add documentation
This commit is contained in:
parent
1597c3aa89
commit
3081b9402b
@ -14,7 +14,7 @@ logger = logging.getLogger(__name__)
|
|||||||
|
|
||||||
class BasePyTorchModel(IFreqaiModel):
|
class BasePyTorchModel(IFreqaiModel):
|
||||||
"""
|
"""
|
||||||
Base class for TensorFlow type models.
|
Base class for PyTorch type models.
|
||||||
User *must* inherit from this class and set fit() and predict().
|
User *must* inherit from this class and set fit() and predict().
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
@ -25,6 +25,21 @@ class PyTorchModelTrainer:
|
|||||||
init_model: Dict,
|
init_model: Dict,
|
||||||
model_meta_data: Dict[str, Any] = {},
|
model_meta_data: Dict[str, Any] = {},
|
||||||
):
|
):
|
||||||
|
"""
|
||||||
|
A class for training PyTorch models.
|
||||||
|
|
||||||
|
:param model: The PyTorch model to be trained.
|
||||||
|
:param optimizer: The optimizer to use for training.
|
||||||
|
:param criterion: The loss function to use for training.
|
||||||
|
:param device: The device to use for training (e.g. 'cpu', 'cuda').
|
||||||
|
:param batch_size: The size of the batches to use during training.
|
||||||
|
:param max_iters: The number of training iterations to run.
|
||||||
|
iteration here refers to the number of times we call
|
||||||
|
self.optimizer.step() . used to calculate n_epochs.
|
||||||
|
:param eval_iters: The number of iterations used to estimate the loss.
|
||||||
|
:param init_model: A dictionary containing the initial model parameters.
|
||||||
|
:param model_meta_data: Additional metadata about the model (optional).
|
||||||
|
"""
|
||||||
self.model = model
|
self.model = model
|
||||||
self.optimizer = optimizer
|
self.optimizer = optimizer
|
||||||
self.criterion = criterion
|
self.criterion = criterion
|
||||||
@ -38,6 +53,12 @@ class PyTorchModelTrainer:
|
|||||||
self.load_from_checkpoint(init_model)
|
self.load_from_checkpoint(init_model)
|
||||||
|
|
||||||
def fit(self, data_dictionary: Dict[str, pd.DataFrame]):
|
def fit(self, data_dictionary: Dict[str, pd.DataFrame]):
|
||||||
|
"""
|
||||||
|
general training loop:
|
||||||
|
- converting data to tensors
|
||||||
|
- calculating n_epochs
|
||||||
|
-
|
||||||
|
"""
|
||||||
data_loaders_dictionary = self.create_data_loaders_dictionary(data_dictionary)
|
data_loaders_dictionary = self.create_data_loaders_dictionary(data_dictionary)
|
||||||
epochs = self.calc_n_epochs(
|
epochs = self.calc_n_epochs(
|
||||||
n_obs=len(data_dictionary['train_features']),
|
n_obs=len(data_dictionary['train_features']),
|
||||||
|
@ -19,8 +19,19 @@ logger = logging.getLogger(__name__)
|
|||||||
|
|
||||||
|
|
||||||
class PyTorchClassifierMultiTarget(BasePyTorchModel):
|
class PyTorchClassifierMultiTarget(BasePyTorchModel):
|
||||||
|
"""
|
||||||
|
A PyTorch implementation of a multi-target classifier.
|
||||||
|
"""
|
||||||
def __init__(self, **kwargs):
|
def __init__(self, **kwargs):
|
||||||
|
"""
|
||||||
|
int: The number of nodes in the hidden layer of the neural network.
|
||||||
|
int: The maximum number of iterations to run during training.
|
||||||
|
int: The batch size to use during training.
|
||||||
|
float: The learning rate to use during training.
|
||||||
|
int: The number of training iterations between each evaluation.
|
||||||
|
dict: A dictionary mapping class names to their corresponding indices.
|
||||||
|
dict: A dictionary mapping indices to their corresponding class names.
|
||||||
|
"""
|
||||||
super().__init__(**kwargs)
|
super().__init__(**kwargs)
|
||||||
model_training_parameters = self.freqai_info["model_training_parameters"]
|
model_training_parameters = self.freqai_info["model_training_parameters"]
|
||||||
self.n_hidden = model_training_parameters.get("n_hidden", 1024)
|
self.n_hidden = model_training_parameters.get("n_hidden", 1024)
|
||||||
@ -34,8 +45,10 @@ class PyTorchClassifierMultiTarget(BasePyTorchModel):
|
|||||||
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
|
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
|
||||||
"""
|
"""
|
||||||
User sets up the training and test data to fit their desired model here
|
User sets up the training and test data to fit their desired model here
|
||||||
:param tensor_dictionary: the dictionary constructed by DataHandler to hold
|
:param data_dictionary: the dictionary constructed by DataHandler to hold
|
||||||
all the training and test data/labels.
|
all the training and test data/labels.
|
||||||
|
:raises ValueError: If self.class_names is not defined in the parent class.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
if not hasattr(self, "class_names"):
|
if not hasattr(self, "class_names"):
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
|
Loading…
Reference in New Issue
Block a user