Merge branch 'develop' into align_userdata
This commit is contained in:
@@ -57,7 +57,15 @@ freqtrade backtesting --datadir freqtrade/tests/testdata-20180101
|
||||
freqtrade -s TestStrategy backtesting
|
||||
```
|
||||
|
||||
Where `-s TestStrategy` refers to the class name within the strategy file `test_strategy.py` found in the `freqtrade/user_data/strategies` directory
|
||||
Where `-s TestStrategy` refers to the class name within the strategy file `test_strategy.py` found in the `freqtrade/user_data/strategies` directory.
|
||||
|
||||
#### Comparing multiple Strategies
|
||||
|
||||
```bash
|
||||
freqtrade backtesting --strategy-list TestStrategy1 AwesomeStrategy --ticker-interval 5m
|
||||
```
|
||||
|
||||
Where `TestStrategy1` and `AwesomeStrategy` refer to class names of strategies.
|
||||
|
||||
#### Exporting trades to file
|
||||
|
||||
|
@@ -193,7 +193,7 @@ optional arguments:
|
||||
number).
|
||||
-l, --live Use live data.
|
||||
--strategy-list STRATEGY_LIST [STRATEGY_LIST ...]
|
||||
Provide a commaseparated list of strategies to
|
||||
Provide a space-separated list of strategies to
|
||||
backtest Please note that ticker-interval needs to be
|
||||
set either in config or via command line. When using
|
||||
this together with --export trades, the strategy-name
|
||||
|
@@ -1,164 +1,114 @@
|
||||
# Analyzing bot data
|
||||
|
||||
After performing backtests, or after running the bot for some time, it will be interesting to analyze the results your bot generated.
|
||||
You can analyze the results of backtests and trading history easily using Jupyter notebooks. A sample notebook is located at `user_data/notebooks/analysis_example.ipynb`. For usage instructions, see [jupyter.org](https://jupyter.org/documentation).
|
||||
|
||||
A good way for this is using Jupyter (notebook or lab) - which provides an interactive environment to analyze the data.
|
||||
*Pro tip - Don't forget to start a jupyter notbook server from within your conda or venv environment or use [nb_conda_kernels](https://github.com/Anaconda-Platform/nb_conda_kernels)*
|
||||
|
||||
The following helpers will help you loading the data into Pandas DataFrames, and may also give you some starting points in analyzing the results.
|
||||
## Example snippets
|
||||
|
||||
## Strategy development problem analysis
|
||||
|
||||
Debugging a strategy (are there no buy signals, ...) can be very time-consuming.
|
||||
FreqTrade tries to help you by exposing a few helper-functions, which can be very handy.
|
||||
|
||||
It's recommended using Juptyer Notebooks for analysis, since it offers a dynamic way to rerun certain parts of the code.
|
||||
|
||||
The following is a full code-snippet, which will be explained by both comments, and step by step below.
|
||||
### Load backtest results into a pandas dataframe
|
||||
|
||||
```python
|
||||
# Some necessary imports
|
||||
from pathlib import Path
|
||||
|
||||
from freqtrade.data.history import load_pair_history
|
||||
from freqtrade.resolvers import StrategyResolver
|
||||
# Define some constants
|
||||
ticker_interval = "5m"
|
||||
|
||||
# Name of the strategy class
|
||||
strategyname = 'Awesomestrategy'
|
||||
# Location of the strategy
|
||||
strategy_location = '../xmatt/strategies'
|
||||
# Location of the data
|
||||
data_location = '../freqtrade/user_data/data/binance/'
|
||||
# Only use one pair here
|
||||
pair = "XRP_ETH"
|
||||
|
||||
### End constants
|
||||
|
||||
# Load data
|
||||
bt_data = load_pair_history(datadir=Path(data_location),
|
||||
ticker_interval = ticker_interval,
|
||||
pair=pair)
|
||||
print(len(bt_data))
|
||||
|
||||
### Start strategy reload
|
||||
# Load strategy - best done in a new cell
|
||||
# Rerun each time the strategy-file is changed.
|
||||
strategy = StrategyResolver({'strategy': strategyname,
|
||||
'user_data_dir': Path.cwd(),
|
||||
'strategy_path': location}).strategy
|
||||
|
||||
# Run strategy (just like in backtesting)
|
||||
df = strategy.analyze_ticker(bt_data, {'pair': pair})
|
||||
print(f"Generated {df['buy'].sum()} buy signals")
|
||||
|
||||
# Reindex data to be "nicer" and show data
|
||||
data = df.set_index('date', drop=True)
|
||||
data.tail()
|
||||
|
||||
```
|
||||
|
||||
### Explanation
|
||||
|
||||
#### Imports and constant definition
|
||||
|
||||
``` python
|
||||
# Some necessary imports
|
||||
from pathlib import Path
|
||||
|
||||
from freqtrade.data.history import load_pair_history
|
||||
from freqtrade.resolvers import StrategyResolver
|
||||
# Define some constants
|
||||
ticker_interval = "5m"
|
||||
|
||||
# Name of the strategy class
|
||||
strategyname = 'Awesomestrategy'
|
||||
# Location of the strategy
|
||||
strategy_location = 'user_data/strategies'
|
||||
# Location of the data
|
||||
data_location = 'user_data/data/binance'
|
||||
# Only use one pair here
|
||||
pair = "XRP_ETH"
|
||||
```
|
||||
|
||||
This first section imports necessary modules, and defines some constants you'll probably need to adjust for your case.
|
||||
|
||||
#### Load candles
|
||||
|
||||
``` python
|
||||
# Load data
|
||||
bt_data = load_pair_history(datadir=Path(data_location),
|
||||
ticker_interval = ticker_interval,
|
||||
pair=pair)
|
||||
print(len(bt_data))
|
||||
```
|
||||
|
||||
This second section loads the historic data and prints the amount of candles in the DataFrame.
|
||||
You can also inspect this dataframe by using `bt_data.head()` or `bt_data.tail()`.
|
||||
|
||||
#### Run strategy and analyze results
|
||||
|
||||
Now, it's time to load and run your strategy.
|
||||
For this, I recommend using a new cell in your notebook, since you'll want to repeat this until you're satisfied with your strategy.
|
||||
|
||||
``` python
|
||||
# Load strategy - best done in a new cell
|
||||
# Needs to be ran each time the strategy-file is changed.
|
||||
strategy = StrategyResolver({'strategy': strategyname,
|
||||
'user_data_dir': Path.cwd(),
|
||||
'strategy_path': location}).strategy
|
||||
|
||||
# Run strategy (just like in backtesting)
|
||||
df = strategy.analyze_ticker(bt_data, {'pair': pair})
|
||||
print(f"Generated {df['buy'].sum()} buy signals")
|
||||
|
||||
# Reindex data to be "nicer" and show data
|
||||
data = df.set_index('date', drop=True)
|
||||
data.tail()
|
||||
```
|
||||
|
||||
The code snippet loads and analyzes the strategy, calculates and prints the number of buy signals.
|
||||
|
||||
The last 2 lines serve to analyze the dataframe in detail.
|
||||
This can be important if your strategy did not generate any buy signals.
|
||||
Note that using `data.head()` would also work, however this is misleading since most indicators have some "startup" time at the start of a backtested dataframe.
|
||||
|
||||
There can be many things wrong, some signs to look for are:
|
||||
|
||||
* Columns with NaN values at the end of the dataframe
|
||||
* Columns used in `crossed*()` functions with completely different units
|
||||
|
||||
## Backtesting
|
||||
|
||||
To analyze your backtest results, you can [export the trades](#exporting-trades-to-file).
|
||||
You can then load the trades to perform further analysis.
|
||||
|
||||
Freqtrade provides the `load_backtest_data()` helper function to easily load the backtest results, which takes the path to the the backtest-results file as parameter.
|
||||
|
||||
``` python
|
||||
from freqtrade.data.btanalysis import load_backtest_data
|
||||
# Load backtest results
|
||||
df = load_backtest_data("user_data/backtest_results/backtest-result.json")
|
||||
|
||||
# Show value-counts per pair
|
||||
df.groupby("pair")["sell_reason"].value_counts()
|
||||
|
||||
```
|
||||
|
||||
This will allow you to drill deeper into your backtest results, and perform analysis which otherwise would make the regular backtest-output very difficult to digest due to information overload.
|
||||
|
||||
If you have some ideas for interesting / helpful backtest data analysis ideas, please submit a Pull Request so the community can benefit from it.
|
||||
|
||||
## Live data
|
||||
|
||||
To analyze the trades your bot generated, you can load them to a DataFrame as follows:
|
||||
### Load live trading results into a pandas dataframe
|
||||
|
||||
``` python
|
||||
from freqtrade.data.btanalysis import load_trades_from_db
|
||||
|
||||
# Fetch trades from database
|
||||
df = load_trades_from_db("sqlite:///tradesv3.sqlite")
|
||||
|
||||
# Display results
|
||||
df.groupby("pair")["sell_reason"].value_counts()
|
||||
```
|
||||
|
||||
## Strategy debugging example
|
||||
|
||||
Debugging a strategy can be time-consuming. FreqTrade offers helper functions to visualize raw data.
|
||||
|
||||
### Import requirements and define variables used in analyses
|
||||
|
||||
```python
|
||||
# Imports
|
||||
from pathlib import Path
|
||||
import os
|
||||
from freqtrade.data.history import load_pair_history
|
||||
from freqtrade.resolvers import StrategyResolver
|
||||
|
||||
# You can override strategy settings as demonstrated below.
|
||||
# Customize these according to your needs.
|
||||
|
||||
# Define some constants
|
||||
ticker_interval = "5m"
|
||||
# Name of the strategy class
|
||||
strategy_name = 'AwesomeStrategy'
|
||||
# Path to user data
|
||||
user_data_dir = 'user_data'
|
||||
# Location of the strategy
|
||||
strategy_location = Path(user_data_dir, 'strategies')
|
||||
# Location of the data
|
||||
data_location = Path(user_data_dir, 'data', 'binance')
|
||||
# Pair to analyze
|
||||
# Only use one pair here
|
||||
pair = "BTC_USDT"
|
||||
```
|
||||
|
||||
### Load exchange data
|
||||
|
||||
```python
|
||||
# Load data using values set above
|
||||
bt_data = load_pair_history(datadir=Path(data_location),
|
||||
ticker_interval=ticker_interval,
|
||||
pair=pair)
|
||||
|
||||
# Confirm success
|
||||
print(f"Loaded {len(bt_data)} rows of data for {pair} from {data_location}")
|
||||
```
|
||||
|
||||
### Load and run strategy
|
||||
|
||||
* Rerun each time the strategy file is changed
|
||||
|
||||
```python
|
||||
# Load strategy using values set above
|
||||
strategy = StrategyResolver({'strategy': strategy_name,
|
||||
'user_data_dir': user_data_dir,
|
||||
'strategy_path': strategy_location}).strategy
|
||||
|
||||
# Generate buy/sell signals using strategy
|
||||
df = strategy.analyze_ticker(bt_data, {'pair': pair})
|
||||
```
|
||||
|
||||
### Display the trade details
|
||||
|
||||
* Note that using `data.head()` would also work, however most indicators have some "startup" data at the top of the dataframe.
|
||||
|
||||
#### Some possible problems
|
||||
|
||||
* Columns with NaN values at the end of the dataframe
|
||||
* Columns used in `crossed*()` functions with completely different units
|
||||
|
||||
#### Comparison with full backtest
|
||||
|
||||
having 200 buy signals as output for one pair from `analyze_ticker()` does not necessarily mean that 200 trades will be made during backtesting.
|
||||
|
||||
Assuming you use only one condition such as, `df['rsi'] < 30` as buy condition, this will generate multiple "buy" signals for each pair in sequence (until rsi returns > 29).
|
||||
The bot will only buy on the first of these signals (and also only if a trade-slot ("max_open_trades") is still available), or on one of the middle signals, as soon as a "slot" becomes available.
|
||||
|
||||
```python
|
||||
# Report results
|
||||
print(f"Generated {df['buy'].sum()} buy signals")
|
||||
data = df.set_index('date', drop=True)
|
||||
data.tail()
|
||||
```
|
||||
|
||||
Feel free to submit an issue or Pull Request enhancing this document if you would like to share ideas on how to best analyze the data.
|
||||
|
@@ -18,19 +18,24 @@ Configuring hyperopt is similar to writing your own strategy, and many tasks wil
|
||||
|
||||
### Checklist on all tasks / possibilities in hyperopt
|
||||
|
||||
Depending on the space you want to optimize, only some of the below are required.
|
||||
Depending on the space you want to optimize, only some of the below are required:
|
||||
|
||||
* fill `populate_indicators` - probably a copy from your strategy
|
||||
* fill `buy_strategy_generator` - for buy signal optimization
|
||||
* fill `indicator_space` - for buy signal optimzation
|
||||
* fill `sell_strategy_generator` - for sell signal optimization
|
||||
* fill `sell_indicator_space` - for sell signal optimzation
|
||||
* fill `roi_space` - for ROI optimization
|
||||
* fill `generate_roi_table` - for ROI optimization (if you need more than 3 entries)
|
||||
* fill `stoploss_space` - stoploss optimization
|
||||
* Optional but recommended
|
||||
* copy `populate_buy_trend` from your strategy - otherwise default-strategy will be used
|
||||
* copy `populate_sell_trend` from your strategy - otherwise default-strategy will be used
|
||||
|
||||
Optional, but recommended:
|
||||
|
||||
* copy `populate_buy_trend` from your strategy - otherwise default-strategy will be used
|
||||
* copy `populate_sell_trend` from your strategy - otherwise default-strategy will be used
|
||||
|
||||
Rarely you may also need to override:
|
||||
|
||||
* `roi_space` - for custom ROI optimization (if you need the ranges for the ROI parameters in the optimization hyperspace that differ from default)
|
||||
* `generate_roi_table` - for custom ROI optimization (if you need more than 4 entries in the ROI table)
|
||||
* `stoploss_space` - for custom stoploss optimization (if you need the range for the stoploss parameter in the optimization hyperspace that differs from default)
|
||||
|
||||
### 1. Install a Custom Hyperopt File
|
||||
|
||||
@@ -345,7 +350,7 @@ def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
|
||||
|
||||
### Understand Hyperopt ROI results
|
||||
|
||||
If you are optimizing ROI, you're result will look as follows and include a ROI table.
|
||||
If you are optimizing ROI (i.e. if optimization search-space contains 'all' or 'roi'), your result will look as follows and include a ROI table:
|
||||
|
||||
```
|
||||
Best result:
|
||||
@@ -376,6 +381,41 @@ minimal_roi = {
|
||||
}
|
||||
```
|
||||
|
||||
If you are optimizing ROI, Freqtrade creates the 'roi' optimization hyperspace for you -- it's the hyperspace of components for the ROI tables. By default, each ROI table generated by the Freqtrade consists of 4 rows (steps) with the values that can vary in the following ranges:
|
||||
|
||||
| # | minutes | ROI percentage |
|
||||
|---|---|---|
|
||||
| 1 | always 0 | 0.03...0.31 |
|
||||
| 2 | 10...40 | 0.02...0.11 |
|
||||
| 3 | 20...100 | 0.01...0.04 |
|
||||
| 4 | 30...220 | always 0 |
|
||||
|
||||
This structure of the ROI table is sufficient in most cases. Override the `roi_space()` method defining the ranges desired if you need components of the ROI tables to vary in other ranges.
|
||||
|
||||
Override the `generate_roi_table()` and `roi_space()` methods and implement your own custom approach for generation of the ROI tables during hyperoptimization in these methods if you need a different structure of the ROI table or other amount of rows (steps) in the ROI tables.
|
||||
|
||||
### Understand Hyperopt Stoploss results
|
||||
|
||||
If you are optimizing stoploss values (i.e. if optimization search-space contains 'all' or 'stoploss'), your result will look as follows and include stoploss:
|
||||
|
||||
```
|
||||
Best result:
|
||||
|
||||
44/100: 135 trades. Avg profit 0.57%. Total profit 0.03871918 BTC (0.7722Σ%). Avg duration 180.4 mins. Objective: 1.94367
|
||||
|
||||
Buy hyperspace params:
|
||||
{ 'adx-value': 44,
|
||||
'rsi-value': 29,
|
||||
'adx-enabled': False,
|
||||
'rsi-enabled': True,
|
||||
'trigger': 'bb_lower'}
|
||||
Stoploss: -0.37996664668703606
|
||||
```
|
||||
|
||||
If you are optimizing stoploss values, Freqtrade creates the 'stoploss' optimization hyperspace for you. By default, the stoploss values in that hyperspace can vary in the range -0.5...-0.02, which is sufficient in most cases.
|
||||
|
||||
Override the `stoploss_space()` method and define the desired range in it if you need stoploss values to vary in other range during hyperoptimization.
|
||||
|
||||
### Validate backtesting results
|
||||
|
||||
Once the optimized strategy has been implemented into your strategy, you should backtest this strategy to make sure everything is working as expected.
|
||||
|
@@ -219,6 +219,17 @@ as the watchdog.
|
||||
|
||||
------
|
||||
|
||||
## Using Conda
|
||||
|
||||
Freqtrade can also be installed using Anaconda (or Miniconda).
|
||||
|
||||
``` bash
|
||||
conda env create -f environment.yml
|
||||
```
|
||||
|
||||
!!! Note:
|
||||
This requires the [ta-lib](#1-install-ta-lib) C-library to be installed first.
|
||||
|
||||
## Windows
|
||||
|
||||
We recommend that Windows users use [Docker](docker.md) as this will work much easier and smoother (also more secure).
|
||||
|
@@ -1 +1 @@
|
||||
mkdocs-material==3.1.0
|
||||
mkdocs-material==4.4.0
|
Reference in New Issue
Block a user