reduce code for base use-case, ensure multiproc inherits custom env, add ability to limit ram use.
This commit is contained in:
@@ -3,12 +3,12 @@ from typing import Any, Dict
|
||||
|
||||
import torch as th
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
from freqtrade.freqai.RL.Base5ActionRLEnv import Actions, Base5ActionRLEnv, Positions
|
||||
from freqtrade.freqai.RL.Base5ActionRLEnv import Actions, Positions
|
||||
from freqtrade.freqai.RL.BaseReinforcementLearningModel import BaseReinforcementLearningModel
|
||||
from pathlib import Path
|
||||
from pandas import DataFrame
|
||||
from stable_baselines3.common.callbacks import EvalCallback
|
||||
from stable_baselines3.common.monitor import Monitor
|
||||
# from pandas import DataFrame
|
||||
# from stable_baselines3.common.callbacks import EvalCallback
|
||||
# from stable_baselines3.common.monitor import Monitor
|
||||
import numpy as np
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -53,71 +53,53 @@ class ReinforcementLearner(BaseReinforcementLearningModel):
|
||||
|
||||
return model
|
||||
|
||||
def set_train_and_eval_environments(self, data_dictionary: Dict[str, DataFrame],
|
||||
prices_train: DataFrame, prices_test: DataFrame,
|
||||
dk: FreqaiDataKitchen):
|
||||
class MyRLEnv(BaseReinforcementLearningModel.MyRLEnv):
|
||||
"""
|
||||
User can override this if they are using a custom MyRLEnv
|
||||
User can override any function in BaseRLEnv and gym.Env. Here the user
|
||||
sets a custom reward based on profit and trade duration.
|
||||
"""
|
||||
train_df = data_dictionary["train_features"]
|
||||
test_df = data_dictionary["test_features"]
|
||||
|
||||
self.train_env = MyRLEnv(df=train_df, prices=prices_train, window_size=self.CONV_WIDTH,
|
||||
reward_kwargs=self.reward_params, config=self.config)
|
||||
self.eval_env = Monitor(MyRLEnv(df=test_df, prices=prices_test,
|
||||
window_size=self.CONV_WIDTH,
|
||||
reward_kwargs=self.reward_params, config=self.config))
|
||||
self.eval_callback = EvalCallback(self.eval_env, deterministic=True,
|
||||
render=False, eval_freq=len(train_df),
|
||||
best_model_save_path=str(dk.data_path))
|
||||
def calculate_reward(self, action):
|
||||
|
||||
# first, penalize if the action is not valid
|
||||
if not self._is_valid(action):
|
||||
return -2
|
||||
|
||||
class MyRLEnv(Base5ActionRLEnv):
|
||||
"""
|
||||
User can override any function in BaseRLEnv and gym.Env. Here the user
|
||||
sets a custom reward based on profit and trade duration.
|
||||
"""
|
||||
pnl = self.get_unrealized_profit()
|
||||
rew = np.sign(pnl) * (pnl + 1)
|
||||
factor = 100
|
||||
|
||||
def calculate_reward(self, action):
|
||||
# reward agent for entering trades
|
||||
if action in (Actions.Long_enter.value, Actions.Short_enter.value) \
|
||||
and self._position == Positions.Neutral:
|
||||
return 25
|
||||
# discourage agent from not entering trades
|
||||
if action == Actions.Neutral.value and self._position == Positions.Neutral:
|
||||
return -1
|
||||
|
||||
# first, penalize if the action is not valid
|
||||
if not self._is_valid(action):
|
||||
return -2
|
||||
max_trade_duration = self.rl_config.get('max_trade_duration_candles', 300)
|
||||
trade_duration = self._current_tick - self._last_trade_tick
|
||||
|
||||
pnl = self.get_unrealized_profit()
|
||||
rew = np.sign(pnl) * (pnl + 1)
|
||||
factor = 100
|
||||
if trade_duration <= max_trade_duration:
|
||||
factor *= 1.5
|
||||
elif trade_duration > max_trade_duration:
|
||||
factor *= 0.5
|
||||
|
||||
# reward agent for entering trades
|
||||
if action in (Actions.Long_enter.value, Actions.Short_enter.value) \
|
||||
and self._position == Positions.Neutral:
|
||||
return 25
|
||||
# discourage agent from not entering trades
|
||||
if action == Actions.Neutral.value and self._position == Positions.Neutral:
|
||||
return -1
|
||||
# discourage sitting in position
|
||||
if self._position in (Positions.Short, Positions.Long) and \
|
||||
action == Actions.Neutral.value:
|
||||
return -1 * trade_duration / max_trade_duration
|
||||
|
||||
max_trade_duration = self.rl_config.get('max_trade_duration_candles', 300)
|
||||
trade_duration = self._current_tick - self._last_trade_tick
|
||||
# close long
|
||||
if action == Actions.Long_exit.value and self._position == Positions.Long:
|
||||
if pnl > self.profit_aim * self.rr:
|
||||
factor *= self.rl_config['model_reward_parameters'].get('win_reward_factor', 2)
|
||||
return float(rew * factor)
|
||||
|
||||
if trade_duration <= max_trade_duration:
|
||||
factor *= 1.5
|
||||
elif trade_duration > max_trade_duration:
|
||||
factor *= 0.5
|
||||
# close short
|
||||
if action == Actions.Short_exit.value and self._position == Positions.Short:
|
||||
if pnl > self.profit_aim * self.rr:
|
||||
factor *= self.rl_config['model_reward_parameters'].get('win_reward_factor', 2)
|
||||
return float(rew * factor)
|
||||
|
||||
# discourage sitting in position
|
||||
if self._position in (Positions.Short, Positions.Long) and action == Actions.Neutral.value:
|
||||
return -1 * trade_duration / max_trade_duration
|
||||
|
||||
# close long
|
||||
if action == Actions.Long_exit.value and self._position == Positions.Long:
|
||||
if pnl > self.profit_aim * self.rr:
|
||||
factor *= self.rl_config['model_reward_parameters'].get('win_reward_factor', 2)
|
||||
return float(rew * factor)
|
||||
|
||||
# close short
|
||||
if action == Actions.Short_exit.value and self._position == Positions.Short:
|
||||
if pnl > self.profit_aim * self.rr:
|
||||
factor *= self.rl_config['model_reward_parameters'].get('win_reward_factor', 2)
|
||||
return float(rew * factor)
|
||||
|
||||
return 0.
|
||||
return 0.
|
||||
|
@@ -34,7 +34,7 @@ class ReinforcementLearner_multiproc(BaseReinforcementLearningModel):
|
||||
**self.freqai_info['model_training_parameters']
|
||||
)
|
||||
else:
|
||||
logger.info('Continual training activated - starting training from previously '
|
||||
logger.info('Continual learning activated - starting training from previously '
|
||||
'trained agent.')
|
||||
model = self.dd.model_dictionary[dk.pair]
|
||||
model.tensorboard_log = Path(dk.data_path / "tensorboard")
|
||||
@@ -65,13 +65,14 @@ class ReinforcementLearner_multiproc(BaseReinforcementLearningModel):
|
||||
|
||||
env_id = "train_env"
|
||||
num_cpu = int(self.freqai_info["rl_config"]["thread_count"] / 2)
|
||||
self.train_env = SubprocVecEnv([make_env(env_id, i, 1, train_df, prices_train,
|
||||
self.train_env = SubprocVecEnv([make_env(self.MyRLEnv, env_id, i, 1, train_df, prices_train,
|
||||
self.reward_params, self.CONV_WIDTH,
|
||||
config=self.config) for i
|
||||
in range(num_cpu)])
|
||||
|
||||
eval_env_id = 'eval_env'
|
||||
self.eval_env = SubprocVecEnv([make_env(eval_env_id, i, 1, test_df, prices_test,
|
||||
self.eval_env = SubprocVecEnv([make_env(self.MyRLEnv, eval_env_id, i, 1,
|
||||
test_df, prices_test,
|
||||
self.reward_params, self.CONV_WIDTH, monitor=True,
|
||||
config=self.config) for i
|
||||
in range(num_cpu)])
|
||||
|
Reference in New Issue
Block a user