Merge branch 'personal-branch' of https://github.com/incrementby1/freqtrade into personal-branch
This commit is contained in:
		| @@ -1,89 +0,0 @@ | |||||||
|  |  | ||||||
| { |  | ||||||
|     "max_open_trades": 12, |  | ||||||
|     "stake_currency": "USDT", |  | ||||||
|     "stake_amount": 100, |  | ||||||
|     "tradable_balance_ratio": 0.99, |  | ||||||
|     "fiat_display_currency": "USD", |  | ||||||
|     "timeframe": "5m", |  | ||||||
|     "dry_run": true, |  | ||||||
|     "cancel_open_orders_on_exit": false, |  | ||||||
|     "allow_position_stacking": true, |  | ||||||
|     "unfilledtimeout": { |  | ||||||
|         "buy": 10, |  | ||||||
|         "sell": 30, |  | ||||||
|         "unit": "minutes" |  | ||||||
|     }, |  | ||||||
|     "bid_strategy": { |  | ||||||
|         "price_side": "ask", |  | ||||||
|         "ask_last_balance": 0.0, |  | ||||||
|         "use_order_book": true, |  | ||||||
|         "order_book_top": 1, |  | ||||||
|         "check_depth_of_market": { |  | ||||||
|             "enabled": false, |  | ||||||
|             "bids_to_ask_delta": 1 |  | ||||||
|         } |  | ||||||
|     }, |  | ||||||
|     "ask_strategy": { |  | ||||||
|         "price_side": "bid", |  | ||||||
|         "use_order_book": true, |  | ||||||
|         "order_book_top": 1 |  | ||||||
|     }, |  | ||||||
|     "exchange": { |  | ||||||
|         "name": "binance", |  | ||||||
|         "key": "", |  | ||||||
|         "secret": "", |  | ||||||
|         "ccxt_config": {}, |  | ||||||
|         "ccxt_async_config": {}, |  | ||||||
|         "pair_whitelist": [ |  | ||||||
|         ], |  | ||||||
|         "pair_blacklist": [ |  | ||||||
|             "BNB/.*" |  | ||||||
|         ] |  | ||||||
|     }, |  | ||||||
|     "pairlists": [ |  | ||||||
|         { |  | ||||||
|             "method": "VolumePairList", |  | ||||||
|             "number_assets": 80, |  | ||||||
|             "sort_key": "quoteVolume", |  | ||||||
|             "min_value": 0, |  | ||||||
|             "refresh_period": 1800 |  | ||||||
|         } |  | ||||||
|     ], |  | ||||||
|     "edge": { |  | ||||||
|         "enabled": false, |  | ||||||
|         "process_throttle_secs": 3600, |  | ||||||
|         "calculate_since_number_of_days": 7, |  | ||||||
|         "allowed_risk": 0.01, |  | ||||||
|         "stoploss_range_min": -0.01, |  | ||||||
|         "stoploss_range_max": -0.1, |  | ||||||
|         "stoploss_range_step": -0.01, |  | ||||||
|         "minimum_winrate": 0.60, |  | ||||||
|         "minimum_expectancy": 0.20, |  | ||||||
|         "min_trade_number": 10, |  | ||||||
|         "max_trade_duration_minute": 1440, |  | ||||||
|         "remove_pumps": false |  | ||||||
|     }, |  | ||||||
|     "telegram": { |  | ||||||
|         "enabled": false, |  | ||||||
|         "token": "", |  | ||||||
|         "chat_id": "" |  | ||||||
|     }, |  | ||||||
|     "api_server": { |  | ||||||
|         "enabled": true, |  | ||||||
|         "listen_ip_address": "127.0.0.1", |  | ||||||
|         "listen_port": 8080, |  | ||||||
|         "verbosity": "error", |  | ||||||
|         "enable_openapi": false, |  | ||||||
|         "jwt_secret_key": "908cd4469c824f3838bfe56e4120d3a3dbda5294ef583ffc62c82f54d2c1bf58", |  | ||||||
|         "CORS_origins": [], |  | ||||||
|         "username": "user", |  | ||||||
|         "password": "pass" |  | ||||||
|     }, |  | ||||||
|     "bot_name": "freqtrade", |  | ||||||
|     "initial_state": "running", |  | ||||||
|     "forcebuy_enable": false, |  | ||||||
|     "internals": { |  | ||||||
|         "process_throttle_secs": 5 |  | ||||||
|     } |  | ||||||
| } |  | ||||||
							
								
								
									
										591
									
								
								StackingDemo.py
									
									
									
									
									
								
							
							
						
						
									
										591
									
								
								StackingDemo.py
									
									
									
									
									
								
							| @@ -1,591 +0,0 @@ | |||||||
| # pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement |  | ||||||
| # flake8: noqa: F401 |  | ||||||
|  |  | ||||||
| # --- Do not remove these libs --- |  | ||||||
| import numpy as np  # noqa |  | ||||||
| import pandas as pd  # noqa |  | ||||||
| from pandas import DataFrame |  | ||||||
|  |  | ||||||
| from freqtrade.strategy import (BooleanParameter, CategoricalParameter, DecimalParameter, |  | ||||||
|                                 IStrategy, IntParameter) |  | ||||||
|  |  | ||||||
| # -------------------------------- |  | ||||||
| # Add your lib to import here |  | ||||||
| import talib.abstract as ta |  | ||||||
| import freqtrade.vendor.qtpylib.indicators as qtpylib |  | ||||||
|  |  | ||||||
| from freqtrade.persistence import Trade |  | ||||||
| from datetime import datetime,timezone,timedelta |  | ||||||
|  |  | ||||||
| """ |  | ||||||
|  Warning: |  | ||||||
| This is still work in progress, so there is no warranty that everything works as intended,  |  | ||||||
| it is possible that this strategy results in huge losses or doesn't even work at all. |  | ||||||
| Make sure to only run this in dry_mode so you don't lose any money. |  | ||||||
|  |  | ||||||
| """ |  | ||||||
|  |  | ||||||
| class StackingDemo(IStrategy): |  | ||||||
|     """ |  | ||||||
|     This is the default strategy template with added functions for trade stacking / buying the same positions multiple times. |  | ||||||
|     It should function like this: |  | ||||||
|         Find good buys using indicators.  |  | ||||||
|         When a new buy occurs the strategy will enable rebuys of the pair like this: |  | ||||||
|             self.custom_info[metadata["pair"]]["rebuy"] = 1 |  | ||||||
|         Then, if the price should drop after the last buy within the timerange of rebuy_time_limit_hours, |  | ||||||
|         the same pair will be purchased again. This is intended to help with reducing possible losses. |  | ||||||
|         If the price only goes up after the first buy, the strategy won't buy this pair again, and after the time limit is over, |  | ||||||
|         look for other pairs to buy. |  | ||||||
|         For selling there is this flag: |  | ||||||
|             self.custom_info[metadata["pair"]]["resell"] = 1 |  | ||||||
|         which should simply sell all trades of this pair until none are left. |  | ||||||
|  |  | ||||||
|     You can set how many pairs you want to trade and how many trades you want to allow for a pair,  |  | ||||||
|     but you must make sure to set max_open_trades to the produce of max_open_pairs and max_open_trades in your configuration file. |  | ||||||
|     Also allow_position_stacking has to be set to true in the configuration file. |  | ||||||
|  |  | ||||||
|     For backtesting make sure to provide --enable-position-stacking as an argument in the command line. |  | ||||||
|     Backtesting will be slow. |  | ||||||
|     Hyperopt was not tested. |  | ||||||
|      |  | ||||||
|     # run the bot: |  | ||||||
|     freqtrade trade -c StackingConfig.json -s StackingDemo --db-url sqlite:///tradesv3_StackingDemo_dry-run.sqlite --dry-run |  | ||||||
|     """ |  | ||||||
|     # Strategy interface version - allow new iterations of the strategy interface. |  | ||||||
|     # Check the documentation or the Sample strategy to get the latest version. |  | ||||||
|     INTERFACE_VERSION = 2 |  | ||||||
|  |  | ||||||
|     # how many pairs to trade / trades per pair if allow_position_stacking is enabled |  | ||||||
|     max_open_pairs, max_trades_per_pair = 4, 3 |  | ||||||
|     # make sure to have this value in your config file |  | ||||||
|     max_open_trades = max_open_pairs * max_trades_per_pair |  | ||||||
|  |  | ||||||
|     # debugging |  | ||||||
|     print_trades = True |  | ||||||
|  |  | ||||||
|     # specify for how long to want to allow rebuys of this pair |  | ||||||
|     rebuy_time_limit_hours = 2 |  | ||||||
|  |  | ||||||
|     # store additional information needed for this strategy: |  | ||||||
|     custom_info = {} |  | ||||||
|     custom_num_open_pairs = {} |  | ||||||
|  |  | ||||||
|     # Minimal ROI designed for the strategy. |  | ||||||
|     # This attribute will be overridden if the config file contains "minimal_roi". |  | ||||||
|     minimal_roi = { |  | ||||||
|         "60": 0.01, |  | ||||||
|         "30": 0.02, |  | ||||||
|         "0": 0.001 |  | ||||||
|     } |  | ||||||
|  |  | ||||||
|     # Optimal stoploss designed for the strategy. |  | ||||||
|     # This attribute will be overridden if the config file contains "stoploss". |  | ||||||
|     stoploss = -0.10 |  | ||||||
|  |  | ||||||
|     # Trailing stoploss |  | ||||||
|     trailing_stop = False |  | ||||||
|     # trailing_only_offset_is_reached = False |  | ||||||
|     # trailing_stop_positive = 0.01 |  | ||||||
|     # trailing_stop_positive_offset = 0.0  # Disabled / not configured |  | ||||||
|  |  | ||||||
|     # Optimal timeframe for the strategy. |  | ||||||
|     timeframe = '5m' |  | ||||||
|  |  | ||||||
|     # Run "populate_indicators()" only for new candle. |  | ||||||
|     process_only_new_candles = False |  | ||||||
|  |  | ||||||
|     # These values can be overridden in the "ask_strategy" section in the config. |  | ||||||
|     use_sell_signal = True |  | ||||||
|     sell_profit_only = False |  | ||||||
|     ignore_roi_if_buy_signal = False |  | ||||||
|  |  | ||||||
|     # Number of candles the strategy requires before producing valid signals |  | ||||||
|     startup_candle_count: int = 30 |  | ||||||
|  |  | ||||||
|     # Optional order type mapping. |  | ||||||
|     order_types = { |  | ||||||
|         'buy': 'market', |  | ||||||
|         'sell': 'market', |  | ||||||
|         'stoploss': 'market', |  | ||||||
|         'stoploss_on_exchange': False |  | ||||||
|     } |  | ||||||
|  |  | ||||||
|     # Optional order time in force. |  | ||||||
|     order_time_in_force = { |  | ||||||
|         'buy': 'gtc', |  | ||||||
|         'sell': 'gtc' |  | ||||||
|     } |  | ||||||
|      |  | ||||||
|     plot_config = { |  | ||||||
|         # Main plot indicators (Moving averages, ...) |  | ||||||
|         'main_plot': { |  | ||||||
|             'tema': {}, |  | ||||||
|             'sar': {'color': 'white'}, |  | ||||||
|         }, |  | ||||||
|         'subplots': { |  | ||||||
|             # Subplots - each dict defines one additional plot |  | ||||||
|             "MACD": { |  | ||||||
|                 'macd': {'color': 'blue'}, |  | ||||||
|                 'macdsignal': {'color': 'orange'}, |  | ||||||
|             }, |  | ||||||
|             "RSI": { |  | ||||||
|                 'rsi': {'color': 'red'}, |  | ||||||
|             } |  | ||||||
|         } |  | ||||||
|     } |  | ||||||
|     def informative_pairs(self): |  | ||||||
|         """ |  | ||||||
|         Define additional, informative pair/interval combinations to be cached from the exchange. |  | ||||||
|         These pair/interval combinations are non-tradeable, unless they are part |  | ||||||
|         of the whitelist as well. |  | ||||||
|         For more information, please consult the documentation |  | ||||||
|         :return: List of tuples in the format (pair, interval) |  | ||||||
|             Sample: return [("ETH/USDT", "5m"), |  | ||||||
|                             ("BTC/USDT", "15m"), |  | ||||||
|                             ] |  | ||||||
|         """ |  | ||||||
|         return [] |  | ||||||
|  |  | ||||||
|     def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame: |  | ||||||
|         """ |  | ||||||
|         Adds several different TA indicators to the given DataFrame |  | ||||||
|  |  | ||||||
|         Performance Note: For the best performance be frugal on the number of indicators |  | ||||||
|         you are using. Let uncomment only the indicator you are using in your strategies |  | ||||||
|         or your hyperopt configuration, otherwise you will waste your memory and CPU usage. |  | ||||||
|         :param dataframe: Dataframe with data from the exchange |  | ||||||
|         :param metadata: Additional information, like the currently traded pair |  | ||||||
|         :return: a Dataframe with all mandatory indicators for the strategies |  | ||||||
|         """ |  | ||||||
|  |  | ||||||
|         # STACKING STUFF |  | ||||||
|  |  | ||||||
|         # confirm config |  | ||||||
|         self.max_trades_per_pair = self.config['max_open_trades'] / self.max_open_pairs |  | ||||||
|         if not self.config["allow_position_stacking"]: |  | ||||||
|             self.max_trades_per_pair = 1 |  | ||||||
|  |  | ||||||
|         # store number of open pairs |  | ||||||
|         self.custom_num_open_pairs = {"num_open_pairs": 0} |  | ||||||
|  |  | ||||||
|         # Store custom information for this pair: |  | ||||||
|         if not metadata["pair"] in self.custom_info: |  | ||||||
|             self.custom_info[metadata["pair"]] = {} |  | ||||||
|  |  | ||||||
|         if not "rebuy" in self.custom_info[metadata["pair"]]: |  | ||||||
|             # number of trades for this pair |  | ||||||
|             self.custom_info[metadata["pair"]]["num_trades"] = 0 |  | ||||||
|             # use rebuy/resell as buy-/sell- indicators |  | ||||||
|             self.custom_info[metadata["pair"]]["rebuy"] = 0 |  | ||||||
|             self.custom_info[metadata["pair"]]["resell"] = 0 |  | ||||||
|             # store latest open_date for this pair |  | ||||||
|             self.custom_info[metadata["pair"]]["last_open_date"] = datetime.now(timezone.utc) - timedelta(days=100) |  | ||||||
|             # stare the value of the latest open price for this pair |  | ||||||
|             self.custom_info[metadata["pair"]]["latest_open_rate"] = 0 |  | ||||||
|  |  | ||||||
|         # INDICATORS |  | ||||||
|  |  | ||||||
|         # Momentum Indicators |  | ||||||
|         # ------------------------------------ |  | ||||||
|  |  | ||||||
|         # ADX |  | ||||||
|         dataframe['adx'] = ta.ADX(dataframe) |  | ||||||
|  |  | ||||||
|         # # Plus Directional Indicator / Movement |  | ||||||
|         # dataframe['plus_dm'] = ta.PLUS_DM(dataframe) |  | ||||||
|         # dataframe['plus_di'] = ta.PLUS_DI(dataframe) |  | ||||||
|  |  | ||||||
|         # # Minus Directional Indicator / Movement |  | ||||||
|         # dataframe['minus_dm'] = ta.MINUS_DM(dataframe) |  | ||||||
|         # dataframe['minus_di'] = ta.MINUS_DI(dataframe) |  | ||||||
|  |  | ||||||
|         # # Aroon, Aroon Oscillator |  | ||||||
|         # aroon = ta.AROON(dataframe) |  | ||||||
|         # dataframe['aroonup'] = aroon['aroonup'] |  | ||||||
|         # dataframe['aroondown'] = aroon['aroondown'] |  | ||||||
|         # dataframe['aroonosc'] = ta.AROONOSC(dataframe) |  | ||||||
|  |  | ||||||
|         # # Awesome Oscillator |  | ||||||
|         # dataframe['ao'] = qtpylib.awesome_oscillator(dataframe) |  | ||||||
|  |  | ||||||
|         # # Keltner Channel |  | ||||||
|         # keltner = qtpylib.keltner_channel(dataframe) |  | ||||||
|         # dataframe["kc_upperband"] = keltner["upper"] |  | ||||||
|         # dataframe["kc_lowerband"] = keltner["lower"] |  | ||||||
|         # dataframe["kc_middleband"] = keltner["mid"] |  | ||||||
|         # dataframe["kc_percent"] = ( |  | ||||||
|         #     (dataframe["close"] - dataframe["kc_lowerband"]) / |  | ||||||
|         #     (dataframe["kc_upperband"] - dataframe["kc_lowerband"]) |  | ||||||
|         # ) |  | ||||||
|         # dataframe["kc_width"] = ( |  | ||||||
|         #     (dataframe["kc_upperband"] - dataframe["kc_lowerband"]) / dataframe["kc_middleband"] |  | ||||||
|         # ) |  | ||||||
|  |  | ||||||
|         # # Ultimate Oscillator |  | ||||||
|         # dataframe['uo'] = ta.ULTOSC(dataframe) |  | ||||||
|  |  | ||||||
|         # # Commodity Channel Index: values [Oversold:-100, Overbought:100] |  | ||||||
|         # dataframe['cci'] = ta.CCI(dataframe) |  | ||||||
|  |  | ||||||
|         # RSI |  | ||||||
|         dataframe['rsi'] = ta.RSI(dataframe) |  | ||||||
|  |  | ||||||
|         # # Inverse Fisher transform on RSI: values [-1.0, 1.0] (https://goo.gl/2JGGoy) |  | ||||||
|         # rsi = 0.1 * (dataframe['rsi'] - 50) |  | ||||||
|         # dataframe['fisher_rsi'] = (np.exp(2 * rsi) - 1) / (np.exp(2 * rsi) + 1) |  | ||||||
|  |  | ||||||
|         # # Inverse Fisher transform on RSI normalized: values [0.0, 100.0] (https://goo.gl/2JGGoy) |  | ||||||
|         # dataframe['fisher_rsi_norma'] = 50 * (dataframe['fisher_rsi'] + 1) |  | ||||||
|  |  | ||||||
|         # # Stochastic Slow |  | ||||||
|         # stoch = ta.STOCH(dataframe) |  | ||||||
|         # dataframe['slowd'] = stoch['slowd'] |  | ||||||
|         # dataframe['slowk'] = stoch['slowk'] |  | ||||||
|  |  | ||||||
|         # Stochastic Fast |  | ||||||
|         stoch_fast = ta.STOCHF(dataframe) |  | ||||||
|         dataframe['fastd'] = stoch_fast['fastd'] |  | ||||||
|         dataframe['fastk'] = stoch_fast['fastk'] |  | ||||||
|  |  | ||||||
|         # # Stochastic RSI |  | ||||||
|         # Please read https://github.com/freqtrade/freqtrade/issues/2961 before using this. |  | ||||||
|         # STOCHRSI is NOT aligned with tradingview, which may result in non-expected results. |  | ||||||
|         # stoch_rsi = ta.STOCHRSI(dataframe) |  | ||||||
|         # dataframe['fastd_rsi'] = stoch_rsi['fastd'] |  | ||||||
|         # dataframe['fastk_rsi'] = stoch_rsi['fastk'] |  | ||||||
|  |  | ||||||
|         # MACD |  | ||||||
|         macd = ta.MACD(dataframe) |  | ||||||
|         dataframe['macd'] = macd['macd'] |  | ||||||
|         dataframe['macdsignal'] = macd['macdsignal'] |  | ||||||
|         dataframe['macdhist'] = macd['macdhist'] |  | ||||||
|  |  | ||||||
|         # MFI |  | ||||||
|         dataframe['mfi'] = ta.MFI(dataframe) |  | ||||||
|  |  | ||||||
|         # # ROC |  | ||||||
|         # dataframe['roc'] = ta.ROC(dataframe) |  | ||||||
|  |  | ||||||
|         # Overlap Studies |  | ||||||
|         # ------------------------------------ |  | ||||||
|  |  | ||||||
|         # Bollinger Bands |  | ||||||
|         bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2) |  | ||||||
|         dataframe['bb_lowerband'] = bollinger['lower'] |  | ||||||
|         dataframe['bb_middleband'] = bollinger['mid'] |  | ||||||
|         dataframe['bb_upperband'] = bollinger['upper'] |  | ||||||
|         dataframe["bb_percent"] = ( |  | ||||||
|             (dataframe["close"] - dataframe["bb_lowerband"]) / |  | ||||||
|             (dataframe["bb_upperband"] - dataframe["bb_lowerband"]) |  | ||||||
|         ) |  | ||||||
|         dataframe["bb_width"] = ( |  | ||||||
|             (dataframe["bb_upperband"] - dataframe["bb_lowerband"]) / dataframe["bb_middleband"] |  | ||||||
|         ) |  | ||||||
|  |  | ||||||
|         # Bollinger Bands - Weighted (EMA based instead of SMA) |  | ||||||
|         # weighted_bollinger = qtpylib.weighted_bollinger_bands( |  | ||||||
|         #     qtpylib.typical_price(dataframe), window=20, stds=2 |  | ||||||
|         # ) |  | ||||||
|         # dataframe["wbb_upperband"] = weighted_bollinger["upper"] |  | ||||||
|         # dataframe["wbb_lowerband"] = weighted_bollinger["lower"] |  | ||||||
|         # dataframe["wbb_middleband"] = weighted_bollinger["mid"] |  | ||||||
|         # dataframe["wbb_percent"] = ( |  | ||||||
|         #     (dataframe["close"] - dataframe["wbb_lowerband"]) / |  | ||||||
|         #     (dataframe["wbb_upperband"] - dataframe["wbb_lowerband"]) |  | ||||||
|         # ) |  | ||||||
|         # dataframe["wbb_width"] = ( |  | ||||||
|         #     (dataframe["wbb_upperband"] - dataframe["wbb_lowerband"]) / dataframe["wbb_middleband"] |  | ||||||
|         # ) |  | ||||||
|  |  | ||||||
|         # # EMA - Exponential Moving Average |  | ||||||
|         # dataframe['ema3'] = ta.EMA(dataframe, timeperiod=3) |  | ||||||
|         # dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5) |  | ||||||
|         # dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10) |  | ||||||
|         # dataframe['ema21'] = ta.EMA(dataframe, timeperiod=21) |  | ||||||
|         # dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50) |  | ||||||
|         # dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100) |  | ||||||
|  |  | ||||||
|         # # SMA - Simple Moving Average |  | ||||||
|         # dataframe['sma3'] = ta.SMA(dataframe, timeperiod=3) |  | ||||||
|         # dataframe['sma5'] = ta.SMA(dataframe, timeperiod=5) |  | ||||||
|         # dataframe['sma10'] = ta.SMA(dataframe, timeperiod=10) |  | ||||||
|         # dataframe['sma21'] = ta.SMA(dataframe, timeperiod=21) |  | ||||||
|         # dataframe['sma50'] = ta.SMA(dataframe, timeperiod=50) |  | ||||||
|         # dataframe['sma100'] = ta.SMA(dataframe, timeperiod=100) |  | ||||||
|  |  | ||||||
|         # Parabolic SAR |  | ||||||
|         dataframe['sar'] = ta.SAR(dataframe) |  | ||||||
|  |  | ||||||
|         # TEMA - Triple Exponential Moving Average |  | ||||||
|         dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9) |  | ||||||
|  |  | ||||||
|         # Cycle Indicator |  | ||||||
|         # ------------------------------------ |  | ||||||
|         # Hilbert Transform Indicator - SineWave |  | ||||||
|         hilbert = ta.HT_SINE(dataframe) |  | ||||||
|         dataframe['htsine'] = hilbert['sine'] |  | ||||||
|         dataframe['htleadsine'] = hilbert['leadsine'] |  | ||||||
|  |  | ||||||
|         # Pattern Recognition - Bullish candlestick patterns |  | ||||||
|         # ------------------------------------ |  | ||||||
|         # # Hammer: values [0, 100] |  | ||||||
|         # dataframe['CDLHAMMER'] = ta.CDLHAMMER(dataframe) |  | ||||||
|         # # Inverted Hammer: values [0, 100] |  | ||||||
|         # dataframe['CDLINVERTEDHAMMER'] = ta.CDLINVERTEDHAMMER(dataframe) |  | ||||||
|         # # Dragonfly Doji: values [0, 100] |  | ||||||
|         # dataframe['CDLDRAGONFLYDOJI'] = ta.CDLDRAGONFLYDOJI(dataframe) |  | ||||||
|         # # Piercing Line: values [0, 100] |  | ||||||
|         # dataframe['CDLPIERCING'] = ta.CDLPIERCING(dataframe) # values [0, 100] |  | ||||||
|         # # Morningstar: values [0, 100] |  | ||||||
|         # dataframe['CDLMORNINGSTAR'] = ta.CDLMORNINGSTAR(dataframe) # values [0, 100] |  | ||||||
|         # # Three White Soldiers: values [0, 100] |  | ||||||
|         # dataframe['CDL3WHITESOLDIERS'] = ta.CDL3WHITESOLDIERS(dataframe) # values [0, 100] |  | ||||||
|  |  | ||||||
|         # Pattern Recognition - Bearish candlestick patterns |  | ||||||
|         # ------------------------------------ |  | ||||||
|         # # Hanging Man: values [0, 100] |  | ||||||
|         # dataframe['CDLHANGINGMAN'] = ta.CDLHANGINGMAN(dataframe) |  | ||||||
|         # # Shooting Star: values [0, 100] |  | ||||||
|         # dataframe['CDLSHOOTINGSTAR'] = ta.CDLSHOOTINGSTAR(dataframe) |  | ||||||
|         # # Gravestone Doji: values [0, 100] |  | ||||||
|         # dataframe['CDLGRAVESTONEDOJI'] = ta.CDLGRAVESTONEDOJI(dataframe) |  | ||||||
|         # # Dark Cloud Cover: values [0, 100] |  | ||||||
|         # dataframe['CDLDARKCLOUDCOVER'] = ta.CDLDARKCLOUDCOVER(dataframe) |  | ||||||
|         # # Evening Doji Star: values [0, 100] |  | ||||||
|         # dataframe['CDLEVENINGDOJISTAR'] = ta.CDLEVENINGDOJISTAR(dataframe) |  | ||||||
|         # # Evening Star: values [0, 100] |  | ||||||
|         # dataframe['CDLEVENINGSTAR'] = ta.CDLEVENINGSTAR(dataframe) |  | ||||||
|  |  | ||||||
|         # Pattern Recognition - Bullish/Bearish candlestick patterns |  | ||||||
|         # ------------------------------------ |  | ||||||
|         # # Three Line Strike: values [0, -100, 100] |  | ||||||
|         # dataframe['CDL3LINESTRIKE'] = ta.CDL3LINESTRIKE(dataframe) |  | ||||||
|         # # Spinning Top: values [0, -100, 100] |  | ||||||
|         # dataframe['CDLSPINNINGTOP'] = ta.CDLSPINNINGTOP(dataframe) # values [0, -100, 100] |  | ||||||
|         # # Engulfing: values [0, -100, 100] |  | ||||||
|         # dataframe['CDLENGULFING'] = ta.CDLENGULFING(dataframe) # values [0, -100, 100] |  | ||||||
|         # # Harami: values [0, -100, 100] |  | ||||||
|         # dataframe['CDLHARAMI'] = ta.CDLHARAMI(dataframe) # values [0, -100, 100] |  | ||||||
|         # # Three Outside Up/Down: values [0, -100, 100] |  | ||||||
|         # dataframe['CDL3OUTSIDE'] = ta.CDL3OUTSIDE(dataframe) # values [0, -100, 100] |  | ||||||
|         # # Three Inside Up/Down: values [0, -100, 100] |  | ||||||
|         # dataframe['CDL3INSIDE'] = ta.CDL3INSIDE(dataframe) # values [0, -100, 100] |  | ||||||
|  |  | ||||||
|         # # Chart type |  | ||||||
|         # # ------------------------------------ |  | ||||||
|         # # Heikin Ashi Strategy |  | ||||||
|         # heikinashi = qtpylib.heikinashi(dataframe) |  | ||||||
|         # dataframe['ha_open'] = heikinashi['open'] |  | ||||||
|         # dataframe['ha_close'] = heikinashi['close'] |  | ||||||
|         # dataframe['ha_high'] = heikinashi['high'] |  | ||||||
|         # dataframe['ha_low'] = heikinashi['low'] |  | ||||||
|  |  | ||||||
|         # Retrieve best bid and best ask from the orderbook |  | ||||||
|         # ------------------------------------ |  | ||||||
|         """ |  | ||||||
|         # first check if dataprovider is available |  | ||||||
|         if self.dp: |  | ||||||
|             if self.dp.runmode.value in ('live', 'dry_run'): |  | ||||||
|                 ob = self.dp.orderbook(metadata['pair'], 1) |  | ||||||
|                 dataframe['best_bid'] = ob['bids'][0][0] |  | ||||||
|                 dataframe['best_ask'] = ob['asks'][0][0] |  | ||||||
|         """ |  | ||||||
|  |  | ||||||
|         return dataframe |  | ||||||
|  |  | ||||||
|     def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame: |  | ||||||
|         """ |  | ||||||
|         Based on TA indicators, populates the buy signal for the given dataframe |  | ||||||
|         :param dataframe: DataFrame populated with indicators |  | ||||||
|         :param metadata: Additional information, like the currently traded pair |  | ||||||
|         :return: DataFrame with buy column |  | ||||||
|         """ |  | ||||||
|         dataframe.loc[ |  | ||||||
|             ( |  | ||||||
|                 ( |  | ||||||
|                     (qtpylib.crossed_above(dataframe['rsi'], 30)) &  # Signal: RSI crosses above 30 |  | ||||||
|                     (dataframe['tema'] <= dataframe['bb_middleband']) &  # Guard: tema below BB middle |  | ||||||
|                     (dataframe['tema'] > dataframe['tema'].shift(1)) |  # Guard: tema is raising |  | ||||||
|                     # use either buy signal or rebuy flag to trigger a buy |  | ||||||
|                     (self.custom_info[metadata["pair"]]["rebuy"] == 1) |  | ||||||
|                 ) & |  | ||||||
|                 (dataframe['volume'] > 0)  # Make sure Volume is not 0 |  | ||||||
|             ), |  | ||||||
|             'buy'] = 1 |  | ||||||
|  |  | ||||||
|         return dataframe |  | ||||||
|  |  | ||||||
|     def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame: |  | ||||||
|         """ |  | ||||||
|         Based on TA indicators, populates the sell signal for the given dataframe |  | ||||||
|         :param dataframe: DataFrame populated with indicators |  | ||||||
|         :param metadata: Additional information, like the currently traded pair |  | ||||||
|         :return: DataFrame with buy column |  | ||||||
|         """ |  | ||||||
|         dataframe.loc[ |  | ||||||
|             ( |  | ||||||
|                 ( |  | ||||||
|                     (qtpylib.crossed_above(dataframe['rsi'], 70)) &  # Signal: RSI crosses above 70 |  | ||||||
|                     (dataframe['tema'] > dataframe['bb_middleband']) &  # Guard: tema above BB middle |  | ||||||
|                     (dataframe['tema'] < dataframe['tema'].shift(1)) |  # Guard: tema is falling |  | ||||||
|                     # use either sell signal or resell flag to trigger a sell |  | ||||||
|                     (self.custom_info[metadata["pair"]]["resell"] == 1) |  | ||||||
|                 ) & |  | ||||||
|                 (dataframe['volume'] > 0)  # Make sure Volume is not 0 |  | ||||||
|             ), |  | ||||||
|             'sell'] = 1 |  | ||||||
|         return dataframe |  | ||||||
|  |  | ||||||
|     # use_custom_sell = True |  | ||||||
|  |  | ||||||
|     def custom_sell(self, pair: str, trade: 'Trade', current_time: 'datetime', current_rate: float, |  | ||||||
|                     current_profit: float, **kwargs) -> 'Optional[Union[str, bool]]': |  | ||||||
|         """ |  | ||||||
|         Custom sell signal logic indicating that specified position should be sold. Returning a |  | ||||||
|         string or True from this method is equal to setting sell signal on a candle at specified |  | ||||||
|         time. This method is not called when sell signal is set. |  | ||||||
|  |  | ||||||
|         This method should be overridden to create sell signals that depend on trade parameters. For |  | ||||||
|         example you could implement a sell relative to the candle when the trade was opened, |  | ||||||
|         or a custom 1:2 risk-reward ROI. |  | ||||||
|  |  | ||||||
|         Custom sell reason max length is 64. Exceeding characters will be removed. |  | ||||||
|  |  | ||||||
|         :param pair: Pair that's currently analyzed |  | ||||||
|         :param trade: trade object. |  | ||||||
|         :param current_time: datetime object, containing the current datetime |  | ||||||
|         :param current_rate: Rate, calculated based on pricing settings in ask_strategy. |  | ||||||
|         :param current_profit: Current profit (as ratio), calculated based on current_rate. |  | ||||||
|         :param **kwargs: Ensure to keep this here so updates to this won't break your strategy. |  | ||||||
|         :return: To execute sell, return a string with custom sell reason or True. Otherwise return |  | ||||||
|         None or False. |  | ||||||
|         """ |  | ||||||
|         # if self.custom_info[pair]["resell"] == 1: |  | ||||||
|         #    return 'resell' |  | ||||||
|         return None |  | ||||||
|  |  | ||||||
|     def confirm_trade_entry(self, pair: str, order_type: str, amount: float, rate: float, |  | ||||||
|                             time_in_force: str, current_time: 'datetime', **kwargs) -> bool: |  | ||||||
|         return_statement = True |  | ||||||
|  |  | ||||||
|         if self.config['allow_position_stacking']: |  | ||||||
|             return_statement = self.check_open_trades(pair, rate, current_time) |  | ||||||
|  |  | ||||||
|         # debugging |  | ||||||
|         if return_statement and self.print_trades: |  | ||||||
|             # use str.join() for speed |  | ||||||
|             out = (current_time.strftime("%c"), " Bought: ", pair, ", rate: ", str(rate), ", rebuy: ", str(self.custom_info[pair]["rebuy"]), ", trades: ", str(self.custom_info[pair]["num_trades"])) |  | ||||||
|             print("".join(out)) |  | ||||||
|  |  | ||||||
|         return return_statement |  | ||||||
|  |  | ||||||
|     def confirm_trade_exit(self, pair: str, trade: 'Trade', order_type: str, amount: float, |  | ||||||
|                            rate: float, time_in_force: str, sell_reason: str, |  | ||||||
|                            current_time: 'datetime', **kwargs) -> bool: |  | ||||||
|  |  | ||||||
|         if self.config["allow_position_stacking"]: |  | ||||||
|  |  | ||||||
|             # unlock open pairs limit after every sell |  | ||||||
|             self.unlock_reason('Open pairs limit') |  | ||||||
|  |  | ||||||
|             # unlock open pairs limit after last item is sold |  | ||||||
|             if self.custom_info[pair]["num_trades"] == 1: |  | ||||||
|                 # decrement open_pairs_count by 1 if last item is sold |  | ||||||
|                 self.custom_num_open_pairs["num_open_pairs"]-=1 |  | ||||||
|                 self.custom_info[pair]["resell"] = 0 |  | ||||||
|                 # reset rate |  | ||||||
|                 self.custom_info[pair]["latest_open_rate"] = 0.0 |  | ||||||
|                 self.unlock_reason('Trades per pair limit') |  | ||||||
|  |  | ||||||
|             # change dataframe to produce sell signal after a sell |  | ||||||
|             if self.custom_info[pair]["num_trades"] >= self.max_trades_per_pair: |  | ||||||
|                 self.custom_info[pair]["resell"] = 1 |  | ||||||
|  |  | ||||||
|             # decrement number of trades by 1: |  | ||||||
|             self.custom_info[pair]["num_trades"]-=1 |  | ||||||
|  |  | ||||||
|         # debugging stuff |  | ||||||
|         if self.print_trades: |  | ||||||
|             # use str.join() for speed |  | ||||||
|             out = (current_time.strftime("%c"), " Sold: ", pair, ", rate: ", str(rate),", profit: ", str(trade.calc_profit_ratio(rate)), ", resell: ", str(self.custom_info[pair]["resell"]), ", trades: ", str(self.custom_info[pair]["num_trades"])) |  | ||||||
|             print("".join(out)) |  | ||||||
|  |  | ||||||
|         return True |  | ||||||
|  |  | ||||||
|     def check_open_trades(self, pair: str, rate: float, current_time: datetime): |  | ||||||
|  |  | ||||||
|         # retrieve information about current open pairs |  | ||||||
|         tr_info = self.get_trade_information(pair) |  | ||||||
|  |  | ||||||
|         # update number of open trades for the pair |  | ||||||
|         self.custom_info[pair]["num_trades"] = tr_info[1] |  | ||||||
|         self.custom_num_open_pairs["num_open_pairs"] = len(tr_info[0]) |  | ||||||
|         # update value of the last open price |  | ||||||
|         self.custom_info[pair]["latest_open_rate"] = tr_info[2] |  | ||||||
|  |  | ||||||
|         # don't buy if we have enough trades for this pair |  | ||||||
|         if self.custom_info[pair]["num_trades"] >= self.max_trades_per_pair: |  | ||||||
|             # lock if we already have enough pairs open, will be unlocked after last item of a pair is sold |  | ||||||
|             self.lock_pair(pair, until=datetime.now(timezone.utc) + timedelta(days=100), reason='Trades per pair limit') |  | ||||||
|             self.custom_info[pair]["rebuy"] = 0 |  | ||||||
|             return False |  | ||||||
|  |  | ||||||
|         # don't buy if we have enough pairs |  | ||||||
|         if self.custom_num_open_pairs["num_open_pairs"] >= self.max_open_pairs: |  | ||||||
|             if not pair in tr_info[0]: |  | ||||||
|                 # lock if this pair is not in our list, will be unlocked after the next sell |  | ||||||
|                 self.lock_pair(pair, until=datetime.now(timezone.utc) + timedelta(days=100), reason='Open pairs limit') |  | ||||||
|                 self.custom_info[pair]["rebuy"] = 0 |  | ||||||
|                 return False |  | ||||||
|  |  | ||||||
|         # don't buy at a higher price, try until time limit is exceeded; skips if it's the first trade' |  | ||||||
|         if rate > self.custom_info[pair]["latest_open_rate"] and self.custom_info[pair]["latest_open_rate"] != 0.0: |  | ||||||
|             # how long do we want to try buying cheaper before we look for other pairs? |  | ||||||
|             if (current_time - self.custom_info[pair]['last_open_date']).seconds/3600 > self.rebuy_time_limit_hours: |  | ||||||
|                 self.custom_info[pair]["rebuy"] = 0 |  | ||||||
|                 self.unlock_reason('Open pairs limit') |  | ||||||
|             return False |  | ||||||
|  |  | ||||||
|         # set rebuy flag if num_trades < limit-1 |  | ||||||
|         if self.custom_info[pair]["num_trades"] < self.max_trades_per_pair-1: |  | ||||||
|             self.custom_info[pair]["rebuy"] = 1 |  | ||||||
|         else: |  | ||||||
|             self.custom_info[pair]["rebuy"] = 0 |  | ||||||
|  |  | ||||||
|         # update rate |  | ||||||
|         self.custom_info[pair]["latest_open_rate"] = rate |  | ||||||
|  |  | ||||||
|         #update date open |  | ||||||
|         self.custom_info[pair]["last_open_date"] = current_time |  | ||||||
|  |  | ||||||
|         # increment trade count by 1 |  | ||||||
|         self.custom_info[pair]["num_trades"]+=1 |  | ||||||
|  |  | ||||||
|         return True |  | ||||||
|  |  | ||||||
|     # custom function to help with the strategy |  | ||||||
|     def get_trade_information(self, pair:str): |  | ||||||
|  |  | ||||||
|         latest_open_rate, trade_count = 0, 0.0 |  | ||||||
|         # store all open pairs |  | ||||||
|         open_pairs = [] |  | ||||||
|  |  | ||||||
|         ### start nested function |  | ||||||
|         def compare_trade(trade: Trade): |  | ||||||
|             nonlocal trade_count, latest_open_rate, pair |  | ||||||
|             if trade.pair == pair: |  | ||||||
|                 # update latest_rate |  | ||||||
|                 latest_open_rate = trade.open_rate |  | ||||||
|                 trade_count+=1 |  | ||||||
|             return trade.pair |  | ||||||
|         ### end nested function |  | ||||||
|  |  | ||||||
|         # replaced for loop with map for speed |  | ||||||
|         open_pairs = map(compare_trade, Trade.get_open_trades()) |  | ||||||
|         # remove duplicates |  | ||||||
|         open_pairs = (list(dict.fromkeys(open_pairs))) |  | ||||||
|  |  | ||||||
|         #print(*open_pairs, sep="\n") |  | ||||||
|  |  | ||||||
|         # put this all together to reduce the amount of loops |  | ||||||
|         return open_pairs, trade_count, latest_open_rate |  | ||||||
		Reference in New Issue
	
	Block a user