add generic fishers inverse transformation with smoothing
This commit is contained in:
parent
178d1ed423
commit
340ab0214b
@ -1,5 +1,7 @@
|
|||||||
from math import exp, pi, sqrt, cos
|
from math import exp, pi, sqrt, cos
|
||||||
|
|
||||||
|
import numpy
|
||||||
|
import talib as ta
|
||||||
from pandas import Series
|
from pandas import Series
|
||||||
|
|
||||||
|
|
||||||
@ -25,3 +27,14 @@ def ehlers_super_smoother(series: Series, smoothing: float = 6):
|
|||||||
coeff2 * filtered.iloc[i-1] + coeff3 * filtered.iloc[i-2]
|
coeff2 * filtered.iloc[i-1] + coeff3 * filtered.iloc[i-2]
|
||||||
|
|
||||||
return filtered
|
return filtered
|
||||||
|
|
||||||
|
|
||||||
|
def fishers_inverse(series: Series, smoothing: float = 0):
|
||||||
|
""" Does a smoothed fishers inverse transformation.
|
||||||
|
Can be used with any oscillator that goes from 0 to 100 like RSI or MFI """
|
||||||
|
v1 = 0.1 * (series - 50)
|
||||||
|
if smoothing > 0:
|
||||||
|
v2 = ta.WMA(v1.values, timeperiod=smoothing)
|
||||||
|
else:
|
||||||
|
v2 = v1
|
||||||
|
return (numpy.exp(2 * v2)-1) / (numpy.exp(2 * v2) + 1)
|
||||||
|
@ -4,7 +4,7 @@ import talib.abstract as ta
|
|||||||
from pandas import DataFrame
|
from pandas import DataFrame
|
||||||
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
||||||
from freqtrade.strategy.interface import IStrategy
|
from freqtrade.strategy.interface import IStrategy
|
||||||
|
from freqtrade.indicator_helpers import fishers_inverse
|
||||||
|
|
||||||
class_name = 'DefaultStrategy'
|
class_name = 'DefaultStrategy'
|
||||||
|
|
||||||
@ -76,8 +76,8 @@ class DefaultStrategy(IStrategy):
|
|||||||
dataframe['rsi'] = ta.RSI(dataframe)
|
dataframe['rsi'] = ta.RSI(dataframe)
|
||||||
"""
|
"""
|
||||||
# Inverse Fisher transform on RSI, values [-1.0, 1.0] (https://goo.gl/2JGGoy)
|
# Inverse Fisher transform on RSI, values [-1.0, 1.0] (https://goo.gl/2JGGoy)
|
||||||
rsi = 0.1 * (dataframe['rsi'] - 50)
|
dataframe['fisher_rsi'] = fishers_inverse(dataframe['rsi'])
|
||||||
dataframe['fisher_rsi'] = (numpy.exp(2 * rsi) - 1) / (numpy.exp(2 * rsi) + 1)
|
|
||||||
# Inverse Fisher transform on RSI normalized, value [0.0, 100.0] (https://goo.gl/2JGGoy)
|
# Inverse Fisher transform on RSI normalized, value [0.0, 100.0] (https://goo.gl/2JGGoy)
|
||||||
dataframe['fisher_rsi_norma'] = 50 * (dataframe['fisher_rsi'] + 1)
|
dataframe['fisher_rsi_norma'] = 50 * (dataframe['fisher_rsi'] + 1)
|
||||||
# Stoch
|
# Stoch
|
||||||
|
Loading…
Reference in New Issue
Block a user