Merge pull request #1959 from freqtrade/split_btanalysis_load_trades
Split btanalysis load trades
This commit is contained in:
commit
31a2aac627
@ -221,24 +221,8 @@ strategies, your configuration, and the crypto-currency you have set up.
|
||||
### Further backtest-result analysis
|
||||
|
||||
To further analyze your backtest results, you can [export the trades](#exporting-trades-to-file).
|
||||
You can then load the trades to perform further analysis.
|
||||
You can then load the trades to perform further analysis as shown in our [data analysis](data-analysis.md#backtesting) backtesting section.
|
||||
|
||||
A good way for this is using Jupyter (notebook or lab) - which provides an interactive environment to analyze the data.
|
||||
|
||||
Freqtrade provides an easy to load the backtest results, which is `load_backtest_data` - and takes a path to the backtest-results file.
|
||||
|
||||
``` python
|
||||
from freqtrade.data.btanalysis import load_backtest_data
|
||||
df = load_backtest_data("user_data/backtest-result.json")
|
||||
|
||||
# Show value-counts per pair
|
||||
df.groupby("pair")["sell_reason"].value_counts()
|
||||
|
||||
```
|
||||
|
||||
This will allow you to drill deeper into your backtest results, and perform analysis which would make the regular backtest-output unreadable.
|
||||
|
||||
If you have some ideas for interesting / helpful backtest data analysis ideas, please submit a PR so the community can benefit from it.
|
||||
|
||||
## Backtesting multiple strategies
|
||||
|
||||
|
42
docs/data-analysis.md
Normal file
42
docs/data-analysis.md
Normal file
@ -0,0 +1,42 @@
|
||||
# Analyzing bot data
|
||||
|
||||
After performing backtests, or after running the bot for some time, it will be interesting to analyze the results your bot generated.
|
||||
|
||||
A good way for this is using Jupyter (notebook or lab) - which provides an interactive environment to analyze the data.
|
||||
|
||||
The following helpers will help you loading the data into Pandas DataFrames, and may also give you some starting points in analyzing the results.
|
||||
|
||||
## Backtesting
|
||||
|
||||
To analyze your backtest results, you can [export the trades](#exporting-trades-to-file).
|
||||
You can then load the trades to perform further analysis.
|
||||
|
||||
Freqtrade provides the `load_backtest_data()` helper function to easily load the backtest results, which takes the path to the the backtest-results file as parameter.
|
||||
|
||||
``` python
|
||||
from freqtrade.data.btanalysis import load_backtest_data
|
||||
df = load_backtest_data("user_data/backtest-result.json")
|
||||
|
||||
# Show value-counts per pair
|
||||
df.groupby("pair")["sell_reason"].value_counts()
|
||||
|
||||
```
|
||||
|
||||
This will allow you to drill deeper into your backtest results, and perform analysis which otherwise would make the regular backtest-output very difficult to digest due to information overload.
|
||||
|
||||
If you have some ideas for interesting / helpful backtest data analysis ideas, please submit a Pull Request so the community can benefit from it.
|
||||
|
||||
## Live data
|
||||
|
||||
To analyze the trades your bot generated, you can load them to a DataFrame as follows:
|
||||
|
||||
``` python
|
||||
from freqtrade.data.btanalysis import load_trades_from_db
|
||||
|
||||
df = load_trades_from_db("sqlite:///tradesv3.sqlite")
|
||||
|
||||
df.groupby("pair")["sell_reason"].value_counts()
|
||||
|
||||
```
|
||||
|
||||
Feel free to submit an issue or Pull Request enhancing this document if you would like to share ideas on how to best analyze the data.
|
@ -58,7 +58,7 @@ Timerange doesn't work with live data.
|
||||
To plot trades stored in a database use `--db-url` argument:
|
||||
|
||||
``` bash
|
||||
python3 scripts/plot_dataframe.py --db-url sqlite:///tradesv3.dry_run.sqlite -p BTC/ETH
|
||||
python3 scripts/plot_dataframe.py --db-url sqlite:///tradesv3.dry_run.sqlite -p BTC/ETH --trade-source DB
|
||||
```
|
||||
|
||||
To plot trades from a backtesting result, use `--export-filename <filename>`
|
||||
|
@ -516,3 +516,11 @@ class Arguments(object):
|
||||
default=750,
|
||||
type=int,
|
||||
)
|
||||
parser.add_argument(
|
||||
'--trade-source',
|
||||
help='Specify the source for trades (Can be DB or file (backtest file)) '
|
||||
'Default: %(default)s',
|
||||
dest='trade_source',
|
||||
default="file",
|
||||
choices=["DB", "file"]
|
||||
)
|
||||
|
@ -358,7 +358,8 @@ class Configuration(object):
|
||||
|
||||
self._args_to_config(config, argname='plot_limit',
|
||||
logstring='Limiting plot to: {}')
|
||||
|
||||
self._args_to_config(config, argname='trade_source',
|
||||
logstring='Using trades from: {}')
|
||||
return config
|
||||
|
||||
def _validate_config_schema(self, conf: Dict[str, Any]) -> Dict[str, Any]:
|
||||
|
@ -73,37 +73,30 @@ def evaluate_result_multi(results: pd.DataFrame, freq: str, max_open_trades: int
|
||||
return df_final[df_final['pair'] > max_open_trades]
|
||||
|
||||
|
||||
def load_trades(db_url: str = None, exportfilename: str = None) -> pd.DataFrame:
|
||||
def load_trades_from_db(db_url: str) -> pd.DataFrame:
|
||||
"""
|
||||
Load trades, either from a DB (using dburl) or via a backtest export file.
|
||||
Load trades from a DB (using dburl)
|
||||
:param db_url: Sqlite url (default format sqlite:///tradesv3.dry-run.sqlite)
|
||||
:param exportfilename: Path to a file exported from backtesting
|
||||
:return: Dataframe containing Trades
|
||||
"""
|
||||
timeZone = pytz.UTC
|
||||
|
||||
trades: pd.DataFrame = pd.DataFrame([], columns=BT_DATA_COLUMNS)
|
||||
persistence.init(db_url, clean_open_orders=False)
|
||||
columns = ["pair", "profit", "open_time", "close_time",
|
||||
"open_rate", "close_rate", "duration", "sell_reason",
|
||||
"max_rate", "min_rate"]
|
||||
|
||||
if db_url:
|
||||
persistence.init(db_url, clean_open_orders=False)
|
||||
columns = ["pair", "profit", "open_time", "close_time",
|
||||
"open_rate", "close_rate", "duration"]
|
||||
|
||||
for x in Trade.query.all():
|
||||
logger.info("date: {}".format(x.open_date))
|
||||
|
||||
trades = pd.DataFrame([(t.pair, t.calc_profit(),
|
||||
t.open_date.replace(tzinfo=timeZone),
|
||||
t.close_date.replace(tzinfo=timeZone) if t.close_date else None,
|
||||
t.open_rate, t.close_rate,
|
||||
t.close_date.timestamp() - t.open_date.timestamp()
|
||||
if t.close_date else None)
|
||||
for t in Trade.query.all()],
|
||||
columns=columns)
|
||||
|
||||
elif exportfilename:
|
||||
|
||||
trades = load_backtest_data(Path(exportfilename))
|
||||
trades = pd.DataFrame([(t.pair, t.calc_profit(),
|
||||
t.open_date.replace(tzinfo=pytz.UTC),
|
||||
t.close_date.replace(tzinfo=pytz.UTC) if t.close_date else None,
|
||||
t.open_rate, t.close_rate,
|
||||
t.close_date.timestamp() - t.open_date.timestamp()
|
||||
if t.close_date else None,
|
||||
t.sell_reason,
|
||||
t.max_rate,
|
||||
t.min_rate,
|
||||
)
|
||||
for t in Trade.query.all()],
|
||||
columns=columns)
|
||||
|
||||
return trades
|
||||
|
||||
|
@ -81,6 +81,8 @@ def plot_trades(fig, trades: pd.DataFrame):
|
||||
)
|
||||
fig.append_trace(trade_buys, 1, 1)
|
||||
fig.append_trace(trade_sells, 1, 1)
|
||||
else:
|
||||
logger.warning("No trades found.")
|
||||
return fig
|
||||
|
||||
|
||||
|
@ -7,7 +7,7 @@ from pandas import DataFrame, to_datetime
|
||||
from freqtrade.arguments import TimeRange
|
||||
from freqtrade.data.btanalysis import (BT_DATA_COLUMNS,
|
||||
extract_trades_of_period,
|
||||
load_backtest_data, load_trades)
|
||||
load_backtest_data, load_trades_from_db)
|
||||
from freqtrade.data.history import load_pair_history, make_testdata_path
|
||||
from freqtrade.tests.test_persistence import create_mock_trades
|
||||
|
||||
@ -28,14 +28,6 @@ def test_load_backtest_data():
|
||||
load_backtest_data(str("filename") + "nofile")
|
||||
|
||||
|
||||
def test_load_trades_file(default_conf, fee, mocker):
|
||||
# Real testing of load_backtest_data is done in test_load_backtest_data
|
||||
lbt = mocker.patch("freqtrade.data.btanalysis.load_backtest_data", MagicMock())
|
||||
filename = make_testdata_path(None) / "backtest-result_test.json"
|
||||
load_trades(db_url=None, exportfilename=filename)
|
||||
assert lbt.call_count == 1
|
||||
|
||||
|
||||
@pytest.mark.usefixtures("init_persistence")
|
||||
def test_load_trades_db(default_conf, fee, mocker):
|
||||
|
||||
@ -43,7 +35,7 @@ def test_load_trades_db(default_conf, fee, mocker):
|
||||
# remove init so it does not init again
|
||||
init_mock = mocker.patch('freqtrade.persistence.init', MagicMock())
|
||||
|
||||
trades = load_trades(db_url=default_conf['db_url'], exportfilename=None)
|
||||
trades = load_trades_from_db(db_url=default_conf['db_url'])
|
||||
assert init_mock.call_count == 1
|
||||
assert len(trades) == 3
|
||||
assert isinstance(trades, DataFrame)
|
||||
|
@ -67,11 +67,12 @@ def test_generate_row(default_conf, caplog):
|
||||
assert log_has_re(r'Indicator "no_indicator" ignored\..*', caplog.record_tuples)
|
||||
|
||||
|
||||
def test_plot_trades():
|
||||
def test_plot_trades(caplog):
|
||||
fig1 = generage_empty_figure()
|
||||
# nothing happens when no trades are available
|
||||
fig = plot_trades(fig1, None)
|
||||
assert fig == fig1
|
||||
assert log_has("No trades found.", caplog.record_tuples)
|
||||
pair = "ADA/BTC"
|
||||
filename = history.make_testdata_path(None) / "backtest-result_test.json"
|
||||
trades = load_backtest_data(filename)
|
||||
|
@ -17,6 +17,7 @@ nav:
|
||||
- Plotting: plotting.md
|
||||
- Deprecated features: deprecated.md
|
||||
- FAQ: faq.md
|
||||
- Data Analysis: data-analysis.md
|
||||
- SQL Cheatsheet: sql_cheatsheet.md
|
||||
- Sandbox testing: sandbox-testing.md
|
||||
- Contributors guide: developer.md
|
||||
|
@ -33,10 +33,10 @@ import pandas as pd
|
||||
|
||||
from freqtrade.arguments import Arguments
|
||||
from freqtrade.data import history
|
||||
from freqtrade.data.btanalysis import load_trades, extract_trades_of_period
|
||||
from freqtrade.data.btanalysis import (extract_trades_of_period,
|
||||
load_backtest_data, load_trades_from_db)
|
||||
from freqtrade.optimize import setup_configuration
|
||||
from freqtrade.plot.plotting import (generate_graph,
|
||||
generate_plot_file)
|
||||
from freqtrade.plot.plotting import generate_graph, generate_plot_file
|
||||
from freqtrade.resolvers import ExchangeResolver, StrategyResolver
|
||||
from freqtrade.state import RunMode
|
||||
|
||||
@ -97,9 +97,11 @@ def analyse_and_plot_pairs(config: Dict[str, Any]):
|
||||
tickers = {}
|
||||
tickers[pair] = data
|
||||
dataframe = generate_dataframe(strategy, tickers, pair)
|
||||
if config["trade_source"] == "DB":
|
||||
trades = load_trades_from_db(config["db_url"])
|
||||
elif config["trade_source"] == "file":
|
||||
trades = load_backtest_data(Path(config["exportfilename"]))
|
||||
|
||||
trades = load_trades(db_url=config["db_url"],
|
||||
exportfilename=config["exportfilename"])
|
||||
trades = trades.loc[trades['pair'] == pair]
|
||||
trades = extract_trades_of_period(dataframe, trades)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user