Merge pull request #7544 from th0rntwig/prediction-shape
Remove constant labels from prediction
This commit is contained in:
commit
2e34aa9f04
@ -243,6 +243,7 @@ class FreqaiDataKitchen:
|
|||||||
self.data["filter_drop_index_training"] = drop_index
|
self.data["filter_drop_index_training"] = drop_index
|
||||||
|
|
||||||
else:
|
else:
|
||||||
|
filtered_df = self.check_pred_labels(filtered_df)
|
||||||
# we are backtesting so we need to preserve row number to send back to strategy,
|
# we are backtesting so we need to preserve row number to send back to strategy,
|
||||||
# so now we use do_predict to avoid any prediction based on a NaN
|
# so now we use do_predict to avoid any prediction based on a NaN
|
||||||
drop_index = pd.isnull(filtered_df).any(axis=1)
|
drop_index = pd.isnull(filtered_df).any(axis=1)
|
||||||
@ -462,6 +463,24 @@ class FreqaiDataKitchen:
|
|||||||
|
|
||||||
return df
|
return df
|
||||||
|
|
||||||
|
def check_pred_labels(self, df_predictions: DataFrame) -> DataFrame:
|
||||||
|
"""
|
||||||
|
Check that prediction feature labels match training feature labels.
|
||||||
|
:params:
|
||||||
|
:df_predictions: incoming predictions
|
||||||
|
"""
|
||||||
|
train_labels = self.data_dictionary["train_features"].columns
|
||||||
|
pred_labels = df_predictions.columns
|
||||||
|
num_diffs = len(pred_labels.difference(train_labels))
|
||||||
|
if num_diffs != 0:
|
||||||
|
df_predictions = df_predictions[train_labels]
|
||||||
|
logger.warning(
|
||||||
|
f"Removed {num_diffs} features from prediction features, "
|
||||||
|
f"these were likely considered constant values during most recent training."
|
||||||
|
)
|
||||||
|
|
||||||
|
return df_predictions
|
||||||
|
|
||||||
def principal_component_analysis(self) -> None:
|
def principal_component_analysis(self) -> None:
|
||||||
"""
|
"""
|
||||||
Performs Principal Component Analysis on the data for dimensionality reduction
|
Performs Principal Component Analysis on the data for dimensionality reduction
|
||||||
|
@ -107,6 +107,8 @@ def make_unfiltered_dataframe(mocker, freqai_conf):
|
|||||||
unfiltered_dataframe = freqai.dk.use_strategy_to_populate_indicators(
|
unfiltered_dataframe = freqai.dk.use_strategy_to_populate_indicators(
|
||||||
strategy, corr_dataframes, base_dataframes, freqai.dk.pair
|
strategy, corr_dataframes, base_dataframes, freqai.dk.pair
|
||||||
)
|
)
|
||||||
|
for i in range(5):
|
||||||
|
unfiltered_dataframe[f'constant_{i}'] = i
|
||||||
|
|
||||||
unfiltered_dataframe = freqai.dk.slice_dataframe(new_timerange, unfiltered_dataframe)
|
unfiltered_dataframe = freqai.dk.slice_dataframe(new_timerange, unfiltered_dataframe)
|
||||||
|
|
||||||
|
@ -157,7 +157,7 @@ def test_extract_data_and_train_model_Classifiers(mocker, freqai_conf, model):
|
|||||||
("CatboostClassifier", 6, "freqai_test_classifier")
|
("CatboostClassifier", 6, "freqai_test_classifier")
|
||||||
],
|
],
|
||||||
)
|
)
|
||||||
def test_start_backtesting(mocker, freqai_conf, model, num_files, strat):
|
def test_start_backtesting(mocker, freqai_conf, model, num_files, strat, caplog):
|
||||||
freqai_conf.get("freqai", {}).update({"save_backtest_models": True})
|
freqai_conf.get("freqai", {}).update({"save_backtest_models": True})
|
||||||
freqai_conf['runmode'] = RunMode.BACKTEST
|
freqai_conf['runmode'] = RunMode.BACKTEST
|
||||||
Trade.use_db = False
|
Trade.use_db = False
|
||||||
@ -181,12 +181,23 @@ def test_start_backtesting(mocker, freqai_conf, model, num_files, strat):
|
|||||||
corr_df, base_df = freqai.dd.get_base_and_corr_dataframes(sub_timerange, "LTC/BTC", freqai.dk)
|
corr_df, base_df = freqai.dd.get_base_and_corr_dataframes(sub_timerange, "LTC/BTC", freqai.dk)
|
||||||
|
|
||||||
df = freqai.dk.use_strategy_to_populate_indicators(strategy, corr_df, base_df, "LTC/BTC")
|
df = freqai.dk.use_strategy_to_populate_indicators(strategy, corr_df, base_df, "LTC/BTC")
|
||||||
|
for i in range(5):
|
||||||
|
df[f'%-constant_{i}'] = i
|
||||||
|
# df.loc[:, f'%-constant_{i}'] = i
|
||||||
|
|
||||||
metadata = {"pair": "LTC/BTC"}
|
metadata = {"pair": "LTC/BTC"}
|
||||||
freqai.start_backtesting(df, metadata, freqai.dk)
|
freqai.start_backtesting(df, metadata, freqai.dk)
|
||||||
model_folders = [x for x in freqai.dd.full_path.iterdir() if x.is_dir()]
|
model_folders = [x for x in freqai.dd.full_path.iterdir() if x.is_dir()]
|
||||||
|
|
||||||
assert len(model_folders) == num_files
|
assert len(model_folders) == num_files
|
||||||
|
assert log_has_re(
|
||||||
|
"Removed features ",
|
||||||
|
caplog,
|
||||||
|
)
|
||||||
|
assert log_has_re(
|
||||||
|
"Removed 5 features from prediction features, ",
|
||||||
|
caplog,
|
||||||
|
)
|
||||||
Backtesting.cleanup()
|
Backtesting.cleanup()
|
||||||
shutil.rmtree(Path(freqai.dk.full_path))
|
shutil.rmtree(Path(freqai.dk.full_path))
|
||||||
|
|
||||||
@ -256,6 +267,7 @@ def test_start_backtesting_from_existing_folder(mocker, freqai_conf, caplog):
|
|||||||
corr_df, base_df = freqai.dd.get_base_and_corr_dataframes(sub_timerange, "LTC/BTC", freqai.dk)
|
corr_df, base_df = freqai.dd.get_base_and_corr_dataframes(sub_timerange, "LTC/BTC", freqai.dk)
|
||||||
|
|
||||||
df = freqai.dk.use_strategy_to_populate_indicators(strategy, corr_df, base_df, "LTC/BTC")
|
df = freqai.dk.use_strategy_to_populate_indicators(strategy, corr_df, base_df, "LTC/BTC")
|
||||||
|
|
||||||
freqai.start_backtesting(df, metadata, freqai.dk)
|
freqai.start_backtesting(df, metadata, freqai.dk)
|
||||||
|
|
||||||
assert log_has_re(
|
assert log_has_re(
|
||||||
@ -312,6 +324,7 @@ def test_follow_mode(mocker, freqai_conf):
|
|||||||
freqai.dd.load_all_pair_histories(timerange, freqai.dk)
|
freqai.dd.load_all_pair_histories(timerange, freqai.dk)
|
||||||
|
|
||||||
df = strategy.dp.get_pair_dataframe('ADA/BTC', '5m')
|
df = strategy.dp.get_pair_dataframe('ADA/BTC', '5m')
|
||||||
|
|
||||||
freqai.start_live(df, metadata, strategy, freqai.dk)
|
freqai.start_live(df, metadata, strategy, freqai.dk)
|
||||||
|
|
||||||
assert len(freqai.dk.return_dataframe.index) == 5702
|
assert len(freqai.dk.return_dataframe.index) == 5702
|
||||||
|
Loading…
Reference in New Issue
Block a user