parent
adef5d89f3
commit
365479f5e0
@ -15,7 +15,7 @@ from freqtrade.configuration import TimeRange, remove_credentials, validate_conf
|
||||
from freqtrade.constants import DATETIME_PRINT_FORMAT
|
||||
from freqtrade.data import history
|
||||
from freqtrade.data.btanalysis import trade_list_to_dataframe
|
||||
from freqtrade.data.converter import trim_dataframes
|
||||
from freqtrade.data.converter import trim_dataframe, trim_dataframes
|
||||
from freqtrade.data.dataprovider import DataProvider
|
||||
from freqtrade.enums import BacktestState, SellType
|
||||
from freqtrade.exceptions import DependencyException, OperationalException
|
||||
@ -116,6 +116,9 @@ class Backtesting:
|
||||
|
||||
self.wallets = Wallets(self.config, self.exchange, log=False)
|
||||
|
||||
self.timerange = TimeRange.parse_timerange(
|
||||
None if self.config.get('timerange') is None else str(self.config.get('timerange')))
|
||||
|
||||
# Get maximum required startup period
|
||||
self.required_startup = max([strat.startup_candle_count for strat in self.strategylist])
|
||||
self.exchange.validate_required_startup_candles(self.required_startup, self.timeframe)
|
||||
@ -154,14 +157,11 @@ class Backtesting:
|
||||
"""
|
||||
self.progress.init_step(BacktestState.DATALOAD, 1)
|
||||
|
||||
timerange = TimeRange.parse_timerange(None if self.config.get(
|
||||
'timerange') is None else str(self.config.get('timerange')))
|
||||
|
||||
data = history.load_data(
|
||||
datadir=self.config['datadir'],
|
||||
pairs=self.pairlists.whitelist,
|
||||
timeframe=self.timeframe,
|
||||
timerange=timerange,
|
||||
timerange=self.timerange,
|
||||
startup_candles=self.required_startup,
|
||||
fail_without_data=True,
|
||||
data_format=self.config.get('dataformat_ohlcv', 'json'),
|
||||
@ -174,11 +174,11 @@ class Backtesting:
|
||||
f'({(max_date - min_date).days} days).')
|
||||
|
||||
# Adjust startts forward if not enough data is available
|
||||
timerange.adjust_start_if_necessary(timeframe_to_seconds(self.timeframe),
|
||||
self.required_startup, min_date)
|
||||
self.timerange.adjust_start_if_necessary(timeframe_to_seconds(self.timeframe),
|
||||
self.required_startup, min_date)
|
||||
|
||||
self.progress.set_new_value(1)
|
||||
return data, timerange
|
||||
return data, self.timerange
|
||||
|
||||
def prepare_backtest(self, enable_protections):
|
||||
"""
|
||||
@ -223,7 +223,9 @@ class Backtesting:
|
||||
|
||||
df_analyzed = self.strategy.advise_sell(
|
||||
self.strategy.advise_buy(pair_data, {'pair': pair}), {'pair': pair})[headers].copy()
|
||||
|
||||
# Trim startup period from analyzed dataframe
|
||||
df_analyzed = trim_dataframe(df_analyzed, self.timerange,
|
||||
startup_candles=self.required_startup)
|
||||
# To avoid using data from future, we use buy/sell signals shifted
|
||||
# from the previous candle
|
||||
df_analyzed.loc[:, 'buy'] = df_analyzed.loc[:, 'buy'].shift(1)
|
||||
@ -537,14 +539,15 @@ class Backtesting:
|
||||
preprocessed = self.strategy.ohlcvdata_to_dataframe(data)
|
||||
|
||||
# Trim startup period from analyzed dataframe
|
||||
preprocessed = trim_dataframes(preprocessed, timerange, self.required_startup)
|
||||
preprocessed_tmp = trim_dataframes(preprocessed, timerange, self.required_startup)
|
||||
|
||||
if not preprocessed:
|
||||
if not preprocessed_tmp:
|
||||
raise OperationalException(
|
||||
"No data left after adjusting for startup candles.")
|
||||
|
||||
min_date, max_date = history.get_timerange(preprocessed)
|
||||
|
||||
# Use preprocessed_tmp for date generation (the trimmed dataframe).
|
||||
# Backtesting will re-trim the dataframes after buy/sell signal generation.
|
||||
min_date, max_date = history.get_timerange(preprocessed_tmp)
|
||||
logger.info(f'Backtesting with data from {min_date.strftime(DATETIME_PRINT_FORMAT)} '
|
||||
f'up to {max_date.strftime(DATETIME_PRINT_FORMAT)} '
|
||||
f'({(max_date - min_date).days} days).')
|
||||
|
@ -378,16 +378,15 @@ class Hyperopt:
|
||||
|
||||
preprocessed = self.backtesting.strategy.ohlcvdata_to_dataframe(data)
|
||||
|
||||
# Trim startup period from analyzed dataframe
|
||||
# Trim startup period from analyzed dataframe to get correct dates for output.
|
||||
processed = trim_dataframes(preprocessed, timerange, self.backtesting.required_startup)
|
||||
|
||||
self.min_date, self.max_date = get_timerange(processed)
|
||||
|
||||
logger.info(f'Hyperopting with data from {self.min_date.strftime(DATETIME_PRINT_FORMAT)} '
|
||||
f'up to {self.max_date.strftime(DATETIME_PRINT_FORMAT)} '
|
||||
f'({(self.max_date - self.min_date).days} days)..')
|
||||
|
||||
dump(processed, self.data_pickle_file)
|
||||
# Store non-trimmed data - will be trimmed after signal generation.
|
||||
dump(preprocessed, self.data_pickle_file)
|
||||
|
||||
def start(self) -> None:
|
||||
self.random_state = self._set_random_state(self.config.get('hyperopt_random_state', None))
|
||||
|
@ -575,6 +575,7 @@ def test_backtest_results(default_conf, fee, mocker, caplog, data) -> None:
|
||||
frame = _build_backtest_dataframe(data.data)
|
||||
backtesting = Backtesting(default_conf)
|
||||
backtesting._set_strategy(backtesting.strategylist[0])
|
||||
backtesting.required_startup = 0
|
||||
backtesting.strategy.advise_buy = lambda a, m: frame
|
||||
backtesting.strategy.advise_sell = lambda a, m: frame
|
||||
backtesting.strategy.use_custom_stoploss = data.use_custom_stoploss
|
||||
|
@ -727,6 +727,7 @@ def test_backtest_alternate_buy_sell(default_conf, fee, mocker, testdatadir):
|
||||
pair='UNITTEST/BTC', datadir=testdatadir)
|
||||
default_conf['timeframe'] = '1m'
|
||||
backtesting = Backtesting(default_conf)
|
||||
backtesting.required_startup = 0
|
||||
backtesting._set_strategy(backtesting.strategylist[0])
|
||||
backtesting.strategy.advise_buy = _trend_alternate # Override
|
||||
backtesting.strategy.advise_sell = _trend_alternate # Override
|
||||
|
Loading…
Reference in New Issue
Block a user