Do not use ticker where it's not a ticker

This commit is contained in:
hroff-1902
2020-03-08 13:35:31 +03:00
parent 77944175e2
commit 3208faf7ed
43 changed files with 459 additions and 452 deletions

View File

@@ -13,12 +13,12 @@ from freqtrade.constants import DEFAULT_DATAFRAME_COLUMNS
logger = logging.getLogger(__name__)
def parse_ticker_dataframe(ticker: list, timeframe: str, pair: str, *,
fill_missing: bool = True,
drop_incomplete: bool = True) -> DataFrame:
def ohlcv_to_dataframe(ohlcv: list, timeframe: str, pair: str, *,
fill_missing: bool = True, drop_incomplete: bool = True) -> DataFrame:
"""
Converts a ticker-list (format ccxt.fetch_ohlcv) to a Dataframe
:param ticker: ticker list, as returned by exchange.async_get_candle_history
Converts a list with candle (OHLCV) data (in format returned by ccxt.fetch_ohlcv)
to a Dataframe
:param ohlcv: list with candle (OHLCV) data, as returned by exchange.async_get_candle_history
:param timeframe: timeframe (e.g. 5m). Used to fill up eventual missing data
:param pair: Pair this data is for (used to warn if fillup was necessary)
:param fill_missing: fill up missing candles with 0 candles
@@ -26,21 +26,18 @@ def parse_ticker_dataframe(ticker: list, timeframe: str, pair: str, *,
:param drop_incomplete: Drop the last candle of the dataframe, assuming it's incomplete
:return: DataFrame
"""
logger.debug("Parsing tickerlist to dataframe")
logger.debug(f"Converting candle (OHLCV) data to dataframe for pair {pair}.")
cols = DEFAULT_DATAFRAME_COLUMNS
frame = DataFrame(ticker, columns=cols)
df = DataFrame(ohlcv, columns=cols)
frame['date'] = to_datetime(frame['date'],
unit='ms',
utc=True,
infer_datetime_format=True)
df['date'] = to_datetime(df['date'], unit='ms', utc=True, infer_datetime_format=True)
# Some exchanges return int values for volume and even for ohlc.
# Some exchanges return int values for Volume and even for OHLC.
# Convert them since TA-LIB indicators used in the strategy assume floats
# and fail with exception...
frame = frame.astype(dtype={'open': 'float', 'high': 'float', 'low': 'float', 'close': 'float',
'volume': 'float'})
return clean_ohlcv_dataframe(frame, timeframe, pair,
df = df.astype(dtype={'open': 'float', 'high': 'float', 'low': 'float', 'close': 'float',
'volume': 'float'})
return clean_ohlcv_dataframe(df, timeframe, pair,
fill_missing=fill_missing,
drop_incomplete=drop_incomplete)
@@ -49,11 +46,11 @@ def clean_ohlcv_dataframe(data: DataFrame, timeframe: str, pair: str, *,
fill_missing: bool = True,
drop_incomplete: bool = True) -> DataFrame:
"""
Clense a ohlcv dataframe by
Clense a OHLCV dataframe by
* Grouping it by date (removes duplicate tics)
* dropping last candles if requested
* Filling up missing data (if requested)
:param data: DataFrame containing ohlcv data.
:param data: DataFrame containing candle (OHLCV) data.
:param timeframe: timeframe (e.g. 5m). Used to fill up eventual missing data
:param pair: Pair this data is for (used to warn if fillup was necessary)
:param fill_missing: fill up missing candles with 0 candles
@@ -88,16 +85,16 @@ def ohlcv_fill_up_missing_data(dataframe: DataFrame, timeframe: str, pair: str)
"""
from freqtrade.exchange import timeframe_to_minutes
ohlc_dict = {
ohlcv_dict = {
'open': 'first',
'high': 'max',
'low': 'min',
'close': 'last',
'volume': 'sum'
}
ticker_minutes = timeframe_to_minutes(timeframe)
timeframe_minutes = timeframe_to_minutes(timeframe)
# Resample to create "NAN" values
df = dataframe.resample(f'{ticker_minutes}min', on='date').agg(ohlc_dict)
df = dataframe.resample(f'{timeframe_minutes}min', on='date').agg(ohlcv_dict)
# Forwardfill close for missing columns
df['close'] = df['close'].fillna(method='ffill')
@@ -159,20 +156,20 @@ def order_book_to_dataframe(bids: list, asks: list) -> DataFrame:
def trades_to_ohlcv(trades: list, timeframe: str) -> DataFrame:
"""
Converts trades list to ohlcv list
Converts trades list to OHLCV list
TODO: This should get a dedicated test
:param trades: List of trades, as returned by ccxt.fetch_trades.
:param timeframe: Ticker timeframe to resample data to
:return: ohlcv Dataframe.
:param timeframe: Timeframe to resample data to
:return: OHLCV Dataframe.
"""
from freqtrade.exchange import timeframe_to_minutes
ticker_minutes = timeframe_to_minutes(timeframe)
timeframe_minutes = timeframe_to_minutes(timeframe)
df = pd.DataFrame(trades)
df['datetime'] = pd.to_datetime(df['datetime'])
df = df.set_index('datetime')
df_new = df['price'].resample(f'{ticker_minutes}min').ohlc()
df_new['volume'] = df['amount'].resample(f'{ticker_minutes}min').sum()
df_new = df['price'].resample(f'{timeframe_minutes}min').ohlc()
df_new['volume'] = df['amount'].resample(f'{timeframe_minutes}min').sum()
df_new['date'] = df_new.index
# Drop 0 volume rows
df_new = df_new.dropna()
@@ -206,7 +203,7 @@ def convert_trades_format(config: Dict[str, Any], convert_from: str, convert_to:
def convert_ohlcv_format(config: Dict[str, Any], convert_from: str, convert_to: str, erase: bool):
"""
Convert ohlcv from one format to another format.
Convert OHLCV from one format to another
:param config: Config dictionary
:param convert_from: Source format
:param convert_to: Target format
@@ -216,7 +213,7 @@ def convert_ohlcv_format(config: Dict[str, Any], convert_from: str, convert_to:
src = get_datahandler(config['datadir'], convert_from)
trg = get_datahandler(config['datadir'], convert_to)
timeframes = config.get('timeframes', [config.get('ticker_interval')])
logger.info(f"Converting OHLCV for timeframe {timeframes}")
logger.info(f"Converting candle (OHLCV) for timeframe {timeframes}")
if 'pairs' not in config:
config['pairs'] = []
@@ -224,7 +221,7 @@ def convert_ohlcv_format(config: Dict[str, Any], convert_from: str, convert_to:
for timeframe in timeframes:
config['pairs'].extend(src.ohlcv_get_pairs(config['datadir'],
timeframe))
logger.info(f"Converting OHLCV for {config['pairs']}")
logger.info(f"Converting candle (OHLCV) data for {config['pairs']}")
for timeframe in timeframes:
for pair in config['pairs']: