Merge branch 'develop' into align_userdata
This commit is contained in:
		
							
								
								
									
										4
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										4
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							| @@ -81,7 +81,6 @@ target/ | ||||
|  | ||||
| # Jupyter Notebook | ||||
| .ipynb_checkpoints | ||||
| *.ipynb | ||||
|  | ||||
| # pyenv | ||||
| .python-version | ||||
| @@ -93,3 +92,6 @@ target/ | ||||
|  | ||||
| .pytest_cache/ | ||||
| .mypy_cache/ | ||||
|  | ||||
| #exceptions | ||||
| !user_data/noteboks/*example.ipynb | ||||
|   | ||||
							
								
								
									
										14
									
								
								.travis.yml
									
									
									
									
									
								
							
							
						
						
									
										14
									
								
								.travis.yml
									
									
									
									
									
								
							| @@ -10,15 +10,11 @@ services: | ||||
| env: | ||||
|   global: | ||||
|     - IMAGE_NAME=freqtradeorg/freqtrade | ||||
| addons: | ||||
|   apt: | ||||
|     packages: | ||||
|     - libelf-dev | ||||
|     - libdw-dev | ||||
|     - binutils-dev | ||||
| install: | ||||
| - cd build_helpers && ./install_ta-lib.sh; cd .. | ||||
| - export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH | ||||
| - cd build_helpers && ./install_ta-lib.sh ${HOME}/dependencies/; cd .. | ||||
| - export LD_LIBRARY_PATH=${HOME}/dependencies/lib:$LD_LIBRARY_PATH | ||||
| - export TA_LIBRARY_PATH=${HOME}/dependencies/lib | ||||
| - export TA_INCLUDE_PATH=${HOME}/dependencies/lib/include | ||||
| - pip install -r requirements-dev.txt | ||||
| - pip install -e . | ||||
| jobs: | ||||
| @@ -55,4 +51,4 @@ notifications: | ||||
| cache: | ||||
|   pip: True | ||||
|   directories: | ||||
|     - /usr/local/lib/ | ||||
|     - $HOME/dependencies | ||||
|   | ||||
| @@ -1,8 +1,14 @@ | ||||
| if [ ! -f "/usr/local/lib/libta_lib.a" ]; then | ||||
| if [ -z "$1" ]; then | ||||
|   INSTALL_LOC=/usr/local | ||||
| else | ||||
|   INSTALL_LOC=${1} | ||||
| fi | ||||
| echo "Installing to ${INSTALL_LOC}" | ||||
| if [ ! -f "${INSTALL_LOC}/lib/libta_lib.a" ]; then | ||||
|   tar zxvf ta-lib-0.4.0-src.tar.gz | ||||
|   cd ta-lib \ | ||||
|   && sed -i.bak "s|0.00000001|0.000000000000000001 |g" src/ta_func/ta_utility.h \ | ||||
|   && ./configure \ | ||||
|   && ./configure --prefix=${INSTALL_LOC}/ \ | ||||
|   && make \ | ||||
|   && which sudo && sudo make install || make install \ | ||||
|   && cd .. | ||||
|   | ||||
| @@ -57,7 +57,15 @@ freqtrade backtesting --datadir freqtrade/tests/testdata-20180101 | ||||
| freqtrade -s TestStrategy backtesting | ||||
| ``` | ||||
|  | ||||
| Where `-s TestStrategy` refers to the class name within the strategy file `test_strategy.py` found in the `freqtrade/user_data/strategies` directory | ||||
| Where `-s TestStrategy` refers to the class name within the strategy file `test_strategy.py` found in the `freqtrade/user_data/strategies` directory. | ||||
|  | ||||
| #### Comparing multiple Strategies | ||||
|  | ||||
| ```bash | ||||
| freqtrade backtesting --strategy-list TestStrategy1 AwesomeStrategy --ticker-interval 5m | ||||
| ``` | ||||
|  | ||||
| Where `TestStrategy1` and `AwesomeStrategy` refer to class names of strategies. | ||||
|  | ||||
| #### Exporting trades to file | ||||
|  | ||||
|   | ||||
| @@ -193,7 +193,7 @@ optional arguments: | ||||
|                         number). | ||||
|   -l, --live            Use live data. | ||||
|   --strategy-list STRATEGY_LIST [STRATEGY_LIST ...] | ||||
|                         Provide a commaseparated list of strategies to | ||||
|                         Provide a space-separated list of strategies to | ||||
|                         backtest Please note that ticker-interval needs to be | ||||
|                         set either in config or via command line. When using | ||||
|                         this together with --export trades, the strategy-name | ||||
|   | ||||
| @@ -1,164 +1,114 @@ | ||||
| # Analyzing bot data | ||||
|  | ||||
| After performing backtests, or after running the bot for some time, it will be interesting to analyze the results your bot generated. | ||||
| You can analyze the results of backtests and trading history easily using Jupyter notebooks. A sample notebook is located at `user_data/notebooks/analysis_example.ipynb`. For usage instructions, see [jupyter.org](https://jupyter.org/documentation). | ||||
|  | ||||
| A good way for this is using Jupyter (notebook or lab) - which provides an interactive environment to analyze the data. | ||||
| *Pro tip - Don't forget to start a jupyter notbook server from within your conda or venv environment or use [nb_conda_kernels](https://github.com/Anaconda-Platform/nb_conda_kernels)* | ||||
|  | ||||
| The following helpers will help you loading the data into Pandas DataFrames, and may also give you some starting points in analyzing the results. | ||||
| ## Example snippets | ||||
|  | ||||
| ## Strategy development problem analysis | ||||
|  | ||||
| Debugging a strategy (are there no buy signals, ...) can be very time-consuming. | ||||
| FreqTrade tries to help you by exposing a few helper-functions, which can be very handy. | ||||
|  | ||||
| It's recommended using Juptyer Notebooks for analysis, since it offers a dynamic way to rerun certain parts of the code. | ||||
|  | ||||
| The following is a full code-snippet, which will be explained by both comments, and step by step below. | ||||
| ### Load backtest results into a pandas dataframe | ||||
|  | ||||
| ```python | ||||
| # Some necessary imports | ||||
| from pathlib import Path | ||||
|  | ||||
| from freqtrade.data.history import load_pair_history | ||||
| from freqtrade.resolvers import StrategyResolver | ||||
| # Define some constants | ||||
| ticker_interval = "5m" | ||||
|  | ||||
| # Name of the strategy class | ||||
| strategyname = 'Awesomestrategy' | ||||
| # Location of the strategy | ||||
| strategy_location = '../xmatt/strategies' | ||||
| # Location of the data | ||||
| data_location = '../freqtrade/user_data/data/binance/' | ||||
| # Only use one pair here | ||||
| pair = "XRP_ETH" | ||||
|  | ||||
| ### End constants | ||||
|  | ||||
| # Load data | ||||
| bt_data = load_pair_history(datadir=Path(data_location), | ||||
|                             ticker_interval = ticker_interval, | ||||
|                             pair=pair) | ||||
| print(len(bt_data)) | ||||
|  | ||||
| ### Start strategy reload | ||||
| # Load strategy - best done in a new cell | ||||
| # Rerun each time the strategy-file is changed. | ||||
| strategy = StrategyResolver({'strategy': strategyname, | ||||
|                             'user_data_dir': Path.cwd(), | ||||
|                             'strategy_path': location}).strategy | ||||
|  | ||||
| # Run strategy (just like in backtesting) | ||||
| df = strategy.analyze_ticker(bt_data, {'pair': pair}) | ||||
| print(f"Generated {df['buy'].sum()} buy signals") | ||||
|  | ||||
| # Reindex data to be "nicer" and show data | ||||
| data = df.set_index('date', drop=True) | ||||
| data.tail() | ||||
|  | ||||
| ``` | ||||
|  | ||||
| ### Explanation | ||||
|  | ||||
| #### Imports and constant definition | ||||
|  | ||||
| ``` python | ||||
| # Some necessary imports | ||||
| from pathlib import Path | ||||
|  | ||||
| from freqtrade.data.history import load_pair_history | ||||
| from freqtrade.resolvers import StrategyResolver | ||||
| # Define some constants | ||||
| ticker_interval = "5m" | ||||
|  | ||||
| # Name of the strategy class | ||||
| strategyname = 'Awesomestrategy' | ||||
| # Location of the strategy | ||||
| strategy_location = 'user_data/strategies' | ||||
| # Location of the data | ||||
| data_location = 'user_data/data/binance' | ||||
| # Only use one pair here | ||||
| pair = "XRP_ETH" | ||||
| ``` | ||||
|  | ||||
| This first section imports necessary modules, and defines some constants you'll probably need to adjust for your case. | ||||
|  | ||||
| #### Load candles | ||||
|  | ||||
| ``` python | ||||
| # Load data | ||||
| bt_data = load_pair_history(datadir=Path(data_location), | ||||
|                             ticker_interval = ticker_interval, | ||||
|                             pair=pair) | ||||
| print(len(bt_data)) | ||||
| ``` | ||||
|  | ||||
| This second section loads the historic data and prints the amount of candles in the DataFrame. | ||||
| You can also inspect this dataframe by using `bt_data.head()` or `bt_data.tail()`. | ||||
|  | ||||
| #### Run strategy and analyze results | ||||
|  | ||||
| Now, it's time to load and run your strategy. | ||||
| For this, I recommend using a new cell in your notebook, since you'll want to repeat this until you're satisfied with your strategy. | ||||
|  | ||||
| ``` python | ||||
| # Load strategy - best done in a new cell | ||||
| # Needs to be ran each time the strategy-file is changed. | ||||
| strategy = StrategyResolver({'strategy': strategyname, | ||||
|                             'user_data_dir': Path.cwd(), | ||||
|                             'strategy_path': location}).strategy | ||||
|  | ||||
| # Run strategy (just like in backtesting) | ||||
| df = strategy.analyze_ticker(bt_data, {'pair': pair}) | ||||
| print(f"Generated {df['buy'].sum()} buy signals") | ||||
|  | ||||
| # Reindex data to be "nicer" and show data | ||||
| data = df.set_index('date', drop=True) | ||||
| data.tail() | ||||
| ``` | ||||
|  | ||||
| The code snippet loads and analyzes the strategy, calculates and prints the number of buy signals. | ||||
|  | ||||
| The last 2 lines serve to analyze the dataframe in detail. | ||||
| This can be important if your strategy did not generate any buy signals. | ||||
| Note that using `data.head()` would also work, however this is misleading since most indicators have some "startup" time at the start of a backtested dataframe. | ||||
|  | ||||
| There can be many things wrong, some signs to look for are: | ||||
|  | ||||
| * Columns with NaN values at the end of the dataframe | ||||
| * Columns used in `crossed*()` functions with completely different units | ||||
|  | ||||
| ## Backtesting | ||||
|  | ||||
| To analyze your backtest results, you can [export the trades](#exporting-trades-to-file). | ||||
| You can then load the trades to perform further analysis. | ||||
|  | ||||
| Freqtrade provides the `load_backtest_data()` helper function to easily load the backtest results, which takes the path to the the backtest-results file as parameter. | ||||
|  | ||||
| ``` python | ||||
| from freqtrade.data.btanalysis import load_backtest_data | ||||
| # Load backtest results | ||||
| df = load_backtest_data("user_data/backtest_results/backtest-result.json") | ||||
|  | ||||
| # Show value-counts per pair | ||||
| df.groupby("pair")["sell_reason"].value_counts() | ||||
|  | ||||
| ``` | ||||
|  | ||||
| This will allow you to drill deeper into your backtest results, and perform analysis which otherwise would make the regular backtest-output very difficult to digest due to information overload. | ||||
|  | ||||
| If you have some ideas for interesting / helpful backtest data analysis ideas, please submit a Pull Request so the community can benefit from it. | ||||
|  | ||||
| ## Live data | ||||
|  | ||||
| To analyze the trades your bot generated, you can load them to a DataFrame as follows: | ||||
| ### Load live trading results into a pandas dataframe | ||||
|  | ||||
| ``` python | ||||
| from freqtrade.data.btanalysis import load_trades_from_db | ||||
|  | ||||
| # Fetch trades from database | ||||
| df = load_trades_from_db("sqlite:///tradesv3.sqlite") | ||||
|  | ||||
| # Display results | ||||
| df.groupby("pair")["sell_reason"].value_counts() | ||||
| ``` | ||||
|  | ||||
| ## Strategy debugging example | ||||
|  | ||||
| Debugging a strategy can be time-consuming. FreqTrade offers helper functions to visualize raw data. | ||||
|  | ||||
| ### Import requirements and define variables used in analyses | ||||
|  | ||||
| ```python | ||||
| # Imports | ||||
| from pathlib import Path | ||||
| import os | ||||
| from freqtrade.data.history import load_pair_history | ||||
| from freqtrade.resolvers import StrategyResolver | ||||
|  | ||||
| # You can override strategy settings as demonstrated below. | ||||
| # Customize these according to your needs. | ||||
|  | ||||
| # Define some constants | ||||
| ticker_interval = "5m" | ||||
| # Name of the strategy class | ||||
| strategy_name = 'AwesomeStrategy' | ||||
| # Path to user data | ||||
| user_data_dir = 'user_data' | ||||
| # Location of the strategy | ||||
| strategy_location = Path(user_data_dir, 'strategies') | ||||
| # Location of the data | ||||
| data_location = Path(user_data_dir, 'data', 'binance') | ||||
| # Pair to analyze  | ||||
| # Only use one pair here | ||||
| pair = "BTC_USDT" | ||||
| ``` | ||||
|  | ||||
| ### Load exchange data | ||||
|  | ||||
| ```python | ||||
| # Load data using values set above | ||||
| bt_data = load_pair_history(datadir=Path(data_location), | ||||
|                             ticker_interval=ticker_interval, | ||||
|                             pair=pair) | ||||
|  | ||||
| # Confirm success | ||||
| print(f"Loaded {len(bt_data)} rows of data for {pair} from {data_location}") | ||||
| ``` | ||||
|  | ||||
| ### Load and run strategy   | ||||
|  | ||||
| * Rerun each time the strategy file is changed | ||||
|  | ||||
| ```python | ||||
| # Load strategy using values set above | ||||
| strategy = StrategyResolver({'strategy': strategy_name, | ||||
|                             'user_data_dir': user_data_dir, | ||||
|                             'strategy_path': strategy_location}).strategy | ||||
|  | ||||
| # Generate buy/sell signals using strategy | ||||
| df = strategy.analyze_ticker(bt_data, {'pair': pair}) | ||||
| ``` | ||||
|  | ||||
| ### Display the trade details | ||||
|  | ||||
| * Note that using `data.head()` would also work, however most indicators have some "startup" data at the top of the dataframe. | ||||
|  | ||||
| #### Some possible problems | ||||
|  | ||||
| * Columns with NaN values at the end of the dataframe | ||||
| * Columns used in `crossed*()` functions with completely different units | ||||
|  | ||||
| #### Comparison with full backtest | ||||
|  | ||||
| having 200 buy signals as output for one pair from `analyze_ticker()` does not necessarily mean that 200 trades will be made during backtesting. | ||||
|  | ||||
| Assuming you use only one condition such as, `df['rsi'] < 30` as buy condition, this will generate multiple "buy" signals for each pair in sequence (until rsi returns > 29). | ||||
| The bot will only buy on the first of these signals (and also only if a trade-slot ("max_open_trades") is still available), or on one of the middle signals, as soon as a "slot" becomes available. | ||||
|  | ||||
| ```python | ||||
| # Report results | ||||
| print(f"Generated {df['buy'].sum()} buy signals") | ||||
| data = df.set_index('date', drop=True) | ||||
| data.tail() | ||||
| ``` | ||||
|  | ||||
| Feel free to submit an issue or Pull Request enhancing this document if you would like to share ideas on how to best analyze the data. | ||||
|   | ||||
| @@ -18,19 +18,24 @@ Configuring hyperopt is similar to writing your own strategy, and many tasks wil | ||||
|  | ||||
| ### Checklist on all tasks / possibilities in hyperopt | ||||
|  | ||||
| Depending on the space you want to optimize, only some of the below are required. | ||||
| Depending on the space you want to optimize, only some of the below are required: | ||||
|  | ||||
| * fill `populate_indicators` - probably a copy from your strategy | ||||
| * fill `buy_strategy_generator` - for buy signal optimization | ||||
| * fill `indicator_space` - for buy signal optimzation | ||||
| * fill `sell_strategy_generator` - for sell signal optimization | ||||
| * fill `sell_indicator_space` - for sell signal optimzation | ||||
| * fill `roi_space` - for ROI optimization | ||||
| * fill `generate_roi_table` - for ROI optimization (if you need more than 3 entries) | ||||
| * fill `stoploss_space` - stoploss optimization | ||||
| * Optional but recommended | ||||
|   * copy `populate_buy_trend` from your strategy - otherwise default-strategy will be used | ||||
|   * copy `populate_sell_trend` from your strategy - otherwise default-strategy will be used | ||||
|  | ||||
| Optional, but recommended: | ||||
|  | ||||
| * copy `populate_buy_trend` from your strategy - otherwise default-strategy will be used | ||||
| * copy `populate_sell_trend` from your strategy - otherwise default-strategy will be used | ||||
|  | ||||
| Rarely you may also need to override: | ||||
|  | ||||
| * `roi_space` - for custom ROI optimization (if you need the ranges for the ROI parameters in the optimization hyperspace that differ from default) | ||||
| * `generate_roi_table` - for custom ROI optimization (if you need more than 4 entries in the ROI table) | ||||
| * `stoploss_space` - for custom stoploss optimization (if you need the range for the stoploss parameter in the optimization hyperspace that differs from default) | ||||
|  | ||||
| ### 1. Install a Custom Hyperopt File | ||||
|  | ||||
| @@ -345,7 +350,7 @@ def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame: | ||||
|  | ||||
| ### Understand Hyperopt ROI results | ||||
|  | ||||
| If you are optimizing ROI, you're result will look as follows and include a ROI table. | ||||
| If you are optimizing ROI (i.e. if optimization search-space contains 'all' or 'roi'), your result will look as follows and include a ROI table: | ||||
|  | ||||
| ``` | ||||
| Best result: | ||||
| @@ -376,6 +381,41 @@ minimal_roi = { | ||||
|     } | ||||
| ``` | ||||
|  | ||||
| If you are optimizing ROI, Freqtrade creates the 'roi' optimization hyperspace for you -- it's the hyperspace of components for the ROI tables. By default, each ROI table generated by the Freqtrade consists of 4 rows (steps) with the values that can vary in the following ranges: | ||||
|  | ||||
| | # | minutes | ROI percentage | | ||||
| |---|---|---| | ||||
| | 1 | always 0 | 0.03...0.31 | | ||||
| | 2 | 10...40 | 0.02...0.11 | | ||||
| | 3 | 20...100 | 0.01...0.04 | | ||||
| | 4 | 30...220 | always 0 | | ||||
|  | ||||
| This structure of the ROI table is sufficient in most cases. Override the `roi_space()` method defining the ranges desired if you need components of the ROI tables to vary in other ranges. | ||||
|  | ||||
| Override the `generate_roi_table()` and `roi_space()` methods and implement your own custom approach for generation of the ROI tables during hyperoptimization in these methods if you need a different structure of the ROI table or other amount of rows (steps) in the ROI tables. | ||||
|  | ||||
| ### Understand Hyperopt Stoploss results | ||||
|  | ||||
| If you are optimizing stoploss values (i.e. if optimization search-space contains 'all' or 'stoploss'), your result will look as follows and include stoploss: | ||||
|  | ||||
| ``` | ||||
| Best result: | ||||
|  | ||||
|     44/100:    135 trades. Avg profit  0.57%. Total profit  0.03871918 BTC (0.7722Σ%). Avg duration 180.4 mins. Objective: 1.94367 | ||||
|  | ||||
| Buy hyperspace params: | ||||
| {   'adx-value': 44, | ||||
|     'rsi-value': 29, | ||||
|     'adx-enabled': False, | ||||
|     'rsi-enabled': True, | ||||
|     'trigger': 'bb_lower'} | ||||
| Stoploss: -0.37996664668703606 | ||||
| ``` | ||||
|  | ||||
| If you are optimizing stoploss values, Freqtrade creates the 'stoploss' optimization hyperspace for you. By default, the stoploss values in that hyperspace can vary in the range -0.5...-0.02, which is sufficient in most cases. | ||||
|  | ||||
| Override the `stoploss_space()` method and define the desired range in it if you need stoploss values to vary in other range during hyperoptimization. | ||||
|  | ||||
| ### Validate backtesting results | ||||
|  | ||||
| Once the optimized strategy has been implemented into your strategy, you should backtest this strategy to make sure everything is working as expected. | ||||
|   | ||||
| @@ -219,6 +219,17 @@ as the watchdog. | ||||
|  | ||||
| ------ | ||||
|  | ||||
| ## Using Conda | ||||
|  | ||||
| Freqtrade can also be installed using Anaconda (or Miniconda). | ||||
|  | ||||
| ``` bash | ||||
| conda env create -f environment.yml | ||||
| ``` | ||||
|  | ||||
| !!! Note: | ||||
|     This requires the [ta-lib](#1-install-ta-lib) C-library to be installed first. | ||||
|  | ||||
| ## Windows | ||||
|  | ||||
| We recommend that Windows users use [Docker](docker.md) as this will work much easier and smoother (also more secure). | ||||
|   | ||||
| @@ -1 +1 @@ | ||||
| mkdocs-material==3.1.0 | ||||
| mkdocs-material==4.4.0 | ||||
							
								
								
									
										59
									
								
								environment.yml
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										59
									
								
								environment.yml
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,59 @@ | ||||
| name: freqtrade | ||||
| channels: | ||||
|   - defaults | ||||
|   - conda-forge | ||||
| dependencies: | ||||
|   # Required for app | ||||
|   - python>=3.6 | ||||
|   - pip | ||||
|   - wheel | ||||
|   - numpy | ||||
|   - pandas | ||||
|   - scipy | ||||
|   - SQLAlchemy | ||||
|   - scikit-learn | ||||
|   - arrow | ||||
|   - requests | ||||
|   - urllib3 | ||||
|   - wrapt | ||||
|   - joblib | ||||
|   - jsonschema | ||||
|   - tabulate | ||||
|   - python-rapidjson | ||||
|   - filelock | ||||
|   - flask | ||||
|   - python-dotenv | ||||
|   - cachetools | ||||
|   - scikit-optimize | ||||
|   - python-telegram-bot | ||||
|   # Optional for plotting | ||||
|   - plotly | ||||
|   # Optional for development | ||||
|   - flake8 | ||||
|   - pytest | ||||
|   - pytest-mock | ||||
|   - pytest-asyncio | ||||
|   - pytest-cov | ||||
|   - coveralls | ||||
|   - mypy | ||||
|   # Useful for jupyter | ||||
|   - jupyter | ||||
|   - ipykernel | ||||
|   - isort | ||||
|   - yapf | ||||
|   - pip: | ||||
|     # Required for app | ||||
|     - cython | ||||
|     - coinmarketcap | ||||
|     - ccxt | ||||
|     - TA-Lib | ||||
|     - py_find_1st | ||||
|     - sdnotify | ||||
|     # Optional for develpment | ||||
|     - flake8-tidy-imports | ||||
|     - flake8-type-annotations | ||||
|     - pytest-random-order | ||||
|     - -e . | ||||
|  | ||||
|  | ||||
|  | ||||
| @@ -135,7 +135,7 @@ AVAILABLE_CLI_OPTIONS = { | ||||
|     ), | ||||
|     "strategy_list": Arg( | ||||
|         '--strategy-list', | ||||
|         help='Provide a comma-separated list of strategies to backtest. ' | ||||
|         help='Provide a space-separated list of strategies to backtest. ' | ||||
|         'Please note that ticker-interval needs to be set either in config ' | ||||
|         'or via command line. When using this together with `--export trades`, ' | ||||
|         'the strategy-name is injected into the filename ' | ||||
|   | ||||
| @@ -1,9 +1,7 @@ | ||||
| """ | ||||
| This module contains the configuration class | ||||
| """ | ||||
| import json | ||||
| import logging | ||||
| import sys | ||||
| import warnings | ||||
| from argparse import Namespace | ||||
| from pathlib import Path | ||||
| @@ -13,6 +11,7 @@ from freqtrade import OperationalException, constants | ||||
| from freqtrade.configuration.check_exchange import check_exchange | ||||
| from freqtrade.configuration.directory_operations import create_datadir, create_userdata_dir | ||||
| from freqtrade.configuration.json_schema import validate_config_schema | ||||
| from freqtrade.configuration.load_config import load_config_file | ||||
| from freqtrade.loggers import setup_logging | ||||
| from freqtrade.misc import deep_merge_dicts | ||||
| from freqtrade.state import RunMode | ||||
| @@ -53,24 +52,7 @@ class Configuration(object): | ||||
|             logger.info('Using config: %s ...', path) | ||||
|  | ||||
|             # Merge config options, overwriting old values | ||||
|             config = deep_merge_dicts(self._load_config_file(path), config) | ||||
|  | ||||
|         return config | ||||
|  | ||||
|     def _load_config_file(self, path: str) -> Dict[str, Any]: | ||||
|         """ | ||||
|         Loads a config file from the given path | ||||
|         :param path: path as str | ||||
|         :return: configuration as dictionary | ||||
|         """ | ||||
|         try: | ||||
|             # Read config from stdin if requested in the options | ||||
|             with open(path) if path != '-' else sys.stdin as file: | ||||
|                 config = json.load(file) | ||||
|         except FileNotFoundError: | ||||
|             raise OperationalException( | ||||
|                 f'Config file "{path}" not found!' | ||||
|                 ' Please create a config file or check whether it exists.') | ||||
|             config = deep_merge_dicts(load_config_file(path), config) | ||||
|  | ||||
|         return config | ||||
|  | ||||
|   | ||||
							
								
								
									
										30
									
								
								freqtrade/configuration/load_config.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										30
									
								
								freqtrade/configuration/load_config.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,30 @@ | ||||
| """ | ||||
| This module contain functions to load the configuration file | ||||
| """ | ||||
| import json | ||||
| import logging | ||||
| import sys | ||||
| from typing import Any, Dict | ||||
|  | ||||
| from freqtrade import OperationalException | ||||
|  | ||||
|  | ||||
| logger = logging.getLogger(__name__) | ||||
|  | ||||
|  | ||||
| def load_config_file(path: str) -> Dict[str, Any]: | ||||
|     """ | ||||
|     Loads a config file from the given path | ||||
|     :param path: path as str | ||||
|     :return: configuration as dictionary | ||||
|     """ | ||||
|     try: | ||||
|         # Read config from stdin if requested in the options | ||||
|         with open(path) if path != '-' else sys.stdin as file: | ||||
|             config = json.load(file) | ||||
|     except FileNotFoundError: | ||||
|         raise OperationalException( | ||||
|             f'Config file "{path}" not found!' | ||||
|             ' Please create a config file or check whether it exists.') | ||||
|  | ||||
|     return config | ||||
| @@ -725,7 +725,8 @@ class Exchange(object): | ||||
|             return [] | ||||
|         try: | ||||
|             # Allow 5s offset to catch slight time offsets (discovered in #1185) | ||||
|             my_trades = self._api.fetch_my_trades(pair, since.timestamp() - 5) | ||||
|             # since needs to be int in milliseconds | ||||
|             my_trades = self._api.fetch_my_trades(pair, int((since.timestamp() - 5) * 1000)) | ||||
|             matched_trades = [trade for trade in my_trades if trade['order'] == order_id] | ||||
|  | ||||
|             return matched_trades | ||||
|   | ||||
| @@ -10,8 +10,8 @@ from pathlib import Path | ||||
| from typing import Any, Dict, List, NamedTuple, Optional | ||||
|  | ||||
| from pandas import DataFrame | ||||
| from tabulate import tabulate | ||||
|  | ||||
| from freqtrade import OperationalException | ||||
| from freqtrade.configuration import Arguments | ||||
| from freqtrade.data import history | ||||
| from freqtrade.data.dataprovider import DataProvider | ||||
| @@ -21,6 +21,7 @@ from freqtrade.persistence import Trade | ||||
| from freqtrade.resolvers import ExchangeResolver, StrategyResolver | ||||
| from freqtrade.state import RunMode | ||||
| from freqtrade.strategy.interface import IStrategy, SellType | ||||
| from tabulate import tabulate | ||||
|  | ||||
| logger = logging.getLogger(__name__) | ||||
|  | ||||
| @@ -88,6 +89,9 @@ class Backtesting(object): | ||||
|         Load strategy into backtesting | ||||
|         """ | ||||
|         self.strategy = strategy | ||||
|         if "ticker_interval" not in self.config: | ||||
|             raise OperationalException("Ticker-interval needs to be set in either configuration " | ||||
|                                        "or as cli argument `--ticker-interval 5m`") | ||||
|  | ||||
|         self.ticker_interval = self.config.get('ticker_interval') | ||||
|         self.ticker_interval_mins = timeframe_to_minutes(self.ticker_interval) | ||||
| @@ -373,7 +377,9 @@ class Backtesting(object): | ||||
|                         continue | ||||
|                     trade_count_lock[row.date] = trade_count_lock.get(row.date, 0) + 1 | ||||
|  | ||||
|                 trade_entry = self._get_sell_trade_entry(pair, row, ticker[pair][indexes[pair]:], | ||||
|                 # since indexes has been incremented before, we need to go one step back to | ||||
|                 # also check the buying candle for sell conditions. | ||||
|                 trade_entry = self._get_sell_trade_entry(pair, row, ticker[pair][indexes[pair]-1:], | ||||
|                                                          trade_count_lock, stake_amount, | ||||
|                                                          max_open_trades) | ||||
|  | ||||
|   | ||||
| @@ -5,7 +5,7 @@ from typing import Any, Callable, Dict, List | ||||
|  | ||||
| import talib.abstract as ta | ||||
| from pandas import DataFrame | ||||
| from skopt.space import Categorical, Dimension, Integer, Real | ||||
| from skopt.space import Categorical, Dimension, Integer | ||||
|  | ||||
| import freqtrade.vendor.qtpylib.indicators as qtpylib | ||||
| from freqtrade.optimize.hyperopt_interface import IHyperOpt | ||||
| @@ -13,10 +13,9 @@ from freqtrade.optimize.hyperopt_interface import IHyperOpt | ||||
|  | ||||
| class DefaultHyperOpts(IHyperOpt): | ||||
|     """ | ||||
|     Default hyperopt provided by freqtrade bot. | ||||
|     Default hyperopt provided by the Freqtrade bot. | ||||
|     You can override it with your own hyperopt | ||||
|     """ | ||||
|  | ||||
|     @staticmethod | ||||
|     def populate_indicators(dataframe: DataFrame, metadata: dict) -> DataFrame: | ||||
|         dataframe['adx'] = ta.ADX(dataframe) | ||||
| @@ -156,42 +155,6 @@ class DefaultHyperOpts(IHyperOpt): | ||||
|                          'sell-sar_reversal'], name='sell-trigger') | ||||
|         ] | ||||
|  | ||||
|     @staticmethod | ||||
|     def generate_roi_table(params: Dict) -> Dict[int, float]: | ||||
|         """ | ||||
|         Generate the ROI table that will be used by Hyperopt | ||||
|         """ | ||||
|         roi_table = {} | ||||
|         roi_table[0] = params['roi_p1'] + params['roi_p2'] + params['roi_p3'] | ||||
|         roi_table[params['roi_t3']] = params['roi_p1'] + params['roi_p2'] | ||||
|         roi_table[params['roi_t3'] + params['roi_t2']] = params['roi_p1'] | ||||
|         roi_table[params['roi_t3'] + params['roi_t2'] + params['roi_t1']] = 0 | ||||
|  | ||||
|         return roi_table | ||||
|  | ||||
|     @staticmethod | ||||
|     def stoploss_space() -> List[Dimension]: | ||||
|         """ | ||||
|         Stoploss Value to search | ||||
|         """ | ||||
|         return [ | ||||
|             Real(-0.5, -0.02, name='stoploss'), | ||||
|         ] | ||||
|  | ||||
|     @staticmethod | ||||
|     def roi_space() -> List[Dimension]: | ||||
|         """ | ||||
|         Values to search for each ROI steps | ||||
|         """ | ||||
|         return [ | ||||
|             Integer(10, 120, name='roi_t1'), | ||||
|             Integer(10, 60, name='roi_t2'), | ||||
|             Integer(10, 40, name='roi_t3'), | ||||
|             Real(0.01, 0.04, name='roi_p1'), | ||||
|             Real(0.01, 0.07, name='roi_p2'), | ||||
|             Real(0.01, 0.20, name='roi_p3'), | ||||
|         ] | ||||
|  | ||||
|     def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame: | ||||
|         """ | ||||
|         Based on TA indicators. Should be a copy of from strategy | ||||
|   | ||||
| @@ -7,7 +7,7 @@ from abc import ABC, abstractmethod | ||||
| from typing import Dict, Any, Callable, List | ||||
|  | ||||
| from pandas import DataFrame | ||||
| from skopt.space import Dimension | ||||
| from skopt.space import Dimension, Integer, Real | ||||
|  | ||||
|  | ||||
| class IHyperOpt(ABC): | ||||
| @@ -26,56 +26,80 @@ class IHyperOpt(ABC): | ||||
|     @abstractmethod | ||||
|     def populate_indicators(dataframe: DataFrame, metadata: dict) -> DataFrame: | ||||
|         """ | ||||
|         Populate indicators that will be used in the Buy and Sell strategy | ||||
|         :param dataframe: Raw data from the exchange and parsed by parse_ticker_dataframe() | ||||
|         :return: a Dataframe with all mandatory indicators for the strategies | ||||
|         Populate indicators that will be used in the Buy and Sell strategy. | ||||
|         :param dataframe: Raw data from the exchange and parsed by parse_ticker_dataframe(). | ||||
|         :return: A Dataframe with all mandatory indicators for the strategies. | ||||
|         """ | ||||
|  | ||||
|     @staticmethod | ||||
|     @abstractmethod | ||||
|     def buy_strategy_generator(params: Dict[str, Any]) -> Callable: | ||||
|         """ | ||||
|         Create a buy strategy generator | ||||
|         Create a buy strategy generator. | ||||
|         """ | ||||
|  | ||||
|     @staticmethod | ||||
|     @abstractmethod | ||||
|     def sell_strategy_generator(params: Dict[str, Any]) -> Callable: | ||||
|         """ | ||||
|         Create a sell strategy generator | ||||
|         Create a sell strategy generator. | ||||
|         """ | ||||
|  | ||||
|     @staticmethod | ||||
|     @abstractmethod | ||||
|     def indicator_space() -> List[Dimension]: | ||||
|         """ | ||||
|         Create an indicator space | ||||
|         Create an indicator space. | ||||
|         """ | ||||
|  | ||||
|     @staticmethod | ||||
|     @abstractmethod | ||||
|     def sell_indicator_space() -> List[Dimension]: | ||||
|         """ | ||||
|         Create a sell indicator space | ||||
|         Create a sell indicator space. | ||||
|         """ | ||||
|  | ||||
|     @staticmethod | ||||
|     @abstractmethod | ||||
|     def generate_roi_table(params: Dict) -> Dict[int, float]: | ||||
|         """ | ||||
|         Create an roi table | ||||
|         Create a ROI table. | ||||
|  | ||||
|         Generates the ROI table that will be used by Hyperopt. | ||||
|         You may override it in your custom Hyperopt class. | ||||
|         """ | ||||
|         roi_table = {} | ||||
|         roi_table[0] = params['roi_p1'] + params['roi_p2'] + params['roi_p3'] | ||||
|         roi_table[params['roi_t3']] = params['roi_p1'] + params['roi_p2'] | ||||
|         roi_table[params['roi_t3'] + params['roi_t2']] = params['roi_p1'] | ||||
|         roi_table[params['roi_t3'] + params['roi_t2'] + params['roi_t1']] = 0 | ||||
|  | ||||
|         return roi_table | ||||
|  | ||||
|     @staticmethod | ||||
|     @abstractmethod | ||||
|     def stoploss_space() -> List[Dimension]: | ||||
|         """ | ||||
|         Create a stoploss space | ||||
|         Create a stoploss space. | ||||
|  | ||||
|         Defines range of stoploss values to search. | ||||
|         You may override it in your custom Hyperopt class. | ||||
|         """ | ||||
|         return [ | ||||
|             Real(-0.5, -0.02, name='stoploss'), | ||||
|         ] | ||||
|  | ||||
|     @staticmethod | ||||
|     @abstractmethod | ||||
|     def roi_space() -> List[Dimension]: | ||||
|         """ | ||||
|         Create a roi space | ||||
|         Create a ROI space. | ||||
|  | ||||
|         Defines values to search for each ROI steps. | ||||
|         You may override it in your custom Hyperopt class. | ||||
|         """ | ||||
|         return [ | ||||
|             Integer(10, 120, name='roi_t1'), | ||||
|             Integer(10, 60, name='roi_t2'), | ||||
|             Integer(10, 40, name='roi_t3'), | ||||
|             Real(0.01, 0.04, name='roi_p1'), | ||||
|             Real(0.01, 0.07, name='roi_p2'), | ||||
|             Real(0.01, 0.20, name='roi_p3'), | ||||
|         ] | ||||
|   | ||||
| @@ -39,7 +39,7 @@ class SharpeHyperOptLoss(IHyperOptLoss): | ||||
|             sharp_ratio = expected_yearly_return / np.std(total_profit) * np.sqrt(365) | ||||
|         else: | ||||
|             # Define high (negative) sharpe ratio to be clear that this is NOT optimal. | ||||
|             sharp_ratio = 20. | ||||
|             sharp_ratio = -20. | ||||
|  | ||||
|         # print(expected_yearly_return, np.std(total_profit), sharp_ratio) | ||||
|         return -sharp_ratio | ||||
|   | ||||
| @@ -45,7 +45,7 @@ def get_args(args): | ||||
|  | ||||
| def patched_configuration_load_config_file(mocker, config) -> None: | ||||
|     mocker.patch( | ||||
|         'freqtrade.configuration.configuration.Configuration._load_config_file', | ||||
|         'freqtrade.configuration.configuration.load_config_file', | ||||
|         lambda *args, **kwargs: config | ||||
|     ) | ||||
|  | ||||
|   | ||||
| @@ -2,7 +2,7 @@ | ||||
| # pragma pylint: disable=protected-access | ||||
| import copy | ||||
| import logging | ||||
| from datetime import datetime | ||||
| from datetime import datetime, timezone | ||||
| from random import randint | ||||
| from unittest.mock import MagicMock, Mock, PropertyMock | ||||
|  | ||||
| @@ -11,8 +11,8 @@ import ccxt | ||||
| import pytest | ||||
| from pandas import DataFrame | ||||
|  | ||||
| from freqtrade import (DependencyException, OperationalException, | ||||
|                        TemporaryError, InvalidOrderException) | ||||
| from freqtrade import (DependencyException, InvalidOrderException, | ||||
|                        OperationalException, TemporaryError) | ||||
| from freqtrade.exchange import Binance, Exchange, Kraken | ||||
| from freqtrade.exchange.exchange import API_RETRY_COUNT | ||||
| from freqtrade.resolvers.exchange_resolver import ExchangeResolver | ||||
| @@ -1361,7 +1361,7 @@ def test_name(default_conf, mocker, exchange_name): | ||||
| @pytest.mark.parametrize("exchange_name", EXCHANGES) | ||||
| def test_get_trades_for_order(default_conf, mocker, exchange_name): | ||||
|     order_id = 'ABCD-ABCD' | ||||
|     since = datetime(2018, 5, 5) | ||||
|     since = datetime(2018, 5, 5, tzinfo=timezone.utc) | ||||
|     default_conf["dry_run"] = False | ||||
|     mocker.patch('freqtrade.exchange.Exchange.exchange_has', return_value=True) | ||||
|     api_mock = MagicMock() | ||||
| @@ -1391,6 +1391,13 @@ def test_get_trades_for_order(default_conf, mocker, exchange_name): | ||||
|     orders = exchange.get_trades_for_order(order_id, 'LTC/BTC', since) | ||||
|     assert len(orders) == 1 | ||||
|     assert orders[0]['price'] == 165 | ||||
|     assert api_mock.fetch_my_trades.call_count == 1 | ||||
|     # since argument should be | ||||
|     assert isinstance(api_mock.fetch_my_trades.call_args[0][1], int) | ||||
|     assert api_mock.fetch_my_trades.call_args[0][0] == 'LTC/BTC' | ||||
|     # Same test twice, hardcoded number and doing the same calculation | ||||
|     assert api_mock.fetch_my_trades.call_args[0][1] == 1525478395000 | ||||
|     assert api_mock.fetch_my_trades.call_args[0][1] == int(since.timestamp() - 5) * 1000 | ||||
|  | ||||
|     ccxt_exceptionhandlers(mocker, default_conf, api_mock, exchange_name, | ||||
|                            'get_trades_for_order', 'fetch_my_trades', | ||||
|   | ||||
| @@ -14,9 +14,8 @@ from freqtrade.tests.optimize import (BTContainer, BTrade, | ||||
|                                       _get_frame_time_from_offset, | ||||
|                                       tests_ticker_interval) | ||||
|  | ||||
| # Test 0 Sell signal sell | ||||
| # Test 0: Sell with signal sell in candle 3 | ||||
| # Test with Stop-loss at 1% | ||||
| # TC0: Sell signal in candle 3 | ||||
| tc0 = BTContainer(data=[ | ||||
|     # D  O     H     L     C     V    B  S | ||||
|     [0, 5000, 5025, 4975, 4987, 6172, 1, 0], | ||||
| @@ -29,9 +28,8 @@ tc0 = BTContainer(data=[ | ||||
|     trades=[BTrade(sell_reason=SellType.SELL_SIGNAL, open_tick=1, close_tick=4)] | ||||
| ) | ||||
|  | ||||
| # Test 1 Minus 8% Close | ||||
| # Test 1: Stop-Loss Triggered 1% loss | ||||
| # Test with Stop-loss at 1% | ||||
| # TC1: Stop-Loss Triggered 1% loss | ||||
| tc1 = BTContainer(data=[ | ||||
|     # D  O     H     L     C     V    B  S | ||||
|     [0, 5000, 5025, 4975, 4987, 6172, 1, 0], | ||||
| @@ -45,9 +43,8 @@ tc1 = BTContainer(data=[ | ||||
| ) | ||||
|  | ||||
|  | ||||
| # Test 2 Minus 4% Low, minus 1% close | ||||
| # Test 2: Minus 4% Low, minus 1% close | ||||
| # Test with Stop-Loss at 3% | ||||
| # TC2: Stop-Loss Triggered 3% Loss | ||||
| tc2 = BTContainer(data=[ | ||||
|     # D  O     H     L     C     V    B  S | ||||
|     [0, 5000, 5025, 4975, 4987, 6172, 1, 0], | ||||
| @@ -61,11 +58,11 @@ tc2 = BTContainer(data=[ | ||||
| ) | ||||
|  | ||||
|  | ||||
| # Test 3 Candle drops 4%, Recovers 1%. | ||||
| # Test 3: Multiple trades. | ||||
| #         Candle drops 4%, Recovers 1%. | ||||
| #         Entry Criteria Met | ||||
| #         Candle drops 20% | ||||
| # Test with Stop-Loss at 2% | ||||
| # TC3: Trade-A: Stop-Loss Triggered 2% Loss | ||||
| #  Trade-A: Stop-Loss Triggered 2% Loss | ||||
| #           Trade-B: Stop-Loss Triggered 2% Loss | ||||
| tc3 = BTContainer(data=[ | ||||
|     # D  O     H     L     C     V    B  S | ||||
| @@ -81,10 +78,10 @@ tc3 = BTContainer(data=[ | ||||
|             BTrade(sell_reason=SellType.STOP_LOSS, open_tick=4, close_tick=5)] | ||||
| ) | ||||
|  | ||||
| # Test 4 Minus 3% / recovery +15% | ||||
| # Test 4: Minus 3% / recovery +15% | ||||
| # Candle Data for test 3 – Candle drops 3% Closed 15% up | ||||
| # Test with Stop-loss at 2% ROI 6% | ||||
| # TC4: Stop-Loss Triggered 2% Loss | ||||
| # Stop-Loss Triggered 2% Loss | ||||
| tc4 = BTContainer(data=[ | ||||
|     # D  O     H     L     C     V    B  S | ||||
|     [0, 5000, 5025, 4975, 4987, 6172, 1, 0], | ||||
| @@ -97,9 +94,8 @@ tc4 = BTContainer(data=[ | ||||
|     trades=[BTrade(sell_reason=SellType.STOP_LOSS, open_tick=1, close_tick=2)] | ||||
| ) | ||||
|  | ||||
| # Test 5 / Drops 0.5% Closes +20% | ||||
| # Set stop-loss at 1% ROI 3% | ||||
| # TC5: ROI triggers 3% Gain | ||||
| # Test 5: Drops 0.5% Closes +20%, ROI triggers 3% Gain | ||||
| # stop-loss: 1%, ROI: 3% | ||||
| tc5 = BTContainer(data=[ | ||||
|     # D  O     H     L     C     V    B  S | ||||
|     [0, 5000, 5025, 4980, 4987, 6172, 1, 0], | ||||
| @@ -112,9 +108,8 @@ tc5 = BTContainer(data=[ | ||||
|     trades=[BTrade(sell_reason=SellType.ROI, open_tick=1, close_tick=3)] | ||||
| ) | ||||
|  | ||||
| # Test 6 / Drops 3% / Recovers 6% Positive / Closes 1% positve | ||||
| # Set stop-loss at 2% ROI at 5% | ||||
| # TC6: Stop-Loss triggers 2% Loss | ||||
| # Test 6: Drops 3% / Recovers 6% Positive / Closes 1% positve, Stop-Loss triggers 2% Loss | ||||
| # stop-loss: 2% ROI: 5% | ||||
| tc6 = BTContainer(data=[ | ||||
|     # D  O     H     L     C     V    B  S | ||||
|     [0, 5000, 5025, 4975, 4987, 6172, 1, 0], | ||||
| @@ -127,9 +122,8 @@ tc6 = BTContainer(data=[ | ||||
|     trades=[BTrade(sell_reason=SellType.STOP_LOSS, open_tick=1, close_tick=2)] | ||||
| ) | ||||
|  | ||||
| # Test 7 - 6% Positive / 1% Negative / Close 1% Positve | ||||
| # Set stop-loss at 2% ROI at 3% | ||||
| # TC7: ROI Triggers 3% Gain | ||||
| # Test 7: 6% Positive / 1% Negative / Close 1% Positve, ROI Triggers 3% Gain | ||||
| # stop-loss: 2% ROI: 3% | ||||
| tc7 = BTContainer(data=[ | ||||
|     # D  O     H     L     C     V    B  S | ||||
|     [0, 5000, 5025, 4975, 4987, 6172, 1, 0], | ||||
| @@ -143,9 +137,8 @@ tc7 = BTContainer(data=[ | ||||
| ) | ||||
|  | ||||
|  | ||||
| # Test 8 - trailing_stop should raise so candle 3 causes a stoploss. | ||||
| # Set stop-loss at 10%, ROI at 10% (should not apply) | ||||
| # TC8: Trailing stoploss - stoploss should be adjusted candle 2 | ||||
| # Test 8: trailing_stop should raise so candle 3 causes a stoploss. | ||||
| # stop-loss: 10%, ROI: 10% (should not apply), stoploss adjusted in candle 2 | ||||
| tc8 = BTContainer(data=[ | ||||
|     # D   O     H     L    C     V    B  S | ||||
|     [0, 5000, 5050, 4950, 5000, 6172, 1, 0], | ||||
| @@ -158,10 +151,8 @@ tc8 = BTContainer(data=[ | ||||
| ) | ||||
|  | ||||
|  | ||||
| # Test 9 - trailing_stop should raise - high and low in same candle. | ||||
| # Candle Data for test 9 | ||||
| # Set stop-loss at 10%, ROI at 10% (should not apply) | ||||
| # TC9: Trailing stoploss - stoploss should be adjusted candle 3 | ||||
| # Test 9: trailing_stop should raise - high and low in same candle. | ||||
| # stop-loss: 10%, ROI: 10% (should not apply), stoploss adjusted in candle 3 | ||||
| tc9 = BTContainer(data=[ | ||||
|     # D   O     H     L     C    V    B  S | ||||
|     [0, 5000, 5050, 4950, 5000, 6172, 1, 0], | ||||
| @@ -173,10 +164,9 @@ tc9 = BTContainer(data=[ | ||||
|     trades=[BTrade(sell_reason=SellType.TRAILING_STOP_LOSS, open_tick=1, close_tick=3)] | ||||
| ) | ||||
|  | ||||
| # Test 10 - trailing_stop should raise so candle 3 causes a stoploss | ||||
| # Test 10: trailing_stop should raise so candle 3 causes a stoploss | ||||
| # without applying trailing_stop_positive since stoploss_offset is at 10%. | ||||
| # Set stop-loss at 10%, ROI at 10% (should not apply) | ||||
| # TC10: Trailing stoploss - stoploss should be adjusted candle 2 | ||||
| # stop-loss: 10%, ROI: 10% (should not apply), stoploss adjusted candle 2 | ||||
| tc10 = BTContainer(data=[ | ||||
|     # D   O     H     L     C    V    B  S | ||||
|     [0, 5000, 5050, 4950, 5000, 6172, 1, 0], | ||||
| @@ -190,10 +180,9 @@ tc10 = BTContainer(data=[ | ||||
|     trades=[BTrade(sell_reason=SellType.STOP_LOSS, open_tick=1, close_tick=4)] | ||||
| ) | ||||
|  | ||||
| # Test 11 - trailing_stop should raise so candle 3 causes a stoploss | ||||
| # Test 11: trailing_stop should raise so candle 3 causes a stoploss | ||||
| # applying a positive trailing stop of 3% since stop_positive_offset is reached. | ||||
| # Set stop-loss at 10%, ROI at 10% (should not apply) | ||||
| # TC11: Trailing stoploss - stoploss should be adjusted candle 2, | ||||
| # stop-loss: 10%, ROI: 10% (should not apply), stoploss adjusted candle 2 | ||||
| tc11 = BTContainer(data=[ | ||||
|     # D   O     H     L     C    V    B  S | ||||
|     [0, 5000, 5050, 4950, 5000, 6172, 1, 0], | ||||
| @@ -207,10 +196,9 @@ tc11 = BTContainer(data=[ | ||||
|     trades=[BTrade(sell_reason=SellType.TRAILING_STOP_LOSS, open_tick=1, close_tick=3)] | ||||
| ) | ||||
|  | ||||
| # Test 12 - trailing_stop should raise in candle 2 and cause a stoploss in the same candle | ||||
| # Test 12: trailing_stop should raise in candle 2 and cause a stoploss in the same candle | ||||
| # applying a positive trailing stop of 3% since stop_positive_offset is reached. | ||||
| # Set stop-loss at 10%, ROI at 10% (should not apply) | ||||
| # TC12: Trailing stoploss - stoploss should be adjusted candle 2, | ||||
| # stop-loss: 10%, ROI: 10% (should not apply), stoploss adjusted candle 2 | ||||
| tc12 = BTContainer(data=[ | ||||
|     # D   O     H     L     C    V    B  S | ||||
|     [0, 5000, 5050, 4950, 5000, 6172, 1, 0], | ||||
| @@ -224,6 +212,47 @@ tc12 = BTContainer(data=[ | ||||
|     trades=[BTrade(sell_reason=SellType.TRAILING_STOP_LOSS, open_tick=1, close_tick=2)] | ||||
| ) | ||||
|  | ||||
| # Test 13: Buy and sell ROI on same candle | ||||
| # stop-loss: 10% (should not apply), ROI: 1% | ||||
| tc13 = BTContainer(data=[ | ||||
|     # D   O     H     L     C    V    B  S | ||||
|     [0, 5000, 5050, 4950, 5000, 6172, 1, 0], | ||||
|     [1, 5000, 5100, 4950, 5100, 6172, 0, 0], | ||||
|     [2, 5100, 5251, 4850, 5100, 6172, 0, 0], | ||||
|     [3, 4850, 5050, 4850, 4750, 6172, 0, 0], | ||||
|     [4, 4750, 4950, 4850, 4750, 6172, 0, 0]], | ||||
|     stop_loss=-0.10, roi=0.01, profit_perc=0.01, | ||||
|     trades=[BTrade(sell_reason=SellType.ROI, open_tick=1, close_tick=1)] | ||||
| ) | ||||
|  | ||||
| # Test 14 - Buy and Stoploss on same candle | ||||
| # stop-loss: 5%, ROI: 10% (should not apply) | ||||
| tc14 = BTContainer(data=[ | ||||
|     # D   O     H     L     C    V    B  S | ||||
|     [0, 5000, 5050, 4950, 5000, 6172, 1, 0], | ||||
|     [1, 5000, 5100, 4600, 5100, 6172, 0, 0], | ||||
|     [2, 5100, 5251, 4850, 5100, 6172, 0, 0], | ||||
|     [3, 4850, 5050, 4850, 4750, 6172, 0, 0], | ||||
|     [4, 4750, 4950, 4350, 4750, 6172, 0, 0]], | ||||
|     stop_loss=-0.05, roi=0.10, profit_perc=-0.05, | ||||
|     trades=[BTrade(sell_reason=SellType.STOP_LOSS, open_tick=1, close_tick=1)] | ||||
| ) | ||||
|  | ||||
|  | ||||
| # Test 15 - Buy and ROI on same candle, followed by buy and Stoploss on next candle | ||||
| # stop-loss: 5%, ROI: 10% (should not apply) | ||||
| tc15 = BTContainer(data=[ | ||||
|     # D   O     H     L     C    V    B  S | ||||
|     [0, 5000, 5050, 4950, 5000, 6172, 1, 0], | ||||
|     [1, 5000, 5100, 4900, 5100, 6172, 1, 0], | ||||
|     [2, 5100, 5251, 4650, 5100, 6172, 0, 0], | ||||
|     [3, 4850, 5050, 4850, 4750, 6172, 0, 0], | ||||
|     [4, 4750, 4950, 4350, 4750, 6172, 0, 0]], | ||||
|     stop_loss=-0.05, roi=0.01, profit_perc=-0.04, | ||||
|     trades=[BTrade(sell_reason=SellType.ROI, open_tick=1, close_tick=1), | ||||
|             BTrade(sell_reason=SellType.STOP_LOSS, open_tick=2, close_tick=2)] | ||||
| ) | ||||
|  | ||||
| TESTS = [ | ||||
|     tc0, | ||||
|     tc1, | ||||
| @@ -238,6 +267,9 @@ TESTS = [ | ||||
|     tc10, | ||||
|     tc11, | ||||
|     tc12, | ||||
|     tc13, | ||||
|     tc14, | ||||
|     tc15, | ||||
| ] | ||||
|  | ||||
|  | ||||
|   | ||||
| @@ -9,7 +9,7 @@ import pandas as pd | ||||
| import pytest | ||||
| from arrow import Arrow | ||||
|  | ||||
| from freqtrade import DependencyException, constants | ||||
| from freqtrade import DependencyException, OperationalException, constants | ||||
| from freqtrade.configuration import TimeRange | ||||
| from freqtrade.data import history | ||||
| from freqtrade.data.btanalysis import evaluate_result_multi | ||||
| @@ -21,7 +21,8 @@ from freqtrade.optimize.backtesting import Backtesting | ||||
| from freqtrade.state import RunMode | ||||
| from freqtrade.strategy.default_strategy import DefaultStrategy | ||||
| from freqtrade.strategy.interface import SellType | ||||
| from freqtrade.tests.conftest import (get_args, log_has, log_has_re, patch_exchange, | ||||
| from freqtrade.tests.conftest import (get_args, log_has, log_has_re, | ||||
|                                       patch_exchange, | ||||
|                                       patched_configuration_load_config_file) | ||||
|  | ||||
|  | ||||
| @@ -345,6 +346,23 @@ def test_backtesting_init(mocker, default_conf, order_types) -> None: | ||||
|     assert not backtesting.strategy.order_types["stoploss_on_exchange"] | ||||
|  | ||||
|  | ||||
| def test_backtesting_init_no_ticker_interval(mocker, default_conf, caplog) -> None: | ||||
|     """ | ||||
|     Check that stoploss_on_exchange is set to False while backtesting | ||||
|     since backtesting assumes a perfect stoploss anyway. | ||||
|     """ | ||||
|     patch_exchange(mocker) | ||||
|     del default_conf['ticker_interval'] | ||||
|     default_conf['strategy_list'] = ['DefaultStrategy', | ||||
|                                      'TestStrategy'] | ||||
|  | ||||
|     mocker.patch('freqtrade.exchange.Exchange.get_fee', MagicMock(return_value=0.5)) | ||||
|     with pytest.raises(OperationalException): | ||||
|         Backtesting(default_conf) | ||||
|     log_has("Ticker-interval needs to be set in either configuration " | ||||
|             "or as cli argument `--ticker-interval 5m`", caplog.record_tuples) | ||||
|  | ||||
|  | ||||
| def test_tickerdata_to_dataframe_bt(default_conf, mocker) -> None: | ||||
|     patch_exchange(mocker) | ||||
|     timerange = TimeRange(None, 'line', 0, -100) | ||||
| @@ -618,8 +636,9 @@ def test_processed(default_conf, mocker) -> None: | ||||
|  | ||||
|  | ||||
| def test_backtest_pricecontours(default_conf, fee, mocker) -> None: | ||||
|     # TODO: Evaluate usefullness of this, the patterns and buy-signls are unrealistic | ||||
|     mocker.patch('freqtrade.exchange.Exchange.get_fee', fee) | ||||
|     tests = [['raise', 19], ['lower', 0], ['sine', 18]] | ||||
|     tests = [['raise', 19], ['lower', 0], ['sine', 35]] | ||||
|     # We need to enable sell-signal - otherwise it sells on ROI!! | ||||
|     default_conf['experimental'] = {"use_sell_signal": True} | ||||
|  | ||||
|   | ||||
| @@ -15,6 +15,7 @@ from freqtrade.configuration import Arguments, Configuration | ||||
| from freqtrade.configuration.check_exchange import check_exchange | ||||
| from freqtrade.configuration.directory_operations import create_datadir, create_userdata_dir | ||||
| from freqtrade.configuration.json_schema import validate_config_schema | ||||
| from freqtrade.configuration.load_config import load_config_file | ||||
| from freqtrade.constants import DEFAULT_DB_DRYRUN_URL, DEFAULT_DB_PROD_URL | ||||
| from freqtrade.loggers import _set_loggers | ||||
| from freqtrade.state import RunMode | ||||
| @@ -26,8 +27,7 @@ from freqtrade.tests.conftest import (log_has, log_has_re, | ||||
| def all_conf(): | ||||
|     config_file = Path(__file__).parents[2] / "config_full.json.example" | ||||
|     print(config_file) | ||||
|     configuration = Configuration(Namespace()) | ||||
|     conf = configuration._load_config_file(str(config_file)) | ||||
|     conf = load_config_file(str(config_file)) | ||||
|     return conf | ||||
|  | ||||
|  | ||||
| @@ -54,12 +54,11 @@ def test_load_config_incorrect_stake_amount(default_conf) -> None: | ||||
|  | ||||
| def test_load_config_file(default_conf, mocker, caplog) -> None: | ||||
|     del default_conf['user_data_dir'] | ||||
|     file_mock = mocker.patch('freqtrade.configuration.configuration.open', mocker.mock_open( | ||||
|     file_mock = mocker.patch('freqtrade.configuration.load_config.open', mocker.mock_open( | ||||
|         read_data=json.dumps(default_conf) | ||||
|     )) | ||||
|  | ||||
|     configuration = Configuration(Namespace()) | ||||
|     validated_conf = configuration._load_config_file('somefile') | ||||
|     validated_conf = load_config_file('somefile') | ||||
|     assert file_mock.call_count == 1 | ||||
|     assert validated_conf.items() >= default_conf.items() | ||||
|  | ||||
| @@ -115,7 +114,7 @@ def test_load_config_combine_dicts(default_conf, mocker, caplog) -> None: | ||||
|  | ||||
|     configsmock = MagicMock(side_effect=config_files) | ||||
|     mocker.patch( | ||||
|         'freqtrade.configuration.configuration.Configuration._load_config_file', | ||||
|         'freqtrade.configuration.configuration.load_config_file', | ||||
|         configsmock | ||||
|     ) | ||||
|  | ||||
| @@ -155,10 +154,9 @@ def test_load_config_file_exception(mocker) -> None: | ||||
|         'freqtrade.configuration.configuration.open', | ||||
|         MagicMock(side_effect=FileNotFoundError('File not found')) | ||||
|     ) | ||||
|     configuration = Configuration(Namespace()) | ||||
|  | ||||
|     with pytest.raises(OperationalException, match=r'.*Config file "somefile" not found!*'): | ||||
|         configuration._load_config_file('somefile') | ||||
|         load_config_file('somefile') | ||||
|  | ||||
|  | ||||
| def test_load_config(default_conf, mocker) -> None: | ||||
|   | ||||
| @@ -1,16 +1,16 @@ | ||||
| # requirements without requirements installable via conda | ||||
| # mainly used for Raspberry pi installs | ||||
| ccxt==1.18.992 | ||||
| ccxt==1.18.1021 | ||||
| SQLAlchemy==1.3.6 | ||||
| python-telegram-bot==11.1.0 | ||||
| arrow==0.14.3 | ||||
| arrow==0.14.4 | ||||
| cachetools==3.1.1 | ||||
| requests==2.22.0 | ||||
| urllib3==1.24.2  # pyup: ignore | ||||
| urllib3==1.25.3 | ||||
| wrapt==1.11.2 | ||||
| scikit-learn==0.21.2 | ||||
| scikit-learn==0.21.3 | ||||
| joblib==0.13.2 | ||||
| jsonschema==3.0.1 | ||||
| jsonschema==3.0.2 | ||||
| TA-Lib==0.4.17 | ||||
| tabulate==0.8.3 | ||||
| coinmarketcap==5.0.3 | ||||
| @@ -20,7 +20,7 @@ scikit-optimize==0.5.2 | ||||
| filelock==3.0.12 | ||||
|  | ||||
| # find first, C search in arrays | ||||
| py_find_1st==1.1.3 | ||||
| py_find_1st==1.1.4 | ||||
|  | ||||
| #Load ticker files 30% faster | ||||
| python-rapidjson==0.7.2 | ||||
|   | ||||
| @@ -2,7 +2,7 @@ | ||||
| -r requirements.txt | ||||
| -r requirements-plot.txt | ||||
|  | ||||
| coveralls==1.8.1 | ||||
| coveralls==1.8.2 | ||||
| flake8==3.7.8 | ||||
| flake8-type-annotations==0.1.0 | ||||
| flake8-tidy-imports==2.0.0 | ||||
|   | ||||
| @@ -1,5 +1,5 @@ | ||||
| # Include all requirements to run the bot. | ||||
| -r requirements.txt | ||||
|  | ||||
| plotly==4.0.0 | ||||
| plotly==4.1.0 | ||||
|  | ||||
|   | ||||
| @@ -12,6 +12,7 @@ from freqtrade.configuration import Arguments, TimeRange | ||||
| from freqtrade.configuration import Configuration | ||||
| from freqtrade.configuration.arguments import ARGS_DOWNLOADER | ||||
| from freqtrade.configuration.check_exchange import check_exchange | ||||
| from freqtrade.configuration.load_config import load_config_file | ||||
| from freqtrade.data.history import download_pair_history | ||||
| from freqtrade.exchange import Exchange | ||||
| from freqtrade.misc import deep_merge_dicts | ||||
| @@ -40,7 +41,7 @@ if args.config: | ||||
|     for path in args.config: | ||||
|         logger.info(f"Using config: {path}...") | ||||
|         # Merge config options, overwriting old values | ||||
|         config = deep_merge_dicts(configuration._load_config_file(path), config) | ||||
|         config = deep_merge_dicts(load_config_file(path), config) | ||||
|  | ||||
|     config['stake_currency'] = '' | ||||
|     # Ensure we do not use Exchange credentials | ||||
|   | ||||
							
								
								
									
										10
									
								
								setup.py
									
									
									
									
									
								
							
							
						
						
									
										10
									
								
								setup.py
									
									
									
									
									
								
							| @@ -25,7 +25,13 @@ develop = [ | ||||
|     'pytest-random-order', | ||||
| ] | ||||
|  | ||||
| all_extra = api + plot + develop | ||||
| jupyter = [ | ||||
|     'jupyter', | ||||
|     'nbstripout', | ||||
|     'ipykernel', | ||||
|     ] | ||||
|  | ||||
| all_extra = api + plot + develop + jupyter | ||||
|  | ||||
| setup(name='freqtrade', | ||||
|       version=__version__, | ||||
| @@ -68,6 +74,8 @@ setup(name='freqtrade', | ||||
|           'dev': all_extra, | ||||
|           'plot': plot, | ||||
|           'all': all_extra, | ||||
|           'jupyter': jupyter, | ||||
|            | ||||
|       }, | ||||
|       include_package_data=True, | ||||
|       zip_safe=False, | ||||
|   | ||||
							
								
								
									
										39
									
								
								setup.sh
									
									
									
									
									
								
							
							
						
						
									
										39
									
								
								setup.sh
									
									
									
									
									
								
							| @@ -11,6 +11,12 @@ function check_installed_pip() { | ||||
|  | ||||
| # Check which python version is installed | ||||
| function check_installed_python() { | ||||
|     if [ -n "${VIRTUAL_ENV}" ]; then | ||||
|         echo "Please deactivate your virtual environment before running setup.sh." | ||||
|         echo "You can do this by running 'deactivate'." | ||||
|         exit 2 | ||||
|     fi | ||||
|  | ||||
|     which python3.7 | ||||
|     if [ $? -eq 0 ]; then | ||||
|         echo "using Python 3.7" | ||||
| @@ -37,17 +43,19 @@ function updateenv() { | ||||
|     echo "-------------------------" | ||||
|     echo "Updating your virtual env" | ||||
|     echo "-------------------------" | ||||
|     if [ ! -f .env/bin/activate ]; then | ||||
|         echo "Something went wrong, no virtual environment found." | ||||
|         exit 1 | ||||
|     fi | ||||
|     source .env/bin/activate | ||||
|     echo "pip install in-progress. Please wait..." | ||||
|     # Install numpy first to have py_find_1st install clean | ||||
|     ${PYTHON} -m pip install --upgrade pip numpy | ||||
|     ${PYTHON} -m pip install --upgrade -r requirements.txt | ||||
|  | ||||
|     ${PYTHON} -m pip install --upgrade pip | ||||
|     read -p "Do you want to install dependencies for dev [y/N]? " | ||||
|     if [[ $REPLY =~ ^[Yy]$ ]] | ||||
|     then | ||||
|         ${PYTHON} -m pip install --upgrade -r requirements-dev.txt | ||||
|     else | ||||
|         ${PYTHON} -m pip install --upgrade -r requirements.txt | ||||
|         echo "Dev dependencies ignored." | ||||
|     fi | ||||
|  | ||||
| @@ -70,6 +78,10 @@ function install_talib() { | ||||
|     ./configure --prefix=/usr/local | ||||
|     make | ||||
|     sudo make install | ||||
|     if [ -x "$(command -v apt-get)" ]; then | ||||
|         echo "Updating library path using ldconfig" | ||||
|         sudo ldconfig | ||||
|     fi | ||||
|     cd .. && rm -rf ./ta-lib/ | ||||
|     cd .. | ||||
| } | ||||
| @@ -90,7 +102,7 @@ function install_macos() { | ||||
| # Install bot Debian_ubuntu | ||||
| function install_debian() { | ||||
|     sudo apt-get update | ||||
|     sudo apt-get install build-essential autoconf libtool pkg-config make wget git | ||||
|     sudo apt-get install -y build-essential autoconf libtool pkg-config make wget git | ||||
|     install_talib | ||||
| } | ||||
|  | ||||
| @@ -105,12 +117,12 @@ function reset() { | ||||
|     echo "----------------------------" | ||||
|     echo "Reseting branch and virtual env" | ||||
|     echo "----------------------------" | ||||
|  | ||||
|     if [ "1" == $(git branch -vv |grep -cE "\* develop|\* master") ] | ||||
|     then | ||||
|         if [ -d ".env" ]; then | ||||
|           echo "- Delete your previous virtual env" | ||||
|           rm -rf .env | ||||
|         fi | ||||
|  | ||||
|         read -p "Reset git branch? (This will remove all changes you made!) [y/N]? " | ||||
|         if [[ $REPLY =~ ^[Yy]$ ]]; then | ||||
|  | ||||
|             git fetch -a | ||||
|  | ||||
| @@ -123,12 +135,21 @@ function reset() { | ||||
|                 echo "- Hard resetting of 'master' branch." | ||||
|                 git reset --hard origin/master | ||||
|             fi | ||||
|         fi | ||||
|     else | ||||
|         echo "Reset ignored because you are not on 'master' or 'develop'." | ||||
|     fi | ||||
|  | ||||
|     if [ -d ".env" ]; then | ||||
|         echo "- Delete your previous virtual env" | ||||
|         rm -rf .env | ||||
|     fi | ||||
|     echo | ||||
|     ${PYTHON} -m venv .env | ||||
|     if [ $? -ne 0 ]; then | ||||
|         echo "Could not create virtual environment. Leaving now" | ||||
|         exit 1 | ||||
|     fi | ||||
|     updateenv | ||||
| } | ||||
|  | ||||
|   | ||||
| @@ -14,20 +14,27 @@ import freqtrade.vendor.qtpylib.indicators as qtpylib | ||||
| from freqtrade.optimize.hyperopt_interface import IHyperOpt | ||||
|  | ||||
|  | ||||
| # This class is a sample. Feel free to customize it. | ||||
| class SampleHyperOpts(IHyperOpt): | ||||
|     """ | ||||
|     This is a test hyperopt to inspire you. | ||||
|     More information in https://github.com/freqtrade/freqtrade/blob/develop/docs/hyperopt.md | ||||
|      You can: | ||||
|     - Rename the class name (Do not forget to update class_name) | ||||
|     - Add any methods you want to build your hyperopt | ||||
|     - Add any lib you need to build your hyperopt | ||||
|      You must keep: | ||||
|     - the prototype for the methods: populate_indicators, indicator_space, buy_strategy_generator, | ||||
|     roi_space, generate_roi_table, stoploss_space | ||||
|     """ | ||||
|     This is a sample hyperopt to inspire you. | ||||
|     Feel free to customize it. | ||||
|  | ||||
|     More information in https://github.com/freqtrade/freqtrade/blob/develop/docs/hyperopt.md | ||||
|  | ||||
|     You should: | ||||
|     - Rename the class name to some unique name. | ||||
|     - Add any methods you want to build your hyperopt. | ||||
|     - Add any lib you need to build your hyperopt. | ||||
|  | ||||
|     You must keep: | ||||
|     - The prototypes for the methods: populate_indicators, indicator_space, buy_strategy_generator. | ||||
|  | ||||
|     The roi_space, generate_roi_table, stoploss_space methods are no longer required to be | ||||
|     copied in every custom hyperopt. However, you may override them if you need the | ||||
|     'roi' and the 'stoploss' spaces that differ from the defaults offered by Freqtrade. | ||||
|     Sample implementation of these methods can be found in | ||||
|     https://github.com/freqtrade/freqtrade/blob/develop/user_data/hyperopts/sample_hyperopt_advanced.py | ||||
|     """ | ||||
|     @staticmethod | ||||
|     def populate_indicators(dataframe: DataFrame, metadata: dict) -> DataFrame: | ||||
|         dataframe['adx'] = ta.ADX(dataframe) | ||||
| @@ -167,42 +174,6 @@ class SampleHyperOpts(IHyperOpt): | ||||
|                          'sell-sar_reversal'], name='sell-trigger') | ||||
|         ] | ||||
|  | ||||
|     @staticmethod | ||||
|     def generate_roi_table(params: Dict) -> Dict[int, float]: | ||||
|         """ | ||||
|         Generate the ROI table that will be used by Hyperopt | ||||
|         """ | ||||
|         roi_table = {} | ||||
|         roi_table[0] = params['roi_p1'] + params['roi_p2'] + params['roi_p3'] | ||||
|         roi_table[params['roi_t3']] = params['roi_p1'] + params['roi_p2'] | ||||
|         roi_table[params['roi_t3'] + params['roi_t2']] = params['roi_p1'] | ||||
|         roi_table[params['roi_t3'] + params['roi_t2'] + params['roi_t1']] = 0 | ||||
|  | ||||
|         return roi_table | ||||
|  | ||||
|     @staticmethod | ||||
|     def stoploss_space() -> List[Dimension]: | ||||
|         """ | ||||
|         Stoploss Value to search | ||||
|         """ | ||||
|         return [ | ||||
|             Real(-0.5, -0.02, name='stoploss'), | ||||
|         ] | ||||
|  | ||||
|     @staticmethod | ||||
|     def roi_space() -> List[Dimension]: | ||||
|         """ | ||||
|         Values to search for each ROI steps | ||||
|         """ | ||||
|         return [ | ||||
|             Integer(10, 120, name='roi_t1'), | ||||
|             Integer(10, 60, name='roi_t2'), | ||||
|             Integer(10, 40, name='roi_t3'), | ||||
|             Real(0.01, 0.04, name='roi_p1'), | ||||
|             Real(0.01, 0.07, name='roi_p2'), | ||||
|             Real(0.01, 0.20, name='roi_p3'), | ||||
|         ] | ||||
|  | ||||
|     def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame: | ||||
|         """ | ||||
|         Based on TA indicators. Should be a copy of from strategy | ||||
|   | ||||
							
								
								
									
										261
									
								
								user_data/hyperopts/sample_hyperopt_advanced.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										261
									
								
								user_data/hyperopts/sample_hyperopt_advanced.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,261 @@ | ||||
| # pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement | ||||
|  | ||||
| from functools import reduce | ||||
| from math import exp | ||||
| from typing import Any, Callable, Dict, List | ||||
| from datetime import datetime | ||||
|  | ||||
| import numpy as np# noqa F401 | ||||
| import talib.abstract as ta | ||||
| from pandas import DataFrame | ||||
| from skopt.space import Categorical, Dimension, Integer, Real | ||||
|  | ||||
| import freqtrade.vendor.qtpylib.indicators as qtpylib | ||||
| from freqtrade.optimize.hyperopt_interface import IHyperOpt | ||||
|  | ||||
|  | ||||
| class AdvancedSampleHyperOpts(IHyperOpt): | ||||
|     """ | ||||
|     This is a sample hyperopt to inspire you. | ||||
|     Feel free to customize it. | ||||
|  | ||||
|     More information in https://github.com/freqtrade/freqtrade/blob/develop/docs/hyperopt.md | ||||
|  | ||||
|     You should: | ||||
|     - Rename the class name to some unique name. | ||||
|     - Add any methods you want to build your hyperopt. | ||||
|     - Add any lib you need to build your hyperopt. | ||||
|  | ||||
|     You must keep: | ||||
|     - The prototypes for the methods: populate_indicators, indicator_space, buy_strategy_generator. | ||||
|  | ||||
|     The roi_space, generate_roi_table, stoploss_space methods are no longer required to be | ||||
|     copied in every custom hyperopt. However, you may override them if you need the | ||||
|     'roi' and the 'stoploss' spaces that differ from the defaults offered by Freqtrade. | ||||
|  | ||||
|     This sample illustrates how to override these methods. | ||||
|     """ | ||||
|     @staticmethod | ||||
|     def populate_indicators(dataframe: DataFrame, metadata: dict) -> DataFrame: | ||||
|         dataframe['adx'] = ta.ADX(dataframe) | ||||
|         macd = ta.MACD(dataframe) | ||||
|         dataframe['macd'] = macd['macd'] | ||||
|         dataframe['macdsignal'] = macd['macdsignal'] | ||||
|         dataframe['mfi'] = ta.MFI(dataframe) | ||||
|         dataframe['rsi'] = ta.RSI(dataframe) | ||||
|         stoch_fast = ta.STOCHF(dataframe) | ||||
|         dataframe['fastd'] = stoch_fast['fastd'] | ||||
|         dataframe['minus_di'] = ta.MINUS_DI(dataframe) | ||||
|         # Bollinger bands | ||||
|         bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2) | ||||
|         dataframe['bb_lowerband'] = bollinger['lower'] | ||||
|         dataframe['bb_upperband'] = bollinger['upper'] | ||||
|         dataframe['sar'] = ta.SAR(dataframe) | ||||
|         return dataframe | ||||
|  | ||||
|     @staticmethod | ||||
|     def buy_strategy_generator(params: Dict[str, Any]) -> Callable: | ||||
|         """ | ||||
|         Define the buy strategy parameters to be used by hyperopt | ||||
|         """ | ||||
|         def populate_buy_trend(dataframe: DataFrame, metadata: dict) -> DataFrame: | ||||
|             """ | ||||
|             Buy strategy Hyperopt will build and use | ||||
|             """ | ||||
|             conditions = [] | ||||
|             # GUARDS AND TRENDS | ||||
|             if 'mfi-enabled' in params and params['mfi-enabled']: | ||||
|                 conditions.append(dataframe['mfi'] < params['mfi-value']) | ||||
|             if 'fastd-enabled' in params and params['fastd-enabled']: | ||||
|                 conditions.append(dataframe['fastd'] < params['fastd-value']) | ||||
|             if 'adx-enabled' in params and params['adx-enabled']: | ||||
|                 conditions.append(dataframe['adx'] > params['adx-value']) | ||||
|             if 'rsi-enabled' in params and params['rsi-enabled']: | ||||
|                 conditions.append(dataframe['rsi'] < params['rsi-value']) | ||||
|  | ||||
|             # TRIGGERS | ||||
|             if 'trigger' in params: | ||||
|                 if params['trigger'] == 'bb_lower': | ||||
|                     conditions.append(dataframe['close'] < dataframe['bb_lowerband']) | ||||
|                 if params['trigger'] == 'macd_cross_signal': | ||||
|                     conditions.append(qtpylib.crossed_above( | ||||
|                         dataframe['macd'], dataframe['macdsignal'] | ||||
|                     )) | ||||
|                 if params['trigger'] == 'sar_reversal': | ||||
|                     conditions.append(qtpylib.crossed_above( | ||||
|                         dataframe['close'], dataframe['sar'] | ||||
|                     )) | ||||
|  | ||||
|             if conditions: | ||||
|                 dataframe.loc[ | ||||
|                     reduce(lambda x, y: x & y, conditions), | ||||
|                     'buy'] = 1 | ||||
|  | ||||
|             return dataframe | ||||
|  | ||||
|         return populate_buy_trend | ||||
|  | ||||
|     @staticmethod | ||||
|     def indicator_space() -> List[Dimension]: | ||||
|         """ | ||||
|         Define your Hyperopt space for searching strategy parameters | ||||
|         """ | ||||
|         return [ | ||||
|             Integer(10, 25, name='mfi-value'), | ||||
|             Integer(15, 45, name='fastd-value'), | ||||
|             Integer(20, 50, name='adx-value'), | ||||
|             Integer(20, 40, name='rsi-value'), | ||||
|             Categorical([True, False], name='mfi-enabled'), | ||||
|             Categorical([True, False], name='fastd-enabled'), | ||||
|             Categorical([True, False], name='adx-enabled'), | ||||
|             Categorical([True, False], name='rsi-enabled'), | ||||
|             Categorical(['bb_lower', 'macd_cross_signal', 'sar_reversal'], name='trigger') | ||||
|         ] | ||||
|  | ||||
|     @staticmethod | ||||
|     def sell_strategy_generator(params: Dict[str, Any]) -> Callable: | ||||
|         """ | ||||
|         Define the sell strategy parameters to be used by hyperopt | ||||
|         """ | ||||
|         def populate_sell_trend(dataframe: DataFrame, metadata: dict) -> DataFrame: | ||||
|             """ | ||||
|             Sell strategy Hyperopt will build and use | ||||
|             """ | ||||
|             # print(params) | ||||
|             conditions = [] | ||||
|             # GUARDS AND TRENDS | ||||
|             if 'sell-mfi-enabled' in params and params['sell-mfi-enabled']: | ||||
|                 conditions.append(dataframe['mfi'] > params['sell-mfi-value']) | ||||
|             if 'sell-fastd-enabled' in params and params['sell-fastd-enabled']: | ||||
|                 conditions.append(dataframe['fastd'] > params['sell-fastd-value']) | ||||
|             if 'sell-adx-enabled' in params and params['sell-adx-enabled']: | ||||
|                 conditions.append(dataframe['adx'] < params['sell-adx-value']) | ||||
|             if 'sell-rsi-enabled' in params and params['sell-rsi-enabled']: | ||||
|                 conditions.append(dataframe['rsi'] > params['sell-rsi-value']) | ||||
|  | ||||
|             # TRIGGERS | ||||
|             if 'sell-trigger' in params: | ||||
|                 if params['sell-trigger'] == 'sell-bb_upper': | ||||
|                     conditions.append(dataframe['close'] > dataframe['bb_upperband']) | ||||
|                 if params['sell-trigger'] == 'sell-macd_cross_signal': | ||||
|                     conditions.append(qtpylib.crossed_above( | ||||
|                         dataframe['macdsignal'], dataframe['macd'] | ||||
|                     )) | ||||
|                 if params['sell-trigger'] == 'sell-sar_reversal': | ||||
|                     conditions.append(qtpylib.crossed_above( | ||||
|                         dataframe['sar'], dataframe['close'] | ||||
|                     )) | ||||
|  | ||||
|             if conditions: | ||||
|                 dataframe.loc[ | ||||
|                     reduce(lambda x, y: x & y, conditions), | ||||
|                     'sell'] = 1 | ||||
|  | ||||
|             return dataframe | ||||
|  | ||||
|         return populate_sell_trend | ||||
|  | ||||
|     @staticmethod | ||||
|     def sell_indicator_space() -> List[Dimension]: | ||||
|         """ | ||||
|         Define your Hyperopt space for searching sell strategy parameters | ||||
|         """ | ||||
|         return [ | ||||
|             Integer(75, 100, name='sell-mfi-value'), | ||||
|             Integer(50, 100, name='sell-fastd-value'), | ||||
|             Integer(50, 100, name='sell-adx-value'), | ||||
|             Integer(60, 100, name='sell-rsi-value'), | ||||
|             Categorical([True, False], name='sell-mfi-enabled'), | ||||
|             Categorical([True, False], name='sell-fastd-enabled'), | ||||
|             Categorical([True, False], name='sell-adx-enabled'), | ||||
|             Categorical([True, False], name='sell-rsi-enabled'), | ||||
|             Categorical(['sell-bb_upper', | ||||
|                          'sell-macd_cross_signal', | ||||
|                          'sell-sar_reversal'], name='sell-trigger') | ||||
|         ] | ||||
|  | ||||
|     @staticmethod | ||||
|     def generate_roi_table(params: Dict) -> Dict[int, float]: | ||||
|         """ | ||||
|         Generate the ROI table that will be used by Hyperopt | ||||
|  | ||||
|         This implementation generates the default legacy Freqtrade ROI tables. | ||||
|  | ||||
|         Change it if you need different number of steps in the generated | ||||
|         ROI tables or other structure of the ROI tables. | ||||
|  | ||||
|         Please keep it aligned with parameters in the 'roi' optimization | ||||
|         hyperspace defined by the roi_space method. | ||||
|         """ | ||||
|         roi_table = {} | ||||
|         roi_table[0] = params['roi_p1'] + params['roi_p2'] + params['roi_p3'] | ||||
|         roi_table[params['roi_t3']] = params['roi_p1'] + params['roi_p2'] | ||||
|         roi_table[params['roi_t3'] + params['roi_t2']] = params['roi_p1'] | ||||
|         roi_table[params['roi_t3'] + params['roi_t2'] + params['roi_t1']] = 0 | ||||
|  | ||||
|         return roi_table | ||||
|  | ||||
|     @staticmethod | ||||
|     def roi_space() -> List[Dimension]: | ||||
|         """ | ||||
|         Values to search for each ROI steps | ||||
|  | ||||
|         Override it if you need some different ranges for the parameters in the | ||||
|         'roi' optimization hyperspace. | ||||
|  | ||||
|         Please keep it aligned with the implementation of the | ||||
|         generate_roi_table method. | ||||
|         """ | ||||
|         return [ | ||||
|             Integer(10, 120, name='roi_t1'), | ||||
|             Integer(10, 60, name='roi_t2'), | ||||
|             Integer(10, 40, name='roi_t3'), | ||||
|             Real(0.01, 0.04, name='roi_p1'), | ||||
|             Real(0.01, 0.07, name='roi_p2'), | ||||
|             Real(0.01, 0.20, name='roi_p3'), | ||||
|         ] | ||||
|  | ||||
|     @staticmethod | ||||
|     def stoploss_space() -> List[Dimension]: | ||||
|         """ | ||||
|         Stoploss Value to search | ||||
|  | ||||
|         Override it if you need some different range for the parameter in the | ||||
|         'stoploss' optimization hyperspace. | ||||
|         """ | ||||
|         return [ | ||||
|             Real(-0.5, -0.02, name='stoploss'), | ||||
|         ] | ||||
|  | ||||
|     def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame: | ||||
|         """ | ||||
|         Based on TA indicators. Should be a copy of from strategy | ||||
|         must align to populate_indicators in this file | ||||
|         Only used when --spaces does not include buy | ||||
|         """ | ||||
|         dataframe.loc[ | ||||
|             ( | ||||
|                 (dataframe['close'] < dataframe['bb_lowerband']) & | ||||
|                 (dataframe['mfi'] < 16) & | ||||
|                 (dataframe['adx'] > 25) & | ||||
|                 (dataframe['rsi'] < 21) | ||||
|             ), | ||||
|             'buy'] = 1 | ||||
|  | ||||
|         return dataframe | ||||
|  | ||||
|     def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame: | ||||
|         """ | ||||
|         Based on TA indicators. Should be a copy of from strategy | ||||
|         must align to populate_indicators in this file | ||||
|         Only used when --spaces does not include sell | ||||
|         """ | ||||
|         dataframe.loc[ | ||||
|             ( | ||||
|                 (qtpylib.crossed_above( | ||||
|                     dataframe['macdsignal'], dataframe['macd'] | ||||
|                 )) & | ||||
|                 (dataframe['fastd'] > 54) | ||||
|             ), | ||||
|             'sell'] = 1 | ||||
|         return dataframe | ||||
							
								
								
									
										0
									
								
								user_data/notebooks/.gitkeep
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										0
									
								
								user_data/notebooks/.gitkeep
									
									
									
									
									
										Normal file
									
								
							
							
								
								
									
										243
									
								
								user_data/notebooks/analysis_example.ipynb
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										243
									
								
								user_data/notebooks/analysis_example.ipynb
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,243 @@ | ||||
| { | ||||
|  "cells": [ | ||||
|   { | ||||
|    "cell_type": "markdown", | ||||
|    "metadata": {}, | ||||
|    "source": [ | ||||
|     "# Analyzing bot data\n", | ||||
|     "\n", | ||||
|     "You can analyze the results of backtests and trading history easily using Jupyter notebooks.  \n", | ||||
|     "**Copy this file so your changes don't get clobbered with the next freqtrade update!**  \n", | ||||
|     "For usage instructions, see [jupyter.org](https://jupyter.org/documentation).  \n", | ||||
|     "*Pro tip - Don't forget to start a jupyter notbook server from within your conda or venv environment or use [nb_conda_kernels](https://github.com/Anaconda-Platform/nb_conda_kernels)*\n", | ||||
|     "\n", | ||||
|     "\n" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "# Imports\n", | ||||
|     "from pathlib import Path\n", | ||||
|     "import os\n", | ||||
|     "from freqtrade.data.history import load_pair_history\n", | ||||
|     "from freqtrade.resolvers import StrategyResolver\n", | ||||
|     "from freqtrade.data.btanalysis import load_backtest_data\n", | ||||
|     "from freqtrade.data.btanalysis import load_trades_from_db" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "# Change directory\n", | ||||
|     "# Define all paths relative to the project root shown in the cell output\n", | ||||
|     "try:\n", | ||||
|     "    os.chdir(Path(Path.cwd(), '../..'))\n", | ||||
|     "    print(Path.cwd())\n", | ||||
|     "except:\n", | ||||
|     "    pass" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "markdown", | ||||
|    "metadata": {}, | ||||
|    "source": [ | ||||
|     "## Example snippets" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "markdown", | ||||
|    "metadata": {}, | ||||
|    "source": [ | ||||
|     "### Load backtest results into a pandas dataframe" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "# Load backtest results\n", | ||||
|     "df = load_backtest_data(\"user_data/backtest_data/backtest-result.json\")\n", | ||||
|     "\n", | ||||
|     "# Show value-counts per pair\n", | ||||
|     "df.groupby(\"pair\")[\"sell_reason\"].value_counts()" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "markdown", | ||||
|    "metadata": {}, | ||||
|    "source": [ | ||||
|     "### Load live trading results into a pandas dataframe" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "# Fetch trades from database\n", | ||||
|     "df = load_trades_from_db(\"sqlite:///tradesv3.sqlite\")\n", | ||||
|     "\n", | ||||
|     "# Display results\n", | ||||
|     "df.groupby(\"pair\")[\"sell_reason\"].value_counts()" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "markdown", | ||||
|    "metadata": {}, | ||||
|    "source": [ | ||||
|     "## Strategy debugging example\n", | ||||
|     "\n", | ||||
|     "Debugging a strategy can be time-consuming. FreqTrade offers helper functions to visualize raw data." | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "markdown", | ||||
|    "metadata": {}, | ||||
|    "source": [ | ||||
|     "### Import requirements and define variables used in analyses" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "# Define some constants\n", | ||||
|     "ticker_interval = \"5m\"\n", | ||||
|     "# Name of the strategy class\n", | ||||
|     "strategy_name = 'AwesomeStrategy'\n", | ||||
|     "# Path to user data\n", | ||||
|     "user_data_dir = 'user_data'\n", | ||||
|     "# Location of the strategy\n", | ||||
|     "strategy_location = Path(user_data_dir, 'strategies')\n", | ||||
|     "# Location of the data\n", | ||||
|     "data_location = Path(user_data_dir, 'data', 'binance')\n", | ||||
|     "# Pair to analyze \n", | ||||
|     "# Only use one pair here\n", | ||||
|     "pair = \"BTC_USDT\"" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "markdown", | ||||
|    "metadata": {}, | ||||
|    "source": [ | ||||
|     "### Load exchange data" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "# Load data using values set above\n", | ||||
|     "bt_data = load_pair_history(datadir=Path(data_location),\n", | ||||
|     "                            ticker_interval=ticker_interval,\n", | ||||
|     "                            pair=pair)\n", | ||||
|     "\n", | ||||
|     "# Confirm success\n", | ||||
|     "print(\"Loaded \" + str(len(bt_data)) + f\" rows of data for {pair} from {data_location}\")" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "markdown", | ||||
|    "metadata": {}, | ||||
|    "source": [ | ||||
|     "### Load and run strategy\n", | ||||
|     "* Rerun each time the strategy file is changed" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "# Load strategy using values set above\n", | ||||
|     "strategy = StrategyResolver({'strategy': strategy_name,\n", | ||||
|     "                            'user_data_dir': user_data_dir,\n", | ||||
|     "                            'strategy_path': strategy_location}).strategy\n", | ||||
|     "\n", | ||||
|     "# Generate buy/sell signals using strategy\n", | ||||
|     "df = strategy.analyze_ticker(bt_data, {'pair': pair})" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "markdown", | ||||
|    "metadata": {}, | ||||
|    "source": [ | ||||
|     "### Display the trade details\n", | ||||
|     "* Note that using `data.head()` would also work, however most indicators have some \"startup\" data at the top of the dataframe.\n", | ||||
|     "\n", | ||||
|     "#### Some possible problems\n", | ||||
|     "\n", | ||||
|     "* Columns with NaN values at the end of the dataframe\n", | ||||
|     "* Columns used in `crossed*()` functions with completely different units\n", | ||||
|     "\n", | ||||
|     "#### Comparison with full backtest\n", | ||||
|     "\n", | ||||
|     "having 200 buy signals as output for one pair from `analyze_ticker()` does not necessarily mean that 200 trades will be made during backtesting.\n", | ||||
|     "\n", | ||||
|     "Assuming you use only one condition such as, `df['rsi'] < 30` as buy condition, this will generate multiple \"buy\" signals for each pair in sequence (until rsi returns > 29).\n", | ||||
|     "The bot will only buy on the first of these signals (and also only if a trade-slot (\"max_open_trades\") is still available), or on one of the middle signals, as soon as a \"slot\" becomes available.\n" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "# Report results\n", | ||||
|     "print(f\"Generated {df['buy'].sum()} buy signals\")\n", | ||||
|     "data = df.set_index('date', drop=True)\n", | ||||
|     "data.tail()" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "markdown", | ||||
|    "metadata": {}, | ||||
|    "source": [ | ||||
|     "Feel free to submit an issue or Pull Request enhancing this document if you would like to share ideas on how to best analyze the data." | ||||
|    ] | ||||
|   } | ||||
|  ], | ||||
|  "metadata": { | ||||
|   "file_extension": ".py", | ||||
|   "kernelspec": { | ||||
|    "display_name": "Python 3", | ||||
|    "language": "python", | ||||
|    "name": "python3" | ||||
|   }, | ||||
|   "language_info": { | ||||
|    "codemirror_mode": { | ||||
|     "name": "ipython", | ||||
|     "version": 3 | ||||
|    }, | ||||
|    "file_extension": ".py", | ||||
|    "mimetype": "text/x-python", | ||||
|    "name": "python", | ||||
|    "nbconvert_exporter": "python", | ||||
|    "pygments_lexer": "ipython3", | ||||
|    "version": "3.7.3" | ||||
|   }, | ||||
|   "mimetype": "text/x-python", | ||||
|   "name": "python", | ||||
|   "npconvert_exporter": "python", | ||||
|   "pygments_lexer": "ipython3", | ||||
|   "version": 3 | ||||
|  }, | ||||
|  "nbformat": 4, | ||||
|  "nbformat_minor": 2 | ||||
| } | ||||
		Reference in New Issue
	
	Block a user