explicit dtype
This commit is contained in:
parent
f7a5b2cb71
commit
30b27ae736
@ -105,7 +105,7 @@ You can define your own estimator for Hyperopt by implementing `generate_estimat
|
||||
```python
|
||||
class MyAwesomeStrategy(IStrategy):
|
||||
class HyperOpt:
|
||||
def generate_estimator(dimensions, **kwargs):
|
||||
def generate_estimator(dimensions: List['Dimension'], **kwargs):
|
||||
return "RF"
|
||||
|
||||
```
|
||||
@ -119,7 +119,7 @@ Example for `ExtraTreesRegressor` ("ET") with additional parameters:
|
||||
```python
|
||||
class MyAwesomeStrategy(IStrategy):
|
||||
class HyperOpt:
|
||||
def generate_estimator(dimensions, **kwargs):
|
||||
def generate_estimator(dimensions: List['Dimension'], **kwargs):
|
||||
from skopt.learning import ExtraTreesRegressor
|
||||
# Corresponds to "ET" - but allows additional parameters.
|
||||
return ExtraTreesRegressor(n_estimators=100)
|
||||
@ -131,7 +131,7 @@ The `dimensions` parameter is the list of `skopt.space.Dimension` objects corres
|
||||
```python
|
||||
class MyAwesomeStrategy(IStrategy):
|
||||
class HyperOpt:
|
||||
def generate_estimator(dimensions, **kwargs):
|
||||
def generate_estimator(dimensions: List['Dimension'], **kwargs):
|
||||
from skopt.utils import cook_estimator
|
||||
from skopt.learning.gaussian_process.kernels import (Matern, ConstantKernel)
|
||||
kernel_bounds = (0.0001, 10000)
|
||||
|
@ -40,7 +40,7 @@ class IHyperOpt(ABC):
|
||||
IHyperOpt.ticker_interval = str(config['timeframe']) # DEPRECATED
|
||||
IHyperOpt.timeframe = str(config['timeframe'])
|
||||
|
||||
def generate_estimator(self, dimensions, **kwargs) -> EstimatorType:
|
||||
def generate_estimator(self, dimensions: List[Dimension], **kwargs) -> EstimatorType:
|
||||
"""
|
||||
Return base_estimator.
|
||||
Can be any of "GP", "RF", "ET", "GBRT" or an instance of a class
|
||||
|
Loading…
Reference in New Issue
Block a user