strategy_name()] = results
if (self.config.get('export', 'none') == 'signals' and
self.dataprovider.runmode == RunMode.BACKTEST):
self._generate_trade_signal_candles(preprocessed_tmp, results)
return min_date, max_date
def _generate_trade_signal_candles(self, preprocessed_df, bt_results):
signal_candles_only = {}
for pair in preprocessed_df.keys():
signal_candles_only_df = DataFrame()
pairdf = preprocessed_df[pair]
resdf = bt_results['results']
pairresults = resdf.loc[(resdf["pair"] == pair)]
if pairdf.shape[0] > 0:
for t, v in pairresults.open_date.items():
allinds = pairdf.loc[(pairdf['date'] < v)]
signal_inds = allinds.iloc[[-1]]
signal_candles_only_df = pd.concat([signal_candles_only_df, signal_inds])
signal_candles_only[pair] = signal_candles_only_df
self.processed_dfs[self.strategy.get_strategy_name()] = signal_candles_only
def _get_min_cached_backtest_date(self):
min_backtest_date = None
backtest_cache_age = self.config.get('backtest_cache', constants.BACKTEST_CACHE_DEFAULT)
@ -1126,9 +1225,13 @@ class Backtesting:
else:
self.results = results
if self.config.get('export', 'none') == 'trades':
if self.config.get('export', 'none') in ('trades', 'signals'):
store_backtest_stats(self.config['exportfilename'], self.results)
if (self.config.get('export', 'none') == 'signals' and
self.dataprovider.runmode == RunMode.BACKTEST):
store_backtest_signal_candles(self.config['exportfilename'], self.processed_dfs)
# Results may be mixed up now. Sort them so they follow --strategy-list order.
if 'strategy_list' in self.config and len(self.results) > 0:
self.results['strategy_comparison'] = sorted(

View File

@ -44,6 +44,7 @@ class EdgeCli:
self.edge._timerange = TimeRange.parse_timerange(None if self.config.get(
'timerange') is None else str(self.config.get('timerange')))
self.strategy.bot_start()
def start(self) -> None:
result = self.edge.calculate(self.config['exchange']['pair_whitelist'])

View File

@ -10,7 +10,7 @@ import warnings
from datetime import datetime, timezone
from math import ceil
from pathlib import Path
from typing import Any, Dict, List, Optional
from typing import Any, Dict, List, Optional, Tuple
import progressbar
import rapidjson
@ -114,8 +114,8 @@ class Hyperopt:
self.position_stacking = self.config.get('position_stacking', False)
if HyperoptTools.has_space(self.config, 'sell'):
# Make sure use_sell_signal is enabled
self.config['use_sell_signal'] = True
# Make sure use_exit_signal is enabled
self.config['use_exit_signal'] = True
self.print_all = self.config.get('print_all', False)
self.hyperopt_table_header = 0
@ -290,7 +290,7 @@ class Hyperopt:
self.assign_params(params_dict, 'protection')
if HyperoptTools.has_space(self.config, 'roi'):
self.backtesting.strategy.minimal_roi = ( # type: ignore
self.backtesting.strategy.minimal_roi = (
self.custom_hyperopt.generate_roi_table(params_dict))
if HyperoptTools.has_space(self.config, 'stoploss'):
@ -409,6 +409,51 @@ class Hyperopt:
# Store non-trimmed data - will be trimmed after signal generation.
dump(preprocessed, self.data_pickle_file)
def get_asked_points(self, n_points: int) -> Tuple[List[List[Any]], List[bool]]:
"""
Enforce points returned from `self.opt.ask` have not been already evaluated
Steps:
1. Try to get points using `self.opt.ask` first
2. Discard the points that have already been evaluated
3. Retry using `self.opt.ask` up to 3 times
4. If still some points are missing in respect to `n_points`, random sample some points
5. Repeat until at least `n_points` points in the `asked_non_tried` list
6. Return a list with length truncated at `n_points`
"""
def unique_list(a_list):
new_list = []
for item in a_list:
if item not in new_list:
new_list.append(item)
return new_list
i = 0
asked_non_tried: List[List[Any]] = []
is_random: List[bool] = []
while i < 5 and len(asked_non_tried) < n_points:
if i < 3:
self.opt.cache_ = {}
asked = unique_list(self.opt.ask(n_points=n_points * 5))
is_random = [False for _ in range(len(asked))]
else:
asked = unique_list(self.opt.space.rvs(n_samples=n_points * 5))
is_random = [True for _ in range(len(asked))]
is_random += [rand for x, rand in zip(asked, is_random)
if x not in self.opt.Xi
and x not in asked_non_tried]
asked_non_tried += [x for x in asked
if x not in self.opt.Xi
and x not in asked_non_tried]
i += 1
if asked_non_tried:
return (
asked_non_tried[:min(len(asked_non_tried), n_points)],
is_random[:min(len(asked_non_tried), n_points)]
)
else:
return self.opt.ask(n_points=n_points), [False for _ in range(n_points)]
def start(self) -> None:
self.random_state = self._set_random_state(self.config.get('hyperopt_random_state', None))
logger.info(f"Using optimizer random state: {self.random_state}")
@ -420,9 +465,10 @@ class Hyperopt:
# We don't need exchange instance anymore while running hyperopt
self.backtesting.exchange.close()
self.backtesting.exchange._api = None # type: ignore
self.backtesting.exchange._api_async = None # type: ignore
self.backtesting.exchange._api = None
self.backtesting.exchange._api_async = None
self.backtesting.exchange.loop = None # type: ignore
self.backtesting.exchange._loop_lock = None # type: ignore
# self.backtesting.exchange = None # type: ignore
self.backtesting.pairlists = None # type: ignore
@ -473,7 +519,7 @@ class Hyperopt:
n_rest = (i + 1) * jobs - self.total_epochs
current_jobs = jobs - n_rest if n_rest > 0 else jobs
asked = self.opt.ask(n_points=current_jobs)
asked, is_random = self.get_asked_points(n_points=current_jobs)
f_val = self.run_optimizer_parallel(parallel, asked, i)
self.opt.tell(asked, [v['loss'] for v in f_val])
@ -492,6 +538,7 @@ class Hyperopt:
# evaluations can take different time. Here they are aligned in the
# order they will be shown to the user.
val['is_best'] = is_best
val['is_random'] = is_random[j]
self.print_results(val)
if is_best:

View File

@ -10,7 +10,7 @@ from typing import Any, Dict
from pandas import DataFrame
from freqtrade.data.btanalysis import calculate_max_drawdown
from freqtrade.data.metrics import calculate_max_drawdown
from freqtrade.optimize.hyperopt import IHyperOptLoss

View File

@ -8,7 +8,7 @@ from datetime import datetime
from pandas import DataFrame
from freqtrade.data.btanalysis import calculate_max_drawdown
from freqtrade.data.metrics import calculate_max_drawdown
from freqtrade.optimize.hyperopt import IHyperOptLoss

View File

@ -0,0 +1,47 @@
"""
MaxDrawDownRelativeHyperOptLoss
This module defines the alternative HyperOptLoss class which can be used for
Hyperoptimization.
"""
from typing import Dict
from pandas import DataFrame
from freqtrade.data.metrics import calculate_underwater
from freqtrade.optimize.hyperopt import IHyperOptLoss
class MaxDrawDownRelativeHyperOptLoss(IHyperOptLoss):
"""
Defines the loss function for hyperopt.
This implementation optimizes for max draw down and profit
Less max drawdown more profit -> Lower return value
"""
@staticmethod
def hyperopt_loss_function(results: DataFrame, config: Dict,
*args, **kwargs) -> float:
"""
Objective function.
Uses profit ratio weighted max_drawdown when drawdown is available.
Otherwise directly optimizes profit ratio.
"""
total_profit = results['profit_abs'].sum()
try:
drawdown_df = calculate_underwater(
results,
value_col='profit_abs',
starting_balance=config['dry_run_wallet']
)
max_drawdown = abs(min(drawdown_df['drawdown']))
relative_drawdown = max(drawdown_df['drawdown_relative'])
if max_drawdown == 0:
return -total_profit
return -total_profit / max_drawdown / relative_drawdown
except (Exception, ValueError):
return -total_profit

View File

@ -9,7 +9,7 @@ individual needs.
"""
from pandas import DataFrame
from freqtrade.data.btanalysis import calculate_max_drawdown
from freqtrade.data.metrics import calculate_max_drawdown
from freqtrade.optimize.hyperopt import IHyperOptLoss

View File

@ -19,11 +19,11 @@ class IHyperOptLoss(ABC):
@staticmethod
@abstractmethod
def hyperopt_loss_function(results: DataFrame, trade_count: int,
def hyperopt_loss_function(*, results: DataFrame, trade_count: int,
min_date: datetime, max_date: datetime,
config: Dict, processed: Dict[str, DataFrame],
backtest_stats: Dict[str, Any],
*args, **kwargs) -> float:
**kwargs) -> float:
"""
Objective function, returns smaller number for better results
"""

View File

@ -41,7 +41,8 @@ class HyperoptTools():
"""
from freqtrade.resolvers.strategy_resolver import StrategyResolver
directory = Path(config.get('strategy_path', config['user_data_dir'] / USERPATH_STRATEGIES))
strategy_objs = StrategyResolver.search_all_objects(directory, False)
strategy_objs = StrategyResolver.search_all_objects(
directory, False, config.get('recursive_strategy_search', False))
strategies = [s for s in strategy_objs if s['name'] == strategy_name]
if strategies:
strategy = strategies[0]
@ -310,6 +311,8 @@ class HyperoptTools():
if not has_drawdown:
# Ensure compatibility with older versions of hyperopt results
trials['results_metrics.max_drawdown_account'] = None
if 'is_random' not in trials.columns:
trials['is_random'] = False
# New mode, using backtest result for metrics
trials['results_metrics.winsdrawslosses'] = trials.apply(
@ -322,12 +325,12 @@ class HyperoptTools():
'results_metrics.profit_total', 'results_metrics.holding_avg',
'results_metrics.max_drawdown',
'results_metrics.max_drawdown_account', 'results_metrics.max_drawdown_abs',
'loss', 'is_initial_point', 'is_best']]
'loss', 'is_initial_point', 'is_random', 'is_best']]
trials.columns = [
'Best', 'Epoch', 'Trades', ' Win Draw Loss', 'Avg profit',
'Total profit', 'Profit', 'Avg duration', 'max_drawdown', 'max_drawdown_account',
'max_drawdown_abs', 'Objective', 'is_initial_point', 'is_best'
'max_drawdown_abs', 'Objective', 'is_initial_point', 'is_random', 'is_best'
]
return trials
@ -349,9 +352,11 @@ class HyperoptTools():
trials = HyperoptTools.prepare_trials_columns(trials, has_account_drawdown)
trials['is_profit'] = False
trials.loc[trials['is_initial_point'], 'Best'] = '* '
trials.loc[trials['is_initial_point'] | trials['is_random'], 'Best'] = '* '
trials.loc[trials['is_best'], 'Best'] = 'Best'
trials.loc[trials['is_initial_point'] & trials['is_best'], 'Best'] = '* Best'
trials.loc[
(trials['is_initial_point'] | trials['is_random']) & trials['is_best'],
'Best'] = '* Best'
trials.loc[trials['Total profit'] > 0, 'is_profit'] = True
trials['Trades'] = trials['Trades'].astype(str)
# perc_multi = 1 if legacy_mode else 100
@ -390,8 +395,8 @@ class HyperoptTools():
lambda x: '{} {}'.format(
round_coin_value(x['Total profit'], stake_currency, keep_trailing_zeros=True),
f"({x['Profit']:,.2%})".rjust(10, ' ')
).rjust(25+len(stake_currency))
if x['Total profit'] != 0.0 else '--'.rjust(25+len(stake_currency)),
).rjust(25 + len(stake_currency))
if x['Total profit'] != 0.0 else '--'.rjust(25 + len(stake_currency)),
axis=1
)
trials = trials.drop(columns=['Total profit'])
@ -399,15 +404,15 @@ class HyperoptTools():
if print_colorized:
for i in range(len(trials)):
if trials.loc[i]['is_profit']:
for j in range(len(trials.loc[i])-3):
for j in range(len(trials.loc[i]) - 3):
trials.iat[i, j] = "{}{}{}".format(Fore.GREEN,
str(trials.loc[i][j]), Fore.RESET)
if trials.loc[i]['is_best'] and highlight_best:
for j in range(len(trials.loc[i])-3):
for j in range(len(trials.loc[i]) - 3):
trials.iat[i, j] = "{}{}{}".format(Style.BRIGHT,
str(trials.loc[i][j]), Style.RESET_ALL)
trials = trials.drop(columns=['is_initial_point', 'is_best', 'is_profit'])
trials = trials.drop(columns=['is_initial_point', 'is_best', 'is_profit', 'is_random'])
if remove_header > 0:
table = tabulate.tabulate(
trials.to_dict(orient='list'), tablefmt='orgtbl',
@ -459,7 +464,7 @@ class HyperoptTools():
'loss', 'is_initial_point', 'is_best']
perc_multi = 100
param_metrics = [("params_dict."+param) for param in results[0]['params_dict'].keys()]
param_metrics = [("params_dict." + param) for param in results[0]['params_dict'].keys()]
trials = trials[base_metrics + param_metrics]
base_columns = ['Best', 'Epoch', 'Trades', 'Avg profit', 'Median profit', 'Total profit',

View File

@ -9,10 +9,10 @@ from pandas import DataFrame, to_datetime
from tabulate import tabulate
from freqtrade.constants import DATETIME_PRINT_FORMAT, LAST_BT_RESULT_FN, UNLIMITED_STAKE_AMOUNT
from freqtrade.data.btanalysis import (calculate_csum, calculate_market_change,
from freqtrade.data.metrics import (calculate_cagr, calculate_csum, calculate_market_change,
calculate_max_drawdown)
from freqtrade.misc import (decimals_per_coin, file_dump_json, get_backtest_metadata_filename,
round_coin_value)
from freqtrade.misc import decimals_per_coin, file_dump_joblib, file_dump_json, round_coin_value
from freqtrade.optimize.backtest_caching import get_backtest_metadata_filename
logger = logging.getLogger(__name__)
@ -45,6 +45,29 @@ def store_backtest_stats(recordfilename: Path, stats: Dict[str, DataFrame]) -> N
file_dump_json(latest_filename, {'latest_backtest': str(filename.name)})
def store_backtest_signal_candles(recordfilename: Path, candles: Dict[str, Dict]) -> Path:
"""
Stores backtest trade signal candles
:param recordfilename: Path object, which can either be a filename or a directory.
Filenames will be appended with a timestamp right before the suffix
while for directories, <directory>/backtest-result-<datetime>_signals.pkl will be used
as filename
:param stats: Dict containing the backtesting signal candles
"""
if recordfilename.is_dir():
filename = (recordfilename /
f'backtest-result-{datetime.now().strftime("%Y-%m-%d_%H-%M-%S")}_signals.pkl')
else:
filename = Path.joinpath(
recordfilename.parent,
f'{recordfilename.stem}-{datetime.now().strftime("%Y-%m-%d_%H-%M-%S")}_signals.pkl'
)
file_dump_joblib(filename, candles)
return filename
def _get_line_floatfmt(stake_currency: str) -> List[str]:
"""
Generate floatformat (goes in line with _generate_result_line())
@ -166,7 +189,7 @@ def generate_tag_metrics(tag_type: str,
return []
def generate_sell_reason_stats(max_open_trades: int, results: DataFrame) -> List[Dict]:
def generate_exit_reason_stats(max_open_trades: int, results: DataFrame) -> List[Dict]:
"""
Generate small table outlining Backtest results
:param max_open_trades: Max_open_trades parameter
@ -175,8 +198,8 @@ def generate_sell_reason_stats(max_open_trades: int, results: DataFrame) -> List
"""
tabular_data = []
for reason, count in results['sell_reason'].value_counts().iteritems():
result = results.loc[results['sell_reason'] == reason]
for reason, count in results['exit_reason'].value_counts().iteritems():
result = results.loc[results['exit_reason'] == reason]
profit_mean = result['profit_ratio'].mean()
profit_sum = result['profit_ratio'].sum()
@ -184,7 +207,7 @@ def generate_sell_reason_stats(max_open_trades: int, results: DataFrame) -> List
tabular_data.append(
{
'sell_reason': reason,
'exit_reason': reason,
'trades': count,
'wins': len(result[result['profit_abs'] > 0]),
'draws': len(result[result['profit_abs'] == 0]),
@ -241,7 +264,7 @@ def generate_edge_table(results: dict) -> str:
# Ignore type as floatfmt does allow tuples but mypy does not know that
return tabulate(tabular_data, headers=headers,
floatfmt=floatfmt, tablefmt="orgtbl", stralign="right") # type: ignore
floatfmt=floatfmt, tablefmt="orgtbl", stralign="right")
def _get_resample_from_period(period: str) -> str:
@ -382,7 +405,7 @@ def generate_strategy_stats(pairlist: List[str],
enter_tag_results = generate_tag_metrics("enter_tag", starting_balance=start_balance,
results=results, skip_nan=False)
exit_reason_stats = generate_sell_reason_stats(max_open_trades=max_open_trades,
exit_reason_stats = generate_exit_reason_stats(max_open_trades=max_open_trades,
results=results)
left_open_results = generate_pair_metrics(pairlist, stake_currency=stake_currency,
starting_balance=start_balance,
@ -406,7 +429,7 @@ def generate_strategy_stats(pairlist: List[str],
'worst_pair': worst_pair,
'results_per_pair': pair_results,
'results_per_enter_tag': enter_tag_results,
'sell_reason_summary': exit_reason_stats,
'exit_reason_summary': exit_reason_stats,
'left_open_trades': left_open_results,
# 'days_breakdown_stats': days_breakdown_stats,
@ -423,6 +446,7 @@ def generate_strategy_stats(pairlist: List[str],
'profit_total_abs': results['profit_abs'].sum(),
'profit_total_long_abs': results.loc[~results['is_short'], 'profit_abs'].sum(),
'profit_total_short_abs': results.loc[results['is_short'], 'profit_abs'].sum(),
'cagr': calculate_cagr(backtest_days, start_balance, content['final_balance']),
'backtest_start': min_date.strftime(DATETIME_PRINT_FORMAT),
'backtest_start_ts': int(min_date.timestamp() * 1000),
'backtest_end': max_date.strftime(DATETIME_PRINT_FORMAT),
@ -460,10 +484,10 @@ def generate_strategy_stats(pairlist: List[str],
'trailing_only_offset_is_reached': config.get('trailing_only_offset_is_reached', False),
'use_custom_stoploss': config.get('use_custom_stoploss', False),
'minimal_roi': config['minimal_roi'],
'use_sell_signal': config['use_sell_signal'],
'sell_profit_only': config['sell_profit_only'],
'sell_profit_offset': config['sell_profit_offset'],
'ignore_roi_if_buy_signal': config['ignore_roi_if_buy_signal'],
'use_exit_signal': config['use_exit_signal'],
'exit_profit_only': config['exit_profit_only'],
'exit_profit_offset': config['exit_profit_offset'],
'ignore_roi_if_entry_signal': config['ignore_roi_if_entry_signal'],
**daily_stats,
**trade_stats
}
@ -474,9 +498,12 @@ def generate_strategy_stats(pairlist: List[str],
(drawdown_abs, drawdown_start, drawdown_end, high_val, low_val,
max_drawdown) = calculate_max_drawdown(
results, value_col='profit_abs', starting_balance=start_balance)
(_, _, _, _, _, max_relative_drawdown) = calculate_max_drawdown(
results, value_col='profit_abs', starting_balance=start_balance, relative=True)
strat_stats.update({
'max_drawdown': max_drawdown_legacy, # Deprecated - do not use
'max_drawdown_account': max_drawdown,
'max_relative_drawdown': max_relative_drawdown,
'max_drawdown_abs': drawdown_abs,
'drawdown_start': drawdown_start.strftime(DATETIME_PRINT_FORMAT),
'drawdown_start_ts': drawdown_start.timestamp() * 1000,
@ -497,6 +524,7 @@ def generate_strategy_stats(pairlist: List[str],
strat_stats.update({
'max_drawdown': 0.0,
'max_drawdown_account': 0.0,
'max_relative_drawdown': 0.0,
'max_drawdown_abs': 0.0,
'max_drawdown_low': 0.0,
'max_drawdown_high': 0.0,
@ -572,7 +600,7 @@ def text_table_bt_results(pair_results: List[Dict[str, Any]], stake_currency: st
floatfmt=floatfmt, tablefmt="orgtbl", stralign="right")
def text_table_exit_reason(sell_reason_stats: List[Dict[str, Any]], stake_currency: str) -> str:
def text_table_exit_reason(exit_reason_stats: List[Dict[str, Any]], stake_currency: str) -> str:
"""
Generate small table outlining Backtest results
:param sell_reason_stats: Exit reason metrics
@ -590,12 +618,12 @@ def text_table_exit_reason(sell_reason_stats: List[Dict[str, Any]], stake_curren
]
output = [[
t['sell_reason'], t['trades'],
t.get('exit_reason', t.get('sell_reason')), t['trades'],
_generate_wins_draws_losses(t['wins'], t['draws'], t['losses']),
t['profit_mean_pct'], t['profit_sum_pct'],
round_coin_value(t['profit_total_abs'], stake_currency, False),
t['profit_total_pct'],
] for t in sell_reason_stats]
] for t in exit_reason_stats]
return tabulate(output, headers=headers, tablefmt="orgtbl", stralign="right")
@ -705,6 +733,26 @@ def text_table_add_metrics(strat_results: Dict) -> str:
strat_results['stake_currency'])),
] if strat_results.get('trade_count_short', 0) > 0 else []
drawdown_metrics = []
if 'max_relative_drawdown' in strat_results:
# Compatibility to show old hyperopt results
drawdown_metrics.append(
('Max % of account underwater', f"{strat_results['max_relative_drawdown']:.2%}")
)
drawdown_metrics.extend([
('Absolute Drawdown (Account)', f"{strat_results['max_drawdown_account']:.2%}")
if 'max_drawdown_account' in strat_results else (
'Drawdown', f"{strat_results['max_drawdown']:.2%}"),
('Absolute Drawdown', round_coin_value(strat_results['max_drawdown_abs'],
strat_results['stake_currency'])),
('Drawdown high', round_coin_value(strat_results['max_drawdown_high'],
strat_results['stake_currency'])),
('Drawdown low', round_coin_value(strat_results['max_drawdown_low'],
strat_results['stake_currency'])),
('Drawdown Start', strat_results['drawdown_start']),
('Drawdown End', strat_results['drawdown_end']),
])
# Newly added fields should be ignored if they are missing in strat_results. hyperopt-show
# command stores these results and newer version of freqtrade must be able to handle old
# results with missing new fields.
@ -723,6 +771,7 @@ def text_table_add_metrics(strat_results: Dict) -> str:
('Absolute profit ', round_coin_value(strat_results['profit_total_abs'],
strat_results['stake_currency'])),
('Total profit %', f"{strat_results['profit_total']:.2%}"),
('CAGR %', f"{strat_results['cagr']:.2%}" if 'cagr' in strat_results else 'N/A'),
('Trades per day', strat_results['trades_per_day']),
('Avg. daily profit %',
f"{(strat_results['profit_total'] / strat_results['backtest_days']):.2%}"),
@ -759,18 +808,7 @@ def text_table_add_metrics(strat_results: Dict) -> str:
('Max balance', round_coin_value(strat_results['csum_max'],
strat_results['stake_currency'])),
# Compatibility to show old hyperopt results
('Drawdown (Account)', f"{strat_results['max_drawdown_account']:.2%}")
if 'max_drawdown_account' in strat_results else (
'Drawdown', f"{strat_results['max_drawdown']:.2%}"),
('Drawdown', round_coin_value(strat_results['max_drawdown_abs'],
strat_results['stake_currency'])),
('Drawdown high', round_coin_value(strat_results['max_drawdown_high'],
strat_results['stake_currency'])),
('Drawdown low', round_coin_value(strat_results['max_drawdown_low'],
strat_results['stake_currency'])),
('Drawdown Start', strat_results['drawdown_start']),
('Drawdown End', strat_results['drawdown_end']),
*drawdown_metrics,
('Market change', f"{strat_results['market_change']:.2%}"),
]
@ -813,7 +851,8 @@ def show_backtest_result(strategy: str, results: Dict[str, Any], stake_currency:
print(' ENTER TAG STATS '.center(len(table.splitlines()[0]), '='))
print(table)
table = text_table_exit_reason(sell_reason_stats=results['sell_reason_summary'],
exit_reasons = results.get('exit_reason_summary', results.get('sell_reason_summary'))
table = text_table_exit_reason(exit_reason_stats=exit_reasons,
stake_currency=stake_currency)
if isinstance(table, str) and len(table) > 0:
print(' EXIT REASON STATS '.center(len(table.splitlines()[0]), '='))

View File

@ -1,5 +1,5 @@
# flake8: noqa: F401
from freqtrade.persistence.models import (LocalTrade, Order, Trade, clean_dry_run_db, cleanup_db,
init_db)
from freqtrade.persistence.models import clean_dry_run_db, cleanup_db, init_db
from freqtrade.persistence.pairlock_middleware import PairLocks
from freqtrade.persistence.trade_model import LocalTrade, Order, Trade

View File

@ -0,0 +1,7 @@
from typing import Any
from sqlalchemy.orm import declarative_base
_DECL_BASE: Any = declarative_base()

View File

@ -3,11 +3,13 @@ from typing import List
from sqlalchemy import inspect, text
from freqtrade.exceptions import OperationalException
logger = logging.getLogger(__name__)
def get_table_names_for_table(inspector, tabletype):
def get_table_names_for_table(inspector, tabletype) -> List[str]:
return [t for t in inspector.get_table_names() if t.startswith(tabletype)]
@ -19,7 +21,7 @@ def get_column_def(columns: List, column: str, default: str) -> str:
return default if not has_column(columns, column) else column
def get_backup_name(tabs, backup_prefix: str):
def get_backup_name(tabs: List[str], backup_prefix: str):
table_back_name = backup_prefix
for i, table_back_name in enumerate(tabs):
table_back_name = f'{backup_prefix}{i}'
@ -44,7 +46,7 @@ def get_last_sequence_ids(engine, trade_back_name, order_back_name):
return order_id, trade_id
def set_sequence_ids(engine, order_id, trade_id):
def set_sequence_ids(engine, order_id, trade_id, pairlock_id=None):
if engine.name == 'postgresql':
with engine.begin() as connection:
@ -52,12 +54,27 @@ def set_sequence_ids(engine, order_id, trade_id):
connection.execute(text(f"ALTER SEQUENCE orders_id_seq RESTART WITH {order_id}"))
if trade_id:
connection.execute(text(f"ALTER SEQUENCE trades_id_seq RESTART WITH {trade_id}"))
if pairlock_id:
connection.execute(
text(f"ALTER SEQUENCE pairlocks_id_seq RESTART WITH {pairlock_id}"))
def drop_index_on_table(engine, inspector, table_bak_name):
with engine.begin() as connection:
# drop indexes on backup table in new session
for index in inspector.get_indexes(table_bak_name):
if engine.name == 'mysql':
connection.execute(text(f"drop index {index['name']} on {table_bak_name}"))
else:
connection.execute(text(f"drop index {index['name']}"))
def migrate_trades_and_orders_table(
decl_base, inspector, engine,
trade_back_name: str, cols: List,
order_back_name: str, cols_order: List):
base_currency = get_column_def(cols, 'base_currency', 'null')
stake_currency = get_column_def(cols, 'stake_currency', 'null')
fee_open = get_column_def(cols, 'fee_open', 'fee')
fee_open_cost = get_column_def(cols, 'fee_open_cost', 'null')
fee_open_currency = get_column_def(cols, 'fee_open_currency', 'null')
@ -74,7 +91,7 @@ def migrate_trades_and_orders_table(
stoploss_last_update = get_column_def(cols, 'stoploss_last_update', 'null')
max_rate = get_column_def(cols, 'max_rate', '0.0')
min_rate = get_column_def(cols, 'min_rate', 'null')
sell_reason = get_column_def(cols, 'sell_reason', 'null')
exit_reason = get_column_def(cols, 'sell_reason', get_column_def(cols, 'exit_reason', 'null'))
strategy = get_column_def(cols, 'strategy', 'null')
enter_tag = get_column_def(cols, 'buy_tag', get_column_def(cols, 'enter_tag', 'null'))
@ -85,6 +102,9 @@ def migrate_trades_and_orders_table(
liquidation_price = get_column_def(cols, 'liquidation_price',
get_column_def(cols, 'isolated_liq', 'null'))
# sqlite does not support literals for booleans
if engine.name == 'postgresql':
is_short = get_column_def(cols, 'is_short', 'false')
else:
is_short = get_column_def(cols, 'is_short', '0')
# Margin Properties
@ -104,20 +124,15 @@ def migrate_trades_and_orders_table(
close_profit_abs = get_column_def(
cols, 'close_profit_abs',
f"(amount * close_rate * (1 - {fee_close})) - {open_trade_value}")
sell_order_status = get_column_def(cols, 'sell_order_status', 'null')
exit_order_status = get_column_def(cols, 'exit_order_status',
get_column_def(cols, 'sell_order_status', 'null'))
amount_requested = get_column_def(cols, 'amount_requested', 'amount')
# Schema migration necessary
with engine.begin() as connection:
connection.execute(text(f"alter table trades rename to {trade_back_name}"))
with engine.begin() as connection:
# drop indexes on backup table in new session
for index in inspector.get_indexes(trade_back_name):
if engine.name == 'mysql':
connection.execute(text(f"drop index {index['name']} on {trade_back_name}"))
else:
connection.execute(text(f"drop index {index['name']}"))
drop_index_on_table(engine, inspector, trade_back_name)
order_id, trade_id = get_last_sequence_ids(engine, trade_back_name, order_back_name)
@ -129,19 +144,20 @@ def migrate_trades_and_orders_table(
# Copy data back - following the correct schema
with engine.begin() as connection:
connection.execute(text(f"""insert into trades
(id, exchange, pair, is_open,
(id, exchange, pair, base_currency, stake_currency, is_open,
fee_open, fee_open_cost, fee_open_currency,
fee_close, fee_close_cost, fee_close_currency, open_rate,
open_rate_requested, close_rate, close_rate_requested, close_profit,
stake_amount, amount, amount_requested, open_date, close_date, open_order_id,
stop_loss, stop_loss_pct, initial_stop_loss, initial_stop_loss_pct,
stoploss_order_id, stoploss_last_update,
max_rate, min_rate, sell_reason, sell_order_status, strategy, enter_tag,
max_rate, min_rate, exit_reason, exit_order_status, strategy, enter_tag,
timeframe, open_trade_value, close_profit_abs,
trading_mode, leverage, liquidation_price, is_short,
interest_rate, funding_fees
)
select id, lower(exchange), pair,
select id, lower(exchange), pair, {base_currency} base_currency,
{stake_currency} stake_currency,
is_open, {fee_open} fee_open, {fee_open_cost} fee_open_cost,
{fee_open_currency} fee_open_currency, {fee_close} fee_close,
{fee_close_cost} fee_close_cost, {fee_close_currency} fee_close_currency,
@ -152,8 +168,14 @@ def migrate_trades_and_orders_table(
{initial_stop_loss} initial_stop_loss,
{initial_stop_loss_pct} initial_stop_loss_pct,
{stoploss_order_id} stoploss_order_id, {stoploss_last_update} stoploss_last_update,
{max_rate} max_rate, {min_rate} min_rate, {sell_reason} sell_reason,
{sell_order_status} sell_order_status,
{max_rate} max_rate, {min_rate} min_rate,
case when {exit_reason} = 'sell_signal' then 'exit_signal'
when {exit_reason} = 'custom_sell' then 'custom_exit'
when {exit_reason} = 'force_sell' then 'force_exit'
when {exit_reason} = 'emergency_sell' then 'emergency_exit'
else {exit_reason}
end exit_reason,
{exit_order_status} exit_order_status,
{strategy} strategy, {enter_tag} enter_tag, {timeframe} timeframe,
{open_trade_value} open_trade_value, {close_profit_abs} close_profit_abs,
{trading_mode} trading_mode, {leverage} leverage, {liquidation_price} liquidation_price,
@ -166,23 +188,6 @@ def migrate_trades_and_orders_table(
set_sequence_ids(engine, order_id, trade_id)
def migrate_open_orders_to_trades(engine):
with engine.begin() as connection:
connection.execute(text("""
insert into orders (ft_trade_id, ft_pair, order_id, ft_order_side, ft_is_open)
select id ft_trade_id, pair ft_pair, open_order_id,
case when close_rate_requested is null then 'buy'
else 'sell' end ft_order_side, 1 ft_is_open
from trades
where open_order_id is not null
union all
select id ft_trade_id, pair ft_pair, stoploss_order_id order_id,
'stoploss' ft_order_side, 1 ft_is_open
from trades
where stoploss_order_id is not null
"""))
def drop_orders_table(engine, table_back_name: str):
# Drop and recreate orders table as backup
# This drops foreign keys, too.
@ -200,7 +205,7 @@ def migrate_orders_table(engine, table_back_name: str, cols_order: List):
# sqlite does not support literals for booleans
with engine.begin() as connection:
connection.execute(text(f"""
insert into orders ( id, ft_trade_id, ft_order_side, ft_pair, ft_is_open, order_id,
insert into orders (id, ft_trade_id, ft_order_side, ft_pair, ft_is_open, order_id,
status, symbol, order_type, side, price, amount, filled, average, remaining, cost,
order_date, order_filled_date, order_update_date, ft_fee_base)
select id, ft_trade_id, ft_order_side, ft_pair, ft_is_open, order_id,
@ -210,6 +215,31 @@ def migrate_orders_table(engine, table_back_name: str, cols_order: List):
"""))
def migrate_pairlocks_table(
decl_base, inspector, engine,
pairlock_back_name: str, cols: List):
# Schema migration necessary
with engine.begin() as connection:
connection.execute(text(f"alter table pairlocks rename to {pairlock_back_name}"))
drop_index_on_table(engine, inspector, pairlock_back_name)
side = get_column_def(cols, 'side', "'*'")
# let SQLAlchemy create the schema as required
decl_base.metadata.create_all(engine)
# Copy data back - following the correct schema
with engine.begin() as connection:
connection.execute(text(f"""insert into pairlocks
(id, pair, side, reason, lock_time,
lock_end_time, active)
select id, pair, {side} side, reason, lock_time,
lock_end_time, active
from {pairlock_back_name}
"""))
def set_sqlite_to_wal(engine):
if engine.name == 'sqlite' and str(engine.url) != 'sqlite://':
# Set Mode to
@ -223,24 +253,38 @@ def check_migrate(engine, decl_base, previous_tables) -> None:
"""
inspector = inspect(engine)
cols = inspector.get_columns('trades')
cols_trades = inspector.get_columns('trades')
cols_orders = inspector.get_columns('orders')
cols_pairlocks = inspector.get_columns('pairlocks')
tabs = get_table_names_for_table(inspector, 'trades')
table_back_name = get_backup_name(tabs, 'trades_bak')
order_tabs = get_table_names_for_table(inspector, 'orders')
order_table_bak_name = get_backup_name(order_tabs, 'orders_bak')
pairlock_tabs = get_table_names_for_table(inspector, 'pairlocks')
pairlock_table_bak_name = get_backup_name(pairlock_tabs, 'pairlocks_bak')
# Check if migration necessary
# Migrates both trades and orders table!
# if ('orders' not in previous_tables
# or not has_column(cols_orders, 'leverage')):
if not has_column(cols, 'liquidation_price'):
if not has_column(cols_trades, 'base_currency'):
logger.info(f"Running database migration for trades - "
f"backup: {table_back_name}, {order_table_bak_name}")
migrate_trades_and_orders_table(
decl_base, inspector, engine, table_back_name, cols, order_table_bak_name, cols_orders)
decl_base, inspector, engine, table_back_name, cols_trades,
order_table_bak_name, cols_orders)
if not has_column(cols_pairlocks, 'side'):
logger.info(f"Running database migration for pairlocks - "
f"backup: {pairlock_table_bak_name}")
migrate_pairlocks_table(
decl_base, inspector, engine, pairlock_table_bak_name, cols_pairlocks
)
if 'orders' not in previous_tables and 'trades' in previous_tables:
logger.info('Moving open orders to Orders table.')
migrate_open_orders_to_trades(engine)
raise OperationalException(
"Your database seems to be very old. "
"Please update to freqtrade 2022.3 to migrate this database or "
"start with a fresh database.")
set_sqlite_to_wal(engine)

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,70 @@
from datetime import datetime, timezone
from typing import Any, Dict, Optional
from sqlalchemy import Boolean, Column, DateTime, Integer, String, or_
from sqlalchemy.orm import Query
from freqtrade.constants import DATETIME_PRINT_FORMAT
from freqtrade.persistence.base import _DECL_BASE
class PairLock(_DECL_BASE):
"""
Pair Locks database model.
"""
__tablename__ = 'pairlocks'
id = Column(Integer, primary_key=True)
pair = Column(String(25), nullable=False, index=True)
# lock direction - long, short or * (for both)
side = Column(String(25), nullable=False, default="*")
reason = Column(String(255), nullable=True)
# Time the pair was locked (start time)
lock_time = Column(DateTime, nullable=False)
# Time until the pair is locked (end time)
lock_end_time = Column(DateTime, nullable=False, index=True)
active = Column(Boolean, nullable=False, default=True, index=True)
def __repr__(self):
lock_time = self.lock_time.strftime(DATETIME_PRINT_FORMAT)
lock_end_time = self.lock_end_time.strftime(DATETIME_PRINT_FORMAT)
return (
f'PairLock(id={self.id}, pair={self.pair}, side={self.side}, lock_time={lock_time}, '
f'lock_end_time={lock_end_time}, reason={self.reason}, active={self.active})')
@staticmethod
def query_pair_locks(pair: Optional[str], now: datetime, side: str = '*') -> Query:
"""
Get all currently active locks for this pair
:param pair: Pair to check for. Returns all current locks if pair is empty
:param now: Datetime object (generated via datetime.now(timezone.utc)).
"""
filters = [PairLock.lock_end_time > now,
# Only active locks
PairLock.active.is_(True), ]
if pair:
filters.append(PairLock.pair == pair)
if side != '*':
filters.append(or_(PairLock.side == side, PairLock.side == '*'))
else:
filters.append(PairLock.side == '*')
return PairLock.query.filter(
*filters
)
def to_json(self) -> Dict[str, Any]:
return {
'id': self.id,
'pair': self.pair,
'lock_time': self.lock_time.strftime(DATETIME_PRINT_FORMAT),
'lock_timestamp': int(self.lock_time.replace(tzinfo=timezone.utc).timestamp() * 1000),
'lock_end_time': self.lock_end_time.strftime(DATETIME_PRINT_FORMAT),
'lock_end_timestamp': int(self.lock_end_time.replace(tzinfo=timezone.utc
).timestamp() * 1000),
'reason': self.reason,
'side': self.side,
'active': self.active,
}

View File

@ -31,7 +31,7 @@ class PairLocks():
@staticmethod
def lock_pair(pair: str, until: datetime, reason: str = None, *,
now: datetime = None) -> PairLock:
now: datetime = None, side: str = '*') -> PairLock:
"""
Create PairLock from now to "until".
Uses database by default, unless PairLocks.use_db is set to False,
@ -40,12 +40,14 @@ class PairLocks():
:param until: End time of the lock. Will be rounded up to the next candle.
:param reason: Reason string that will be shown as reason for the lock
:param now: Current timestamp. Used to determine lock start time.
:param side: Side to lock pair, can be 'long', 'short' or '*'
"""
lock = PairLock(
pair=pair,
lock_time=now or datetime.now(timezone.utc),
lock_end_time=timeframe_to_next_date(PairLocks.timeframe, until),
reason=reason,
side=side,
active=True
)
if PairLocks.use_db:
@ -56,7 +58,8 @@ class PairLocks():
return lock
@staticmethod
def get_pair_locks(pair: Optional[str], now: Optional[datetime] = None) -> List[PairLock]:
def get_pair_locks(
pair: Optional[str], now: Optional[datetime] = None, side: str = '*') -> List[PairLock]:
"""
Get all currently active locks for this pair
:param pair: Pair to check for. Returns all current locks if pair is empty
@ -67,26 +70,28 @@ class PairLocks():
now = datetime.now(timezone.utc)
if PairLocks.use_db:
return PairLock.query_pair_locks(pair, now).all()
return PairLock.query_pair_locks(pair, now, side).all()
else:
locks = [lock for lock in PairLocks.locks if (
lock.lock_end_time >= now
and lock.active is True
and (pair is None or lock.pair == pair)
and (lock.side == '*' or lock.side == side)
)]
return locks
@staticmethod
def get_pair_longest_lock(pair: str, now: Optional[datetime] = None) -> Optional[PairLock]:
def get_pair_longest_lock(
pair: str, now: Optional[datetime] = None, side: str = '*') -> Optional[PairLock]:
"""
Get the lock that expires the latest for the pair given.
"""
locks = PairLocks.get_pair_locks(pair, now)
locks = PairLocks.get_pair_locks(pair, now, side=side)
locks = sorted(locks, key=lambda l: l.lock_end_time, reverse=True)
return locks[0] if locks else None
@staticmethod
def unlock_pair(pair: str, now: Optional[datetime] = None) -> None:
def unlock_pair(pair: str, now: Optional[datetime] = None, side: str = '*') -> None:
"""
Release all locks for this pair.
:param pair: Pair to unlock
@ -97,7 +102,7 @@ class PairLocks():
now = datetime.now(timezone.utc)
logger.info(f"Releasing all locks for {pair}.")
locks = PairLocks.get_pair_locks(pair, now)
locks = PairLocks.get_pair_locks(pair, now, side=side)
for lock in locks:
lock.active = False
if PairLocks.use_db:
@ -134,7 +139,7 @@ class PairLocks():
lock.active = False
@staticmethod
def is_global_lock(now: Optional[datetime] = None) -> bool:
def is_global_lock(now: Optional[datetime] = None, side: str = '*') -> bool:
"""
:param now: Datetime object (generated via datetime.now(timezone.utc)).
defaults to datetime.now(timezone.utc)
@ -142,10 +147,10 @@ class PairLocks():
if not now:
now = datetime.now(timezone.utc)
return len(PairLocks.get_pair_locks('*', now)) > 0
return len(PairLocks.get_pair_locks('*', now, side)) > 0
@staticmethod
def is_pair_locked(pair: str, now: Optional[datetime] = None) -> bool:
def is_pair_locked(pair: str, now: Optional[datetime] = None, side: str = '*') -> bool:
"""
:param pair: Pair to check for
:param now: Datetime object (generated via datetime.now(timezone.utc)).
@ -154,7 +159,10 @@ class PairLocks():
if not now:
now = datetime.now(timezone.utc)
return len(PairLocks.get_pair_locks(pair, now)) > 0 or PairLocks.is_global_lock(now)
return (
len(PairLocks.get_pair_locks(pair, now, side)) > 0
or PairLocks.is_global_lock(now, side)
)
@staticmethod
def get_all_locks() -> List[PairLock]:

Some files were not shown because too many files have changed in this diff Show More