Do not use ticker where it's not a ticker

This commit is contained in:
hroff-1902
2020-03-08 13:35:31 +03:00
parent 77944175e2
commit 3208faf7ed
43 changed files with 459 additions and 452 deletions

View File

@@ -88,8 +88,8 @@ class Backtesting:
validate_config_consistency(self.config)
if "ticker_interval" not in self.config:
raise OperationalException("Ticker-interval needs to be set in either configuration "
"or as cli argument `--ticker-interval 5m`")
raise OperationalException("Timeframe (ticker interval) needs to be set in either "
"configuration or as cli argument `--ticker-interval 5m`")
self.timeframe = str(self.config.get('ticker_interval'))
self.timeframe_min = timeframe_to_minutes(self.timeframe)
@@ -151,32 +151,33 @@ class Backtesting:
logger.info(f'Dumping backtest results to {recordfilename}')
file_dump_json(recordfilename, records)
def _get_ticker_list(self, processed: Dict) -> Dict[str, DataFrame]:
def _get_ohlcv_as_lists(self, processed: Dict) -> Dict[str, DataFrame]:
"""
Helper function to convert a processed tickerlist into a list for performance reasons.
Helper function to convert a processed dataframes into lists for performance reasons.
Used by backtest() - so keep this optimized for performance.
"""
headers = ['date', 'buy', 'open', 'close', 'sell', 'low', 'high']
ticker: Dict = {}
# Create ticker dict
data: Dict = {}
# Create dict with data
for pair, pair_data in processed.items():
pair_data.loc[:, 'buy'] = 0 # cleanup from previous run
pair_data.loc[:, 'sell'] = 0 # cleanup from previous run
ticker_data = self.strategy.advise_sell(
dataframe = self.strategy.advise_sell(
self.strategy.advise_buy(pair_data, {'pair': pair}), {'pair': pair})[headers].copy()
# to avoid using data from future, we buy/sell with signal from previous candle
ticker_data.loc[:, 'buy'] = ticker_data['buy'].shift(1)
ticker_data.loc[:, 'sell'] = ticker_data['sell'].shift(1)
# To avoid using data from future, we use buy/sell signals shifted
# from the previous candle
dataframe.loc[:, 'buy'] = dataframe['buy'].shift(1)
dataframe.loc[:, 'sell'] = dataframe['sell'].shift(1)
ticker_data.drop(ticker_data.head(1).index, inplace=True)
dataframe.drop(dataframe.head(1).index, inplace=True)
# Convert from Pandas to list for performance reasons
# (Looping Pandas is slow.)
ticker[pair] = [x for x in ticker_data.itertuples()]
return ticker
data[pair] = [x for x in dataframe.itertuples()]
return data
def _get_close_rate(self, sell_row, trade: Trade, sell: SellCheckTuple,
trade_dur: int) -> float:
@@ -220,7 +221,7 @@ class Backtesting:
def _get_sell_trade_entry(
self, pair: str, buy_row: DataFrame,
partial_ticker: List, trade_count_lock: Dict,
partial_ohlcv: List, trade_count_lock: Dict,
stake_amount: float, max_open_trades: int) -> Optional[BacktestResult]:
trade = Trade(
@@ -235,7 +236,7 @@ class Backtesting:
)
logger.debug(f"{pair} - Backtesting emulates creation of new trade: {trade}.")
# calculate win/lose forwards from buy point
for sell_row in partial_ticker:
for sell_row in partial_ohlcv:
if max_open_trades > 0:
# Increase trade_count_lock for every iteration
trade_count_lock[sell_row.date] = trade_count_lock.get(sell_row.date, 0) + 1
@@ -259,9 +260,9 @@ class Backtesting:
close_rate=closerate,
sell_reason=sell.sell_type
)
if partial_ticker:
if partial_ohlcv:
# no sell condition found - trade stil open at end of backtest period
sell_row = partial_ticker[-1]
sell_row = partial_ohlcv[-1]
bt_res = BacktestResult(pair=pair,
profit_percent=trade.calc_profit_ratio(rate=sell_row.open),
profit_abs=trade.calc_profit(rate=sell_row.open),
@@ -308,8 +309,9 @@ class Backtesting:
trades = []
trade_count_lock: Dict = {}
# Dict of ticker-lists for performance (looping lists is a lot faster than dataframes)
ticker: Dict = self._get_ticker_list(processed)
# Use dict of lists with data for performance
# (looping lists is a lot faster than pandas DataFrames)
data: Dict = self._get_ohlcv_as_lists(processed)
lock_pair_until: Dict = {}
# Indexes per pair, so some pairs are allowed to have a missing start.
@@ -319,12 +321,12 @@ class Backtesting:
# Loop timerange and get candle for each pair at that point in time
while tmp < end_date:
for i, pair in enumerate(ticker):
for i, pair in enumerate(data):
if pair not in indexes:
indexes[pair] = 0
try:
row = ticker[pair][indexes[pair]]
row = data[pair][indexes[pair]]
except IndexError:
# missing Data for one pair at the end.
# Warnings for this are shown during data loading
@@ -352,7 +354,7 @@ class Backtesting:
# since indexes has been incremented before, we need to go one step back to
# also check the buying candle for sell conditions.
trade_entry = self._get_sell_trade_entry(pair, row, ticker[pair][indexes[pair]-1:],
trade_entry = self._get_sell_trade_entry(pair, row, data[pair][indexes[pair]-1:],
trade_count_lock, stake_amount,
max_open_trades)
@@ -395,7 +397,7 @@ class Backtesting:
self._set_strategy(strat)
# need to reprocess data every time to populate signals
preprocessed = self.strategy.tickerdata_to_dataframe(data)
preprocessed = self.strategy.ohlcvdata_to_dataframe(data)
# Trim startup period from analyzed dataframe
for pair, df in preprocessed.items():

View File

@@ -75,8 +75,8 @@ class Hyperopt:
self.trials_file = (self.config['user_data_dir'] /
'hyperopt_results' / 'hyperopt_results.pickle')
self.tickerdata_pickle = (self.config['user_data_dir'] /
'hyperopt_results' / 'hyperopt_tickerdata.pkl')
self.data_pickle_file = (self.config['user_data_dir'] /
'hyperopt_results' / 'hyperopt_data.pkl')
self.total_epochs = config.get('epochs', 0)
self.current_best_loss = 100
@@ -130,7 +130,7 @@ class Hyperopt:
"""
Remove hyperopt pickle files to restart hyperopt.
"""
for f in [self.tickerdata_pickle, self.trials_file]:
for f in [self.data_pickle_file, self.trials_file]:
p = Path(f)
if p.is_file():
logger.info(f"Removing `{p}`.")
@@ -454,7 +454,7 @@ class Hyperopt:
self.backtesting.strategy.trailing_only_offset_is_reached = \
d['trailing_only_offset_is_reached']
processed = load(self.tickerdata_pickle)
processed = load(self.data_pickle_file)
min_date, max_date = get_timerange(processed)
@@ -570,7 +570,7 @@ class Hyperopt:
self.hyperopt_table_header = -1
data, timerange = self.backtesting.load_bt_data()
preprocessed = self.backtesting.strategy.tickerdata_to_dataframe(data)
preprocessed = self.backtesting.strategy.ohlcvdata_to_dataframe(data)
# Trim startup period from analyzed dataframe
for pair, df in preprocessed.items():
@@ -581,7 +581,7 @@ class Hyperopt:
'Hyperopting with data from %s up to %s (%s days)..',
min_date.isoformat(), max_date.isoformat(), (max_date - min_date).days
)
dump(preprocessed, self.tickerdata_pickle)
dump(preprocessed, self.data_pickle_file)
# We don't need exchange instance anymore while running hyperopt
self.backtesting.exchange = None # type: ignore