alleviate FutureWarning in sklearn about ensuring svm model features are passed with identical order
This commit is contained in:
@@ -823,7 +823,9 @@ class FreqaiDataKitchen:
|
||||
pairs = self.freqai_config.get("corr_pairlist", [])
|
||||
|
||||
for tf in self.freqai_config.get("timeframes"):
|
||||
dataframe = strategy.populate_any_indicators(metadata['pair'],
|
||||
dataframe = strategy.populate_any_indicators(
|
||||
metadata,
|
||||
metadata['pair'],
|
||||
dataframe.copy(),
|
||||
tf,
|
||||
base_dataframes[tf],
|
||||
@@ -833,7 +835,9 @@ class FreqaiDataKitchen:
|
||||
for i in pairs:
|
||||
if metadata['pair'] in i:
|
||||
continue # dont repeat anything from whitelist
|
||||
dataframe = strategy.populate_any_indicators(i,
|
||||
dataframe = strategy.populate_any_indicators(
|
||||
metadata,
|
||||
i,
|
||||
dataframe.copy(),
|
||||
tf,
|
||||
corr_dataframes[i][tf],
|
||||
|
Reference in New Issue
Block a user