update with new comments and new data for tc5

This commit is contained in:
Matthias 2018-07-11 07:18:52 +02:00
parent b8f78cb187
commit 30a6e684a6

View File

@ -21,7 +21,8 @@ class BTContainer(NamedTuple):
roi: float
trades: int
profit_perc: float
sl: float
sl: bool
remains: bool
columns = ['date', 'open', 'high', 'low', 'close', 'volume', 'buy', 'sell']
@ -39,9 +40,9 @@ data_profit = DataFrame([
], columns=columns)
tc_profit1 = BTContainer(data=data_profit, stop_loss=-0.01, roi=1, trades=1,
profit_perc=0.10557, sl=False) # should be stoploss - drops 8%
profit_perc=0.10557, sl=False, remains=False) # should be stoploss - drops 8%
tc_profit2 = BTContainer(data=data_profit, stop_loss=-0.10, roi=1,
trades=1, profit_perc=0.10557, sl=True)
trades=1, profit_perc=0.10557, sl=True, remains=False)
tc_loss0 = BTContainer(data=DataFrame([
@ -56,31 +57,37 @@ tc_loss0 = BTContainer(data=DataFrame([
[getdate('2018-07-08 22:00:00').datetime, 0.001000,
0.001011, 0.00098618, 0.00091618, 12345, 0, 0]
], columns=columns),
stop_loss=-0.05, roi=1, trades=1, profit_perc=-0.08839, sl=True)
stop_loss=-0.05, roi=1, trades=1, profit_perc=-0.08839, sl=True, remains=False)
# Test 1 Minus 8% Close
# Candle Data for test 1 close at -8% (9200)
# Test with Stop-loss at 1%
# TC1: Stop-Loss Triggered 1% loss
tc1 = BTContainer(data=DataFrame([
[getdate('2018-06-10 08:00:00').datetime, 10000, 10050, 9950, 9975, 12345, 1, 0],
[getdate('2018-06-10 09:00:00').datetime, 9975, 10025, 9925, 9950, 12345, 0, 0],
[getdate('2018-06-10 09:00:00').datetime, 9975, 10025, 9200, 9200, 12345, 0, 0],
[getdate('2018-06-10 10:00:00').datetime, 9950, 10000, 9960, 9955, 12345, 0, 0],
[getdate('2018-06-10 11:00:00').datetime, 9955, 9975, 9955, 9990, 12345, 0, 0],
[getdate('2018-06-10 12:00:00').datetime, 9990, 9990, 9200, 9200, 12345, 0, 0]
[getdate('2018-06-10 12:00:00').datetime, 9990, 9990, 9990, 9900, 12345, 0, 0]
], columns=columns),
stop_loss=-0.01, roi=1, trades=1, profit_perc=-0.07999, sl=True)
# stop_loss=-0.01, roi=1, trades=1, profit_perc=-0.01, sl=True, remains=False) # should be
stop_loss=-0.01, roi=1, trades=1, profit_perc=0.071, sl=False, remains=True) #
# Test 2 Minus 4% Low, minus 1% close
# Candle Data for test 2
# Test with Stop-Loss at 3%
# TC2: Stop-Loss Triggered 3% Loss
tc2 = BTContainer(data=DataFrame([
[getdate('2018-06-10 08:00:00').datetime, 10000, 10050, 9950, 9975, 12345, 1, 0],
[getdate('2018-06-10 09:00:00').datetime, 9975, 10025, 9925, 9950, 12345, 0, 0],
[getdate('2018-06-10 10:00:00').datetime, 9950, 10000, 9600, 9925, 12345, 0, 0],
[getdate('2018-06-10 11:00:00').datetime, 9925, 9975, 9875, 9900, 12345, 0, 0],
[getdate('2018-06-10 12:00:00').datetime, 9900, 9950, 9850, 9900, 12345, 0, 0]
], columns=columns), stop_loss=-0.03, roi=1, trades=1, profit_perc=-0.00999, sl=False) #
], columns=columns),
# stop_loss=-0.03, roi=1, trades=1, profit_perc=-0.03, sl=True, remains=False) #should be
stop_loss=-0.03, roi=1, trades=1, profit_perc=-0.00999, sl=False, remains=True) #
# Test 3 Candle drops 4%, Recovers 1%.
@ -88,19 +95,23 @@ tc2 = BTContainer(data=DataFrame([
# Candle drops 20%
# Candle Data for test 3
# Test with Stop-Loss at 2%
# TC3: Trade-A: Stop-Loss Triggered 2% Loss
# Trade-B: Stop-Loss Triggered 2% Loss
tc3 = BTContainer(data=DataFrame([
[getdate('2018-06-10 08:00:00').datetime, 10000, 10050, 9950, 9975, 12345, 1, 0],
[getdate('2018-06-10 09:00:00').datetime, 9975, 10025, 9600, 9950, 12345, 0, 0],
[getdate('2018-06-10 10:00:00').datetime, 9950, 10000, 9900, 9925, 12345, 1, 0],
[getdate('2018-06-10 11:00:00').datetime, 9925, 9975, 8000, 8000, 12345, 0, 0],
[getdate('2018-06-10 12:00:00').datetime, 9900, 9950, 9950, 9900, 12345, 0, 0]
], columns=columns), stop_loss=-0.02, roi=1, trades=1, profit_perc=-0.19999, sl=True) #
], columns=columns),
# stop_loss=-0.02, roi=1, trades=2, profit_perc=-0.4, sl=True, remains=False) #should be
stop_loss=-0.02, roi=1, trades=1, profit_perc=-0.19999, sl=True, remains=False) #
# Test 4 Minus 3% / recovery +15%
# Candle Data for test 4 Candle drops 3% Closed 15% up
# Test with Stop-loss at 2% ROI 6%
# TC4: Stop-Loss Triggered 2% Loss
tc4 = BTContainer(data=DataFrame([
[getdate('2018-06-10 08:00:00').datetime, 10000, 10050, 9950, 9975, 12345, 1, 0],
[getdate('2018-06-10 09:00:00').datetime, 9975, 11500, 9700, 11500, 12345, 0, 0],
@ -108,49 +119,55 @@ tc4 = BTContainer(data=DataFrame([
[getdate('2018-06-10 11:00:00').datetime, 9925, 9975, 9875, 9900, 12345, 0, 0],
[getdate('2018-06-10 12:00:00').datetime, 9900, 9950, 9850, 9900, 12345, 0, 0]
], columns=columns),
stop_loss=-0.02, roi=0.06, trades=1, profit_perc=-0.141, sl=True)
# stop_loss=-0.02, roi=0.06, trades=1, profit_perc=-0.02, sl=False, remains=False) #should be
stop_loss=-0.02, roi=0.06, trades=1, profit_perc=-0.141, sl=True, remains=False)
# Test 5 / Drops 0.5% Closes +20%
# Candle Data for test 5
# Set stop-loss at 1% ROI 3%
# TC5: ROI triggers 3% Gain
tc5 = BTContainer(data=DataFrame([
[getdate('2018-06-10 08:00:00').datetime, 10000, 10050, 9950, 9975, 12345, 1, 0],
[getdate('2018-06-10 09:00:00').datetime, 9975, 12000, 9950, 12000, 12345, 0, 0],
[getdate('2018-06-10 10:00:00').datetime, 9950, 10000, 9900, 9925, 12345, 0, 0],
[getdate('2018-06-10 08:00:00').datetime, 10000, 10050, 9960, 9975, 12345, 1, 0],
[getdate('2018-06-10 09:00:00').datetime, 9975, 10050, 9950, 9975, 12345, 0, 0],
[getdate('2018-06-10 10:00:00').datetime, 9950, 12000, 9950, 12000, 12345, 0, 0],
[getdate('2018-06-10 11:00:00').datetime, 9925, 9975, 9945, 9900, 12345, 0, 0],
[getdate('2018-06-10 12:00:00').datetime, 9900, 9950, 9850, 9900, 12345, 0, 0]
], columns=columns),
stop_loss=-0.01, roi=0.03, trades=1, profit_perc=-0.177, sl=True)
# stop_loss=-0.01, roi=0.03, trades=1, profit_perc=0.03, sl=False, remains=False) #should be
stop_loss=-0.01, roi=0.03, trades=1, profit_perc=0.197, sl=False, remains=False)
# Test 6 / Drops 3% / Recovers 6% Positive / Closes 1% positve
# Candle Data for test 6
# Set stop-loss at 2% ROI at 5%
# TC6: Stop-Loss triggers 2% Loss
tc6 = BTContainer(data=DataFrame([
[getdate('2018-06-10 08:00:00').datetime, 10000, 10050, 9950, 9975, 12345, 1, 0],
[getdate('2018-06-10 09:00:00').datetime, 9975, 10600, 9700, 10100, 12345, 0, 0],
[getdate('2018-06-10 10:00:00').datetime, 9950, 10000, 9900, 9925, 12345, 0, 0],
[getdate('2018-06-10 11:00:00').datetime, 9925, 9975, 9945, 9900, 12345, 0, 0],
[getdate('2018-06-10 12:00:00').datetime, 9900, 9950, 9850, 9900, 12345, 0, 0]
], columns=columns), stop_loss=-0.02, roi=0.05,
trades=1, profit_perc=-0.025, sl=False)
], columns=columns),
# stop_loss=-0.02, roi=0.05, trades=1, profit_perc=-0.02, sl=False, remains=False) #should be
stop_loss=-0.02, roi=0.05, trades=1, profit_perc=-0.025, sl=False, remains=True) #
# Test 7 - 6% Positive / 1% Negative / Close 1% Positve
# Candle Data for test 7
# Set stop-loss at 2% ROI at 3%
# TC7: ROI Triggers 3% Gain
tc7 = BTContainer(data=DataFrame([
[getdate('2018-06-10 08:00:00').datetime, 10000, 10050, 9950, 9975, 12345, 1, 0],
[getdate('2018-06-10 09:00:00').datetime, 9975, 10600, 9900, 10100, 12345, 0, 0],
[getdate('2018-06-10 10:00:00').datetime, 9950, 10000, 9900, 9925, 12345, 0, 0],
[getdate('2018-06-10 11:00:00').datetime, 9925, 9975, 9945, 9900, 12345, 0, 0],
[getdate('2018-06-10 12:00:00').datetime, 9900, 9950, 9850, 9900, 12345, 0, 0]
], columns=columns), stop_loss=-0.02, roi=0.03,
trades=1, profit_perc=-0.025, sl=False)
], columns=columns),
# stop_loss=-0.02, roi=0.03, trades=1, profit_perc=-0.03, sl=False, remains=False) #should be
stop_loss=-0.02, roi=0.03, trades=1, profit_perc=-0.025, sl=False, remains=True) #
TESTS = [
# tc_profit1,
# tc_profit2,
tc_loss0,
# tc_loss0,
tc1,
tc2,
tc3,
@ -195,5 +212,12 @@ def test_backtest_results(default_conf, fee, mocker, caplog, data) -> None:
if data.sl:
assert log_has("Stop loss hit.", caplog.record_tuples)
else:
assert not log_has("Stop loss hit.", caplog.record_tuples)
log_test = (f'Force_selling still open trade UNITTEST/BTC with '
f'{results.iloc[-1].profit_percent} perc - {results.iloc[-1].profit_abs}')
if data.remains:
assert log_has(log_test,
caplog.record_tuples)
else:
assert not log_has(log_test,
caplog.record_tuples)