reduce code for base use-case, ensure multiproc inherits custom env, add ability to limit ram use.
This commit is contained in:
@@ -34,7 +34,7 @@ class ReinforcementLearner_multiproc(BaseReinforcementLearningModel):
|
||||
**self.freqai_info['model_training_parameters']
|
||||
)
|
||||
else:
|
||||
logger.info('Continual training activated - starting training from previously '
|
||||
logger.info('Continual learning activated - starting training from previously '
|
||||
'trained agent.')
|
||||
model = self.dd.model_dictionary[dk.pair]
|
||||
model.tensorboard_log = Path(dk.data_path / "tensorboard")
|
||||
@@ -65,13 +65,14 @@ class ReinforcementLearner_multiproc(BaseReinforcementLearningModel):
|
||||
|
||||
env_id = "train_env"
|
||||
num_cpu = int(self.freqai_info["rl_config"]["thread_count"] / 2)
|
||||
self.train_env = SubprocVecEnv([make_env(env_id, i, 1, train_df, prices_train,
|
||||
self.train_env = SubprocVecEnv([make_env(self.MyRLEnv, env_id, i, 1, train_df, prices_train,
|
||||
self.reward_params, self.CONV_WIDTH,
|
||||
config=self.config) for i
|
||||
in range(num_cpu)])
|
||||
|
||||
eval_env_id = 'eval_env'
|
||||
self.eval_env = SubprocVecEnv([make_env(eval_env_id, i, 1, test_df, prices_test,
|
||||
self.eval_env = SubprocVecEnv([make_env(self.MyRLEnv, eval_env_id, i, 1,
|
||||
test_df, prices_test,
|
||||
self.reward_params, self.CONV_WIDTH, monitor=True,
|
||||
config=self.config) for i
|
||||
in range(num_cpu)])
|
||||
|
||||
Reference in New Issue
Block a user