Update backtesting.py
This commit is contained in:
parent
482b85182a
commit
2dc3d6a6b8
@ -104,6 +104,8 @@ class Backtesting(object):
|
||||
self.backslap_show_trades = False # prints trades in addition to summary report
|
||||
self.backslap_save_trades = True # saves trades as a pretty table to backslap.txt
|
||||
|
||||
self.stop_stops: int = 9999 # stop back testing any pair with this many stops, set to 999999 to not hit
|
||||
|
||||
|
||||
@staticmethod
|
||||
def get_timeframe(data: Dict[str, DataFrame]) -> Tuple[arrow.Arrow, arrow.Arrow]:
|
||||
@ -389,7 +391,6 @@ class Backtesting(object):
|
||||
- Profit
|
||||
- trade duration
|
||||
- profit abs
|
||||
|
||||
:param bslap_results Dataframe
|
||||
:return: bslap_results Dataframe
|
||||
"""
|
||||
@ -413,45 +414,64 @@ class Backtesting(object):
|
||||
if debug:
|
||||
from pandas import set_option
|
||||
set_option('display.max_rows', 5000)
|
||||
set_option('display.max_columns', 10)
|
||||
set_option('display.max_columns', 20)
|
||||
pd.set_option('display.width', 1000)
|
||||
pd.set_option('max_colwidth', 40)
|
||||
pd.set_option('precision', 12)
|
||||
|
||||
# # Get before
|
||||
# csv = "cryptosher_before_debug"
|
||||
# bslap_results_df.to_csv(csv, sep='\t', encoding='utf-8')
|
||||
|
||||
bslap_results_df.to_csv(csv, sep='\t', encoding='utf-8')
|
||||
|
||||
bslap_results_df['trade_duration'] = bslap_results_df['close_time'] - bslap_results_df['open_time']
|
||||
# if debug:
|
||||
# print(bslap_results_df[['open_time', 'close_time', 'trade_duration']])
|
||||
|
||||
## Spends, Takes, Profit, Absolute Profit
|
||||
print(bslap_results_df)
|
||||
# Buy Price
|
||||
bslap_results_df['buy_sum'] = stake * bslap_results_df['open_rate']
|
||||
bslap_results_df['buy_fee'] = bslap_results_df['buy_sum'] * open_fee
|
||||
bslap_results_df['buy_spend'] = bslap_results_df['buy_sum'] + bslap_results_df['buy_fee']
|
||||
bslap_results_df['buy_vol'] = stake / bslap_results_df['open_rate'] # How many target are we buying
|
||||
bslap_results_df['buy_fee'] = stake * open_fee
|
||||
bslap_results_df['buy_spend'] = stake + bslap_results_df['buy_fee'] # How much we're spending
|
||||
|
||||
# Sell price
|
||||
bslap_results_df['sell_sum'] = stake * bslap_results_df['close_rate']
|
||||
bslap_results_df['sell_sum'] = bslap_results_df['buy_vol'] * bslap_results_df['close_rate']
|
||||
bslap_results_df['sell_fee'] = bslap_results_df['sell_sum'] * close_fee
|
||||
bslap_results_df['sell_take'] = bslap_results_df['sell_sum'] - bslap_results_df['sell_fee']
|
||||
# profit_percent
|
||||
bslap_results_df['profit_percent'] = bslap_results_df['sell_take'] / bslap_results_df['buy_spend'] - 1
|
||||
bslap_results_df['profit_percent'] = (bslap_results_df['sell_take'] - bslap_results_df['buy_spend']) \
|
||||
/ bslap_results_df['buy_spend']
|
||||
# Absolute profit
|
||||
bslap_results_df['profit_abs'] = bslap_results_df['sell_take'] - bslap_results_df['buy_spend']
|
||||
|
||||
# # Get After
|
||||
# csv="cryptosher_after_debug"
|
||||
# bslap_results_df.to_csv(csv, sep='\t', encoding='utf-8')
|
||||
|
||||
|
||||
if debug:
|
||||
print("\n")
|
||||
print(bslap_results_df[
|
||||
['buy_sum', 'buy_fee', 'buy_spend', 'sell_sum','sell_fee', 'sell_take', 'profit_percent', 'profit_abs', 'exit_type']])
|
||||
['buy_vol', 'buy_fee', 'buy_spend', 'sell_sum','sell_fee', 'sell_take', 'profit_percent', 'profit_abs', 'exit_type']])
|
||||
|
||||
return bslap_results_df
|
||||
|
||||
def np_get_t_open_ind(self, np_buy_arr, t_exit_ind: int, np_buy_arr_len: int):
|
||||
def np_get_t_open_ind(self, np_buy_arr, t_exit_ind: int, np_buy_arr_len: int, stop_stops: int, stop_stops_count: int):
|
||||
import utils_find_1st as utf1st
|
||||
"""
|
||||
The purpose of this def is to return the next "buy" = 1
|
||||
after t_exit_ind.
|
||||
|
||||
This function will also check is the stop limit for the pair has been reached.
|
||||
if stop_stops is the limit and stop_stops_count it the number of times the stop has been hit.
|
||||
|
||||
t_exit_ind is the index the last trade exited on
|
||||
or 0 if first time around this loop.
|
||||
|
||||
stop_stops i
|
||||
"""
|
||||
debug = self.debug
|
||||
|
||||
# Timers, to be called if in debug
|
||||
def s():
|
||||
st = timeit.default_timer()
|
||||
@ -478,6 +498,11 @@ class Backtesting(object):
|
||||
if t_open_ind == np_buy_arr_len -1 : # If buy found on last candle ignore, there is no OPEN in next to use
|
||||
t_open_ind = -1 # -1 ends the loop
|
||||
|
||||
if stop_stops_count >= stop_stops: # if maximum number of stops allowed in a pair is hit, exit loop
|
||||
t_open_ind = -1 # -1 ends the loop
|
||||
if debug:
|
||||
print("Max stop limit ", stop_stops, "reached. Moving to next pair")
|
||||
|
||||
return t_open_ind
|
||||
|
||||
def backslap_pair(self, ticker_data, pair):
|
||||
@ -564,6 +589,9 @@ class Backtesting(object):
|
||||
t_exit_ind = 0 # Start loop from first index
|
||||
t_exit_last = 0 # To test for exit
|
||||
|
||||
stop_stops = self.stop_stops # Int of stops within a pair to stop trading a pair at
|
||||
stop_stops_count = 0 # stop counter per pair
|
||||
|
||||
st = s() # Start timer for processing dataframe
|
||||
if debug:
|
||||
print('Processing:', pair)
|
||||
@ -604,11 +632,13 @@ class Backtesting(object):
|
||||
Requires: np_buy_arr - a 1D array of the 'buy' column. To find next "1"
|
||||
Required: t_exit_ind - Either 0, first loop. Or The index we last exited on
|
||||
Requires: np_buy_arr_len - length of pair array.
|
||||
Requires: stops_stops - number of stops allowed before stop trading a pair
|
||||
Requires: stop_stop_counts - count of stops hit in the pair
|
||||
Provides: The next "buy" index after t_exit_ind
|
||||
|
||||
If -1 is returned no buy has been found in remainder of array, skip to exit loop
|
||||
'''
|
||||
t_open_ind = self.np_get_t_open_ind(np_buy_arr, t_exit_ind, np_buy_arr_len)
|
||||
t_open_ind = self.np_get_t_open_ind(np_buy_arr, t_exit_ind, np_buy_arr_len, stop_stops, stop_stops_count)
|
||||
|
||||
if debug:
|
||||
print("\n(0) numpy debug \nnp_get_t_open, has returned the next valid buy index as", t_open_ind)
|
||||
@ -971,6 +1001,9 @@ class Backtesting(object):
|
||||
# append the dict to the list and print list
|
||||
bslap_pair_results.append(bslap_result)
|
||||
|
||||
if t_exit_type is "stop":
|
||||
stop_stops_count = stop_stops_count + 1
|
||||
|
||||
if debug:
|
||||
print("The trade dict is: \n", bslap_result)
|
||||
print("Trades dicts in list after append are: \n ", bslap_pair_results)
|
||||
@ -1008,6 +1041,8 @@ class Backtesting(object):
|
||||
|
||||
timerange = Arguments.parse_timerange(None if self.config.get(
|
||||
'timerange') is None else str(self.config.get('timerange')))
|
||||
|
||||
ld_files = self.s()
|
||||
data = optimize.load_data(
|
||||
self.config['datadir'],
|
||||
pairs=pairs,
|
||||
@ -1028,6 +1063,8 @@ class Backtesting(object):
|
||||
max_open_trades = 0
|
||||
|
||||
preprocessed = self.tickerdata_to_dataframe(data)
|
||||
t_t = self.f(ld_files)
|
||||
print("Load from json to file to df in mem took", t_t)
|
||||
|
||||
# Print timeframe
|
||||
min_date, max_date = self.get_timeframe(preprocessed)
|
||||
@ -1092,18 +1129,16 @@ class Backtesting(object):
|
||||
results
|
||||
)
|
||||
)
|
||||
|
||||
## TODO. Catch open trades for this report.
|
||||
# logger.info(
|
||||
# '\n=============================================== '
|
||||
# 'LEFT OPEN TRADES REPORT'
|
||||
# ' ===============================================\n'
|
||||
# '%s',
|
||||
# self._generate_text_table(
|
||||
# data,
|
||||
# results.loc[results.open_at_end]
|
||||
# )
|
||||
# )
|
||||
logger.info(
|
||||
'\n=============================================== '
|
||||
'LEFT OPEN TRADES REPORT'
|
||||
' ===============================================\n'
|
||||
'%s',
|
||||
self._generate_text_table(
|
||||
data,
|
||||
results.loc[results.open_at_end]
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
def setup_configuration(args: Namespace) -> Dict[str, Any]:
|
||||
|
Loading…
Reference in New Issue
Block a user