backtesting rollbacked to develop branch
This commit is contained in:
parent
21f4b85c7f
commit
2d432bfa95
@ -6,11 +6,13 @@ This module contains the backtesting logic
|
||||
import logging
|
||||
import operator
|
||||
from argparse import Namespace
|
||||
from copy import deepcopy
|
||||
from datetime import datetime, timedelta
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, NamedTuple, Optional, Tuple
|
||||
|
||||
import arrow
|
||||
from pandas import DataFrame, to_datetime
|
||||
from pandas import DataFrame
|
||||
from tabulate import tabulate
|
||||
|
||||
import freqtrade.optimize as optimize
|
||||
@ -19,15 +21,9 @@ from freqtrade.arguments import Arguments
|
||||
from freqtrade.configuration import Configuration
|
||||
from freqtrade.exchange import Exchange
|
||||
from freqtrade.misc import file_dump_json
|
||||
from freqtrade.optimize.backslapping import Backslapping
|
||||
from freqtrade.persistence import Trade
|
||||
from freqtrade.strategy.interface import SellType
|
||||
from freqtrade.strategy.resolver import IStrategy, StrategyResolver
|
||||
from collections import OrderedDict
|
||||
import timeit
|
||||
from time import sleep
|
||||
|
||||
import pdb
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@ -61,11 +57,6 @@ class Backtesting(object):
|
||||
|
||||
def __init__(self, config: Dict[str, Any]) -> None:
|
||||
self.config = config
|
||||
self.strategy: IStrategy = StrategyResolver(self.config).strategy
|
||||
self.ticker_interval = self.strategy.ticker_interval
|
||||
self.tickerdata_to_dataframe = self.strategy.tickerdata_to_dataframe
|
||||
self.advise_buy = self.strategy.advise_buy
|
||||
self.advise_sell = self.strategy.advise_sell
|
||||
|
||||
# Reset keys for backtesting
|
||||
self.config['exchange']['key'] = ''
|
||||
@ -73,51 +64,35 @@ class Backtesting(object):
|
||||
self.config['exchange']['password'] = ''
|
||||
self.config['exchange']['uid'] = ''
|
||||
self.config['dry_run'] = True
|
||||
self.strategylist: List[IStrategy] = []
|
||||
if self.config.get('strategy_list', None):
|
||||
# Force one interval
|
||||
self.ticker_interval = str(self.config.get('ticker_interval'))
|
||||
for strat in list(self.config['strategy_list']):
|
||||
stratconf = deepcopy(self.config)
|
||||
stratconf['strategy'] = strat
|
||||
self.strategylist.append(StrategyResolver(stratconf).strategy)
|
||||
|
||||
else:
|
||||
# only one strategy
|
||||
strat = StrategyResolver(self.config).strategy
|
||||
|
||||
self.strategylist.append(StrategyResolver(self.config).strategy)
|
||||
# Load one strategy
|
||||
self._set_strategy(self.strategylist[0])
|
||||
|
||||
self.exchange = Exchange(self.config)
|
||||
self.fee = self.exchange.get_fee()
|
||||
|
||||
self.stop_loss_value = self.strategy.stoploss
|
||||
|
||||
#### backslap config
|
||||
'''
|
||||
Numpy arrays are used for 100x speed up
|
||||
We requires setting Int values for
|
||||
buy stop triggers and stop calculated on
|
||||
# buy 0 - open 1 - close 2 - sell 3 - high 4 - low 5 - stop 6
|
||||
'''
|
||||
self.np_buy: int = 0
|
||||
self.np_open: int = 1
|
||||
self.np_close: int = 2
|
||||
self.np_sell: int = 3
|
||||
self.np_high: int = 4
|
||||
self.np_low: int = 5
|
||||
self.np_stop: int = 6
|
||||
self.np_bto: int = self.np_close # buys_triggered_on - should be close
|
||||
self.np_bco: int = self.np_open # buys calculated on - open of the next candle.
|
||||
self.np_sto: int = self.np_low # stops_triggered_on - Should be low, FT uses close
|
||||
self.np_sco: int = self.np_stop # stops_calculated_on - Should be stop, FT uses close
|
||||
# self.np_sto: int = self.np_close # stops_triggered_on - Should be low, FT uses close
|
||||
# self.np_sco: int = self.np_close # stops_calculated_on - Should be stop, FT uses close
|
||||
|
||||
if 'backslap' in config:
|
||||
self.use_backslap = config['backslap'] # Enable backslap - if false Orginal code is executed.
|
||||
else:
|
||||
self.use_backslap = False
|
||||
|
||||
logger.info("using backslap: {}".format(self.use_backslap))
|
||||
|
||||
self.debug = False # Main debug enable, very print heavy, enable 2 loops recommended
|
||||
self.debug_timing = False # Stages within Backslap
|
||||
self.debug_2loops = False # Limit each pair to two loops, useful when debugging
|
||||
self.debug_vector = False # Debug vector calcs
|
||||
self.debug_timing_main_loop = False # print overall timing per pair - works in Backtest and Backslap
|
||||
|
||||
self.backslap_show_trades = False # prints trades in addition to summary report
|
||||
self.backslap_save_trades = True # saves trades as a pretty table to backslap.txt
|
||||
|
||||
self.stop_stops: int = 9999 # stop back testing any pair with this many stops, set to 999999 to not hit
|
||||
|
||||
self.backslap = Backslapping(config)
|
||||
def _set_strategy(self, strategy):
|
||||
"""
|
||||
Load strategy into backtesting
|
||||
"""
|
||||
self.strategy = strategy
|
||||
self.ticker_interval = self.config.get('ticker_interval')
|
||||
self.tickerdata_to_dataframe = strategy.tickerdata_to_dataframe
|
||||
self.advise_buy = strategy.advise_buy
|
||||
self.advise_sell = strategy.advise_sell
|
||||
|
||||
@staticmethod
|
||||
def get_timeframe(data: Dict[str, DataFrame]) -> Tuple[arrow.Arrow, arrow.Arrow]:
|
||||
@ -131,7 +106,7 @@ class Backtesting(object):
|
||||
for frame in data.values()
|
||||
]
|
||||
return min(timeframe, key=operator.itemgetter(0))[0], \
|
||||
max(timeframe, key=operator.itemgetter(1))[1]
|
||||
max(timeframe, key=operator.itemgetter(1))[1]
|
||||
|
||||
def _generate_text_table(self, data: Dict[str, Dict], results: DataFrame) -> str:
|
||||
"""
|
||||
@ -142,13 +117,10 @@ class Backtesting(object):
|
||||
|
||||
floatfmt = ('s', 'd', '.2f', '.2f', '.8f', 'd', '.1f', '.1f')
|
||||
tabular_data = []
|
||||
# headers = ['pair', 'buy count', 'avg profit %', 'cum profit %',
|
||||
# 'total profit ' + stake_currency, 'avg duration', 'profit', 'loss', 'total loss ab', 'total profit ab', 'Risk Reward Ratio', 'Win Rate']
|
||||
headers = ['pair', 'buy count', 'avg profit %', 'cum profit %',
|
||||
'total profit ' + stake_currency, 'avg duration', 'profit', 'loss', 'RRR', 'Win Rate %', 'Required RR']
|
||||
'total profit ' + stake_currency, 'avg duration', 'profit', 'loss']
|
||||
for pair in data:
|
||||
result = results[results.pair == pair]
|
||||
win_rate = (len(result[result.profit_abs > 0]) / len(result.index)) if (len(result.index) > 0) else None
|
||||
tabular_data.append([
|
||||
pair,
|
||||
len(result.index),
|
||||
@ -158,12 +130,7 @@ class Backtesting(object):
|
||||
str(timedelta(
|
||||
minutes=round(result.trade_duration.mean()))) if not result.empty else '0:00',
|
||||
len(result[result.profit_abs > 0]),
|
||||
len(result[result.profit_abs < 0]),
|
||||
# result[result.profit_abs < 0]['profit_abs'].sum(),
|
||||
# result[result.profit_abs > 0]['profit_abs'].sum(),
|
||||
abs(1 / ((result[result.profit_abs < 0]['profit_abs'].sum() / len(result[result.profit_abs < 0])) / (result[result.profit_abs > 0]['profit_abs'].sum() / len(result[result.profit_abs > 0])))),
|
||||
win_rate * 100 if win_rate else "nan",
|
||||
((1 / win_rate) - 1) if win_rate else "nan"
|
||||
len(result[result.profit_abs < 0])
|
||||
])
|
||||
|
||||
# Append Total
|
||||
@ -180,88 +147,42 @@ class Backtesting(object):
|
||||
])
|
||||
return tabulate(tabular_data, headers=headers, floatfmt=floatfmt, tablefmt="pipe")
|
||||
|
||||
|
||||
def _generate_text_table_edge_positioning(self, data: Dict[str, Dict], results: DataFrame) -> str:
|
||||
"""
|
||||
This is a temporary version of edge positioning calculation.
|
||||
The function will be eventually moved to a plugin called Edge in order to calculate necessary WR, RRR and
|
||||
other indictaors related to money management periodically (each X minutes) and keep it in a storage.
|
||||
The calulation will be done per pair and per strategy.
|
||||
"""
|
||||
|
||||
tabular_data = []
|
||||
headers = ['Number of trades', 'RRR', 'Win Rate %', 'Required RR']
|
||||
|
||||
###
|
||||
# The algorithm should be:
|
||||
# 1) Removing outliers from dataframe. i.e. all profit_percent which are outside (mean -+ (2 * (standard deviation))).
|
||||
# 2) Removing pairs with less than X trades (X defined in config).
|
||||
# 3) Calculating RRR and WR.
|
||||
# 4) Removing pairs for which WR and RRR are not in an acceptable range (e.x. WR > 95%).
|
||||
# 5) Sorting the result based on the delta between required RR and RRR.
|
||||
|
||||
# Here we assume initial data in order to calculate position size.
|
||||
# these values will be replaced by exchange info or config
|
||||
for pair in data:
|
||||
result = results[results.pair == pair]
|
||||
|
||||
# WinRate is calculated as follows: (Number of profitable trades) / (Total Trades)
|
||||
win_rate = (len(result[result.profit_abs > 0]) / len(result.index)) if (len(result.index) > 0) else None
|
||||
|
||||
# Risk Reward Ratio is calculated as follows: 1 / ((total loss on losing trades / number of losing trades) / (total gain on profitable trades / number of winning trades))
|
||||
risk_reward_ratio = abs(1 / ((result[result.profit_abs < 0]['profit_abs'].sum() / len(result[result.profit_abs < 0])) / (result[result.profit_abs > 0]['profit_abs'].sum() / len(result[result.profit_abs > 0]))))
|
||||
|
||||
# Required Reward Ratio is (1 / WinRate) - 1
|
||||
required_risk_reward = ((1 / win_rate) - 1) if win_rate else None
|
||||
|
||||
#pdb.set_trace()
|
||||
|
||||
tabular_data.append([
|
||||
pair,
|
||||
len(result.index),
|
||||
risk_reward_ratio,
|
||||
win_rate * 100 if win_rate else "nan",
|
||||
required_risk_reward
|
||||
])
|
||||
|
||||
# for pair in data:
|
||||
# result = results[results.pair == pair]
|
||||
# win_rate = (len(result[result.profit_abs > 0]) / len(result.index)) if (len(result.index) > 0) else None
|
||||
# tabular_data.append([
|
||||
# pair,
|
||||
# #len(result.index),
|
||||
# #result.profit_percent.mean() * 100.0,
|
||||
# #result.profit_percent.sum() * 100.0,
|
||||
# #result.profit_abs.sum(),
|
||||
# str(timedelta(
|
||||
# minutes=round(result.trade_duration.mean()))) if not result.empty else '0:00',
|
||||
# len(result[result.profit_abs > 0]),
|
||||
# len(result[result.profit_abs < 0]),
|
||||
# # result[result.profit_abs < 0]['profit_abs'].sum(),
|
||||
# # result[result.profit_abs > 0]['profit_abs'].sum(),
|
||||
# abs(1 / ((result[result.profit_abs < 0]['profit_abs'].sum() / len(result[result.profit_abs < 0])) / (result[result.profit_abs > 0]['profit_abs'].sum() / len(result[result.profit_abs > 0])))),
|
||||
# win_rate * 100 if win_rate else "nan",
|
||||
# ((1 / win_rate) - 1) if win_rate else "nan"
|
||||
# ])
|
||||
|
||||
#return tabulate(tabular_data, headers=headers, floatfmt=floatfmt, tablefmt="pipe")
|
||||
return tabulate(tabular_data, headers=headers, tablefmt="pipe")
|
||||
|
||||
|
||||
|
||||
|
||||
def _generate_text_table_sell_reason(self, data: Dict[str, Dict], results: DataFrame) -> str:
|
||||
"""
|
||||
Generate small table outlining Backtest results
|
||||
"""
|
||||
|
||||
tabular_data = []
|
||||
headers = ['Sell Reason', 'Count']
|
||||
for reason, count in results['sell_reason'].value_counts().iteritems():
|
||||
tabular_data.append([reason.value, count])
|
||||
tabular_data.append([reason.value, count])
|
||||
return tabulate(tabular_data, headers=headers, tablefmt="pipe")
|
||||
|
||||
def _store_backtest_result(self, recordfilename: Optional[str], results: DataFrame) -> None:
|
||||
def _generate_text_table_strategy(self, all_results: dict) -> str:
|
||||
"""
|
||||
Generate summary table per strategy
|
||||
"""
|
||||
stake_currency = str(self.config.get('stake_currency'))
|
||||
|
||||
floatfmt = ('s', 'd', '.2f', '.2f', '.8f', 'd', '.1f', '.1f')
|
||||
tabular_data = []
|
||||
headers = ['Strategy', 'buy count', 'avg profit %', 'cum profit %',
|
||||
'total profit ' + stake_currency, 'avg duration', 'profit', 'loss']
|
||||
for strategy, results in all_results.items():
|
||||
tabular_data.append([
|
||||
strategy,
|
||||
len(results.index),
|
||||
results.profit_percent.mean() * 100.0,
|
||||
results.profit_percent.sum() * 100.0,
|
||||
results.profit_abs.sum(),
|
||||
str(timedelta(
|
||||
minutes=round(results.trade_duration.mean()))) if not results.empty else '0:00',
|
||||
len(results[results.profit_abs > 0]),
|
||||
len(results[results.profit_abs < 0])
|
||||
])
|
||||
return tabulate(tabular_data, headers=headers, floatfmt=floatfmt, tablefmt="pipe")
|
||||
|
||||
def _store_backtest_result(self, recordfilename: str, results: DataFrame,
|
||||
strategyname: Optional[str] = None) -> None:
|
||||
|
||||
records = [(t.pair, t.profit_percent, t.open_time.timestamp(),
|
||||
t.close_time.timestamp(), t.open_index - 1, t.trade_duration,
|
||||
@ -269,6 +190,11 @@ class Backtesting(object):
|
||||
for index, t in results.iterrows()]
|
||||
|
||||
if records:
|
||||
if strategyname:
|
||||
# Inject strategyname to filename
|
||||
recname = Path(recordfilename)
|
||||
recordfilename = str(Path.joinpath(
|
||||
recname.parent, f'{recname.stem}-{strategyname}').with_suffix(recname.suffix))
|
||||
logger.info('Dumping backtest results to %s', recordfilename)
|
||||
file_dump_json(recordfilename, records)
|
||||
|
||||
@ -297,13 +223,14 @@ class Backtesting(object):
|
||||
sell = self.strategy.should_sell(trade, sell_row.open, sell_row.date, buy_signal,
|
||||
sell_row.sell)
|
||||
if sell.sell_flag:
|
||||
|
||||
return BacktestResult(pair=pair,
|
||||
profit_percent=trade.calc_profit_percent(rate=sell_row.open),
|
||||
profit_abs=trade.calc_profit(rate=sell_row.open),
|
||||
open_time=buy_row.date,
|
||||
close_time=sell_row.date,
|
||||
trade_duration=int((
|
||||
sell_row.date - buy_row.date).total_seconds() // 60),
|
||||
sell_row.date - buy_row.date).total_seconds() // 60),
|
||||
open_index=buy_row.Index,
|
||||
close_index=sell_row.Index,
|
||||
open_at_end=False,
|
||||
@ -320,7 +247,7 @@ class Backtesting(object):
|
||||
open_time=buy_row.date,
|
||||
close_time=sell_row.date,
|
||||
trade_duration=int((
|
||||
sell_row.date - buy_row.date).total_seconds() // 60),
|
||||
sell_row.date - buy_row.date).total_seconds() // 60),
|
||||
open_index=buy_row.Index,
|
||||
close_index=sell_row.Index,
|
||||
open_at_end=True,
|
||||
@ -333,13 +260,6 @@ class Backtesting(object):
|
||||
return btr
|
||||
return None
|
||||
|
||||
def s(self):
|
||||
st = timeit.default_timer()
|
||||
return st
|
||||
|
||||
def f(self, st):
|
||||
return (timeit.default_timer() - st)
|
||||
|
||||
def backtest(self, args: Dict) -> DataFrame:
|
||||
"""
|
||||
Implements backtesting functionality
|
||||
@ -355,50 +275,32 @@ class Backtesting(object):
|
||||
position_stacking: do we allow position stacking? (default: False)
|
||||
:return: DataFrame
|
||||
"""
|
||||
headers = ['date', 'buy', 'open', 'close', 'sell']
|
||||
processed = args['processed']
|
||||
max_open_trades = args.get('max_open_trades', 0)
|
||||
position_stacking = args.get('position_stacking', False)
|
||||
trades = []
|
||||
trade_count_lock: Dict = {}
|
||||
for pair, pair_data in processed.items():
|
||||
pair_data['buy'], pair_data['sell'] = 0, 0 # cleanup from previous run
|
||||
|
||||
use_backslap = self.use_backslap
|
||||
debug_timing = self.debug_timing_main_loop
|
||||
|
||||
if use_backslap: # Use Back Slap code
|
||||
return self.backslap.run(args)
|
||||
else: # use Original Back test code
|
||||
########################## Original BT loop
|
||||
|
||||
headers = ['date', 'buy', 'open', 'close', 'sell']
|
||||
processed = args['processed']
|
||||
max_open_trades = args.get('max_open_trades', 0)
|
||||
position_stacking = args.get('position_stacking', False)
|
||||
trades = []
|
||||
trade_count_lock: Dict = {}
|
||||
|
||||
for pair, pair_data in processed.items():
|
||||
if debug_timing: # Start timer
|
||||
fl = self.s()
|
||||
|
||||
pair_data['buy'], pair_data['sell'] = 0, 0 # cleanup from previous run
|
||||
|
||||
ticker_data = self.advise_sell(
|
||||
ticker_data = self.advise_sell(
|
||||
self.advise_buy(pair_data, {'pair': pair}), {'pair': pair})[headers].copy()
|
||||
|
||||
# to avoid using data from future, we buy/sell with signal from previous candle
|
||||
ticker_data.loc[:, 'buy'] = ticker_data['buy'].shift(1)
|
||||
ticker_data.loc[:, 'sell'] = ticker_data['sell'].shift(1)
|
||||
# to avoid using data from future, we buy/sell with signal from previous candle
|
||||
ticker_data.loc[:, 'buy'] = ticker_data['buy'].shift(1)
|
||||
ticker_data.loc[:, 'sell'] = ticker_data['sell'].shift(1)
|
||||
|
||||
ticker_data.drop(ticker_data.head(1).index, inplace=True)
|
||||
ticker_data.drop(ticker_data.head(1).index, inplace=True)
|
||||
|
||||
if debug_timing: # print time taken
|
||||
flt = self.f(fl)
|
||||
# print("populate_buy_trend:", pair, round(flt, 10))
|
||||
st = self.s()
|
||||
# Convert from Pandas to list for performance reasons
|
||||
# (Looping Pandas is slow.)
|
||||
ticker = [x for x in ticker_data.itertuples()]
|
||||
|
||||
# Convert from Pandas to list for performance reasons
|
||||
# (Looping Pandas is slow.)
|
||||
ticker = [x for x in ticker_data.itertuples()]
|
||||
|
||||
lock_pair_until = None
|
||||
for index, row in enumerate(ticker):
|
||||
if row.buy == 0 or row.sell == 1:
|
||||
continue # skip rows where no buy signal or that would immediately sell off
|
||||
lock_pair_until = None
|
||||
for index, row in enumerate(ticker):
|
||||
if row.buy == 0 or row.sell == 1:
|
||||
continue # skip rows where no buy signal or that would immediately sell off
|
||||
|
||||
if not position_stacking:
|
||||
if lock_pair_until is not None and row.date <= lock_pair_until:
|
||||
@ -408,26 +310,20 @@ class Backtesting(object):
|
||||
if not trade_count_lock.get(row.date, 0) < max_open_trades:
|
||||
continue
|
||||
|
||||
trade_count_lock[row.date] = trade_count_lock.get(row.date, 0) + 1
|
||||
trade_count_lock[row.date] = trade_count_lock.get(row.date, 0) + 1
|
||||
|
||||
trade_entry = self._get_sell_trade_entry(pair, row, ticker[index + 1:],
|
||||
trade_count_lock, args)
|
||||
trade_entry = self._get_sell_trade_entry(pair, row, ticker[index + 1:],
|
||||
trade_count_lock, args)
|
||||
|
||||
if trade_entry:
|
||||
lock_pair_until = trade_entry.close_time
|
||||
trades.append(trade_entry)
|
||||
else:
|
||||
# Set lock_pair_until to end of testing period if trade could not be closed
|
||||
# This happens only if the buy-signal was with the last candle
|
||||
lock_pair_until = ticker_data.iloc[-1].date
|
||||
if trade_entry:
|
||||
lock_pair_until = trade_entry.close_time
|
||||
trades.append(trade_entry)
|
||||
else:
|
||||
# Set lock_pair_until to end of testing period if trade could not be closed
|
||||
# This happens only if the buy-signal was with the last candle
|
||||
lock_pair_until = ticker_data.iloc[-1].date
|
||||
|
||||
if debug_timing: # print time taken
|
||||
tt = self.f(st)
|
||||
print("Time to BackTest :", pair, round(tt, 10))
|
||||
print("-----------------------")
|
||||
|
||||
return DataFrame.from_records(trades, columns=BacktestResult._fields)
|
||||
####################### Original BT loop end
|
||||
return DataFrame.from_records(trades, columns=BacktestResult._fields)
|
||||
|
||||
def start(self) -> None:
|
||||
"""
|
||||
@ -448,7 +344,6 @@ class Backtesting(object):
|
||||
|
||||
timerange = Arguments.parse_timerange(None if self.config.get(
|
||||
'timerange') is None else str(self.config.get('timerange')))
|
||||
|
||||
data = optimize.load_data(
|
||||
self.config['datadir'],
|
||||
pairs=pairs,
|
||||
@ -458,7 +353,6 @@ class Backtesting(object):
|
||||
timerange=timerange
|
||||
)
|
||||
|
||||
ld_files = self.s()
|
||||
if not data:
|
||||
logger.critical("No data found. Terminating.")
|
||||
return
|
||||
@ -468,109 +362,55 @@ class Backtesting(object):
|
||||
else:
|
||||
logger.info('Ignoring max_open_trades (--disable-max-market-positions was used) ...')
|
||||
max_open_trades = 0
|
||||
all_results = {}
|
||||
|
||||
preprocessed = self.tickerdata_to_dataframe(data)
|
||||
t_t = self.f(ld_files)
|
||||
print("Load from json to file to df in mem took", t_t)
|
||||
for strat in self.strategylist:
|
||||
logger.info("Running backtesting for Strategy %s", strat.get_strategy_name())
|
||||
self._set_strategy(strat)
|
||||
|
||||
# Print timeframe
|
||||
min_date, max_date = self.get_timeframe(preprocessed)
|
||||
logger.info(
|
||||
'Measuring data from %s up to %s (%s days)..',
|
||||
min_date.isoformat(),
|
||||
max_date.isoformat(),
|
||||
(max_date - min_date).days
|
||||
)
|
||||
|
||||
# Execute backtest and print results
|
||||
results = self.backtest(
|
||||
{
|
||||
'stake_amount': self.config.get('stake_amount'),
|
||||
'processed': preprocessed,
|
||||
'max_open_trades': max_open_trades,
|
||||
'position_stacking': self.config.get('position_stacking', False),
|
||||
}
|
||||
)
|
||||
|
||||
if self.config.get('export', False):
|
||||
self._store_backtest_result(self.config.get('exportfilename'), results)
|
||||
|
||||
if self.use_backslap:
|
||||
# logger.info(
|
||||
# '\n====================================================== '
|
||||
# 'BackSLAP REPORT'
|
||||
# ' =======================================================\n'
|
||||
# '%s',
|
||||
# self._generate_text_table(
|
||||
# data,
|
||||
# results
|
||||
# )
|
||||
# )
|
||||
# need to reprocess data every time to populate signals
|
||||
preprocessed = self.tickerdata_to_dataframe(data)
|
||||
|
||||
# Print timeframe
|
||||
min_date, max_date = self.get_timeframe(preprocessed)
|
||||
logger.info(
|
||||
'\n====================================================== '
|
||||
'Edge positionning REPORT'
|
||||
' =======================================================\n'
|
||||
'%s',
|
||||
self._generate_text_table_edge_positioning(
|
||||
data,
|
||||
results
|
||||
)
|
||||
)
|
||||
# optional print trades
|
||||
if self.backslap_show_trades:
|
||||
TradesFrame = results.filter(['open_time', 'pair', 'exit_type', 'profit_percent', 'profit_abs',
|
||||
'buy_spend', 'sell_take', 'trade_duration', 'close_time'], axis=1)
|
||||
|
||||
def to_fwf(df, fname):
|
||||
content = tabulate(df.values.tolist(), list(df.columns), floatfmt=".8f", tablefmt='psql')
|
||||
print(content)
|
||||
|
||||
DataFrame.to_fwf = to_fwf(TradesFrame, "backslap.txt")
|
||||
|
||||
# optional save trades
|
||||
if self.backslap_save_trades:
|
||||
TradesFrame = results.filter(['open_time', 'pair', 'exit_type', 'profit_percent', 'profit_abs',
|
||||
'buy_spend', 'sell_take', 'trade_duration', 'close_time'], axis=1)
|
||||
|
||||
def to_fwf(df, fname):
|
||||
content = tabulate(df.values.tolist(), list(df.columns), floatfmt=".8f", tablefmt='psql')
|
||||
open(fname, "w").write(content)
|
||||
|
||||
DataFrame.to_fwf = to_fwf(TradesFrame, "backslap.txt")
|
||||
|
||||
else:
|
||||
logger.info(
|
||||
'\n================================================= '
|
||||
'BACKTEST REPORT'
|
||||
' ==================================================\n'
|
||||
'%s',
|
||||
self._generate_text_table(
|
||||
data,
|
||||
results
|
||||
)
|
||||
'Measuring data from %s up to %s (%s days)..',
|
||||
min_date.isoformat(),
|
||||
max_date.isoformat(),
|
||||
(max_date - min_date).days
|
||||
)
|
||||
|
||||
if 'sell_reason' in results.columns:
|
||||
logger.info(
|
||||
'\n' +
|
||||
' SELL READON STATS '.center(119, '=') +
|
||||
'\n%s \n',
|
||||
self._generate_text_table_sell_reason(data, results)
|
||||
|
||||
# Execute backtest and print results
|
||||
all_results[self.strategy.get_strategy_name()] = self.backtest(
|
||||
{
|
||||
'stake_amount': self.config.get('stake_amount'),
|
||||
'processed': preprocessed,
|
||||
'max_open_trades': max_open_trades,
|
||||
'position_stacking': self.config.get('position_stacking', False),
|
||||
}
|
||||
)
|
||||
else:
|
||||
logger.info("no sell reasons available!")
|
||||
|
||||
logger.info(
|
||||
'\n' +
|
||||
' LEFT OPEN TRADES REPORT '.center(119, '=') +
|
||||
'\n%s',
|
||||
self._generate_text_table(
|
||||
data,
|
||||
results.loc[results.open_at_end]
|
||||
)
|
||||
)
|
||||
for strategy, results in all_results.items():
|
||||
|
||||
if self.config.get('export', False):
|
||||
self._store_backtest_result(self.config['exportfilename'], results,
|
||||
strategy if len(self.strategylist) > 1 else None)
|
||||
|
||||
print(f"Result for strategy {strategy}")
|
||||
print(' BACKTESTING REPORT '.center(119, '='))
|
||||
print(self._generate_text_table(data, results))
|
||||
|
||||
print(' SELL REASON STATS '.center(119, '='))
|
||||
print(self._generate_text_table_sell_reason(data, results))
|
||||
|
||||
print(' LEFT OPEN TRADES REPORT '.center(119, '='))
|
||||
print(self._generate_text_table(data, results.loc[results.open_at_end]))
|
||||
print()
|
||||
if len(all_results) > 1:
|
||||
# Print Strategy summary table
|
||||
print(' Strategy Summary '.center(119, '='))
|
||||
print(self._generate_text_table_strategy(all_results))
|
||||
print('\nFor more details, please look at the detail tables above')
|
||||
|
||||
|
||||
def setup_configuration(args: Namespace) -> Dict[str, Any]:
|
||||
@ -585,7 +425,7 @@ def setup_configuration(args: Namespace) -> Dict[str, Any]:
|
||||
# Ensure we do not use Exchange credentials
|
||||
config['exchange']['key'] = ''
|
||||
config['exchange']['secret'] = ''
|
||||
config['backslap'] = args.backslap
|
||||
|
||||
if config['stake_amount'] == constants.UNLIMITED_STAKE_AMOUNT:
|
||||
raise DependencyException('stake amount could not be "%s" for backtesting' %
|
||||
constants.UNLIMITED_STAKE_AMOUNT)
|
||||
|
Loading…
Reference in New Issue
Block a user