Merge branch 'develop' into ujson-loader

This commit is contained in:
Matthias
2018-08-12 13:11:40 +02:00
57 changed files with 1602 additions and 1214 deletions

View File

@@ -77,11 +77,11 @@ def load_tickerdata_file(
if os.path.isfile(gzipfile):
logger.debug('Loading ticker data from file %s', gzipfile)
with gzip.open(gzipfile) as tickerdata:
pairdata = json_load(tickerdata)
pairdata = json.load(tickerdata)
elif os.path.isfile(file):
logger.debug('Loading ticker data from file %s', file)
with open(file) as tickerdata:
pairdata = json_load(tickerdata)
pairdata = json.load(tickerdata)
else:
return None
@@ -177,7 +177,7 @@ def load_cached_data_for_updating(filename: str,
# read the cached file
if os.path.isfile(filename):
with open(filename, "rt") as file:
data = json_load(file)
data = json.load(file)
# remove the last item, because we are not sure if it is correct
# it could be fetched when the candle was incompleted
if data:
@@ -233,7 +233,7 @@ def download_backtesting_testdata(datadir: str,
logger.debug("Current Start: %s", misc.format_ms_time(data[1][0]) if data else 'None')
logger.debug("Current End: %s", misc.format_ms_time(data[-1][0]) if data else 'None')
new_data = exchange.get_ticker_history(pair=pair, tick_interval=tick_interval,
new_data = exchange.get_candle_history(pair=pair, tick_interval=tick_interval,
since_ms=since_ms)
data.extend(new_data)

View File

@@ -6,7 +6,9 @@ This module contains the backtesting logic
import logging
import operator
from argparse import Namespace
from copy import deepcopy
from datetime import datetime, timedelta
from pathlib import Path
from typing import Any, Dict, List, NamedTuple, Optional, Tuple
import arrow
@@ -52,13 +54,9 @@ class Backtesting(object):
backtesting = Backtesting(config)
backtesting.start()
"""
def __init__(self, config: Dict[str, Any]) -> None:
self.config = config
self.strategy: IStrategy = StrategyResolver(self.config).strategy
self.ticker_interval = self.strategy.ticker_interval
self.tickerdata_to_dataframe = self.strategy.tickerdata_to_dataframe
self.populate_buy_trend = self.strategy.populate_buy_trend
self.populate_sell_trend = self.strategy.populate_sell_trend
# Reset keys for backtesting
self.config['exchange']['key'] = ''
@@ -66,9 +64,36 @@ class Backtesting(object):
self.config['exchange']['password'] = ''
self.config['exchange']['uid'] = ''
self.config['dry_run'] = True
self.strategylist: List[IStrategy] = []
if self.config.get('strategy_list', None):
# Force one interval
self.ticker_interval = str(self.config.get('ticker_interval'))
for strat in list(self.config['strategy_list']):
stratconf = deepcopy(self.config)
stratconf['strategy'] = strat
self.strategylist.append(StrategyResolver(stratconf).strategy)
else:
# only one strategy
strat = StrategyResolver(self.config).strategy
self.strategylist.append(StrategyResolver(self.config).strategy)
# Load one strategy
self._set_strategy(self.strategylist[0])
self.exchange = Exchange(self.config)
self.fee = self.exchange.get_fee()
def _set_strategy(self, strategy):
"""
Load strategy into backtesting
"""
self.strategy = strategy
self.ticker_interval = self.config.get('ticker_interval')
self.tickerdata_to_dataframe = strategy.tickerdata_to_dataframe
self.advise_buy = strategy.advise_buy
self.advise_sell = strategy.advise_sell
@staticmethod
def get_timeframe(data: Dict[str, DataFrame]) -> Tuple[arrow.Arrow, arrow.Arrow]:
"""
@@ -132,7 +157,32 @@ class Backtesting(object):
tabular_data.append([reason.value, count])
return tabulate(tabular_data, headers=headers, tablefmt="pipe")
def _store_backtest_result(self, recordfilename: Optional[str], results: DataFrame) -> None:
def _generate_text_table_strategy(self, all_results: dict) -> str:
"""
Generate summary table per strategy
"""
stake_currency = str(self.config.get('stake_currency'))
floatfmt = ('s', 'd', '.2f', '.2f', '.8f', 'd', '.1f', '.1f')
tabular_data = []
headers = ['Strategy', 'buy count', 'avg profit %', 'cum profit %',
'total profit ' + stake_currency, 'avg duration', 'profit', 'loss']
for strategy, results in all_results.items():
tabular_data.append([
strategy,
len(results.index),
results.profit_percent.mean() * 100.0,
results.profit_percent.sum() * 100.0,
results.profit_abs.sum(),
str(timedelta(
minutes=round(results.trade_duration.mean()))) if not results.empty else '0:00',
len(results[results.profit_abs > 0]),
len(results[results.profit_abs < 0])
])
return tabulate(tabular_data, headers=headers, floatfmt=floatfmt, tablefmt="pipe")
def _store_backtest_result(self, recordfilename: str, results: DataFrame,
strategyname: Optional[str] = None) -> None:
records = [(t.pair, t.profit_percent, t.open_time.timestamp(),
t.close_time.timestamp(), t.open_index - 1, t.trade_duration,
@@ -140,6 +190,11 @@ class Backtesting(object):
for index, t in results.iterrows()]
if records:
if strategyname:
# Inject strategyname to filename
recname = Path(recordfilename)
recordfilename = str(Path.joinpath(
recname.parent, f'{recname.stem}-{strategyname}').with_suffix(recname.suffix))
logger.info('Dumping backtest results to %s', recordfilename)
file_dump_json(recordfilename, records)
@@ -229,8 +284,8 @@ class Backtesting(object):
for pair, pair_data in processed.items():
pair_data['buy'], pair_data['sell'] = 0, 0 # cleanup from previous run
ticker_data = self.populate_sell_trend(
self.populate_buy_trend(pair_data))[headers].copy()
ticker_data = self.advise_sell(
self.advise_buy(pair_data, {'pair': pair}), {'pair': pair})[headers].copy()
# to avoid using data from future, we buy/sell with signal from previous candle
ticker_data.loc[:, 'buy'] = ticker_data['buy'].shift(1)
@@ -283,7 +338,7 @@ class Backtesting(object):
if self.config.get('live'):
logger.info('Downloading data for all pairs in whitelist ...')
for pair in pairs:
data[pair] = self.exchange.get_ticker_history(pair, self.ticker_interval)
data[pair] = self.exchange.get_candle_history(pair, self.ticker_interval)
else:
logger.info('Using local backtesting data (using whitelist in given config) ...')
@@ -307,62 +362,55 @@ class Backtesting(object):
else:
logger.info('Ignoring max_open_trades (--disable-max-market-positions was used) ...')
max_open_trades = 0
all_results = {}
preprocessed = self.tickerdata_to_dataframe(data)
for strat in self.strategylist:
logger.info("Running backtesting for Strategy %s", strat.get_strategy_name())
self._set_strategy(strat)
# Print timeframe
min_date, max_date = self.get_timeframe(preprocessed)
logger.info(
'Measuring data from %s up to %s (%s days)..',
min_date.isoformat(),
max_date.isoformat(),
(max_date - min_date).days
)
# need to reprocess data every time to populate signals
preprocessed = self.tickerdata_to_dataframe(data)
# Execute backtest and print results
results = self.backtest(
{
'stake_amount': self.config.get('stake_amount'),
'processed': preprocessed,
'max_open_trades': max_open_trades,
'position_stacking': self.config.get('position_stacking', False),
}
)
if self.config.get('export', False):
self._store_backtest_result(self.config.get('exportfilename'), results)
logger.info(
'\n' + '=' * 49 +
' BACKTESTING REPORT ' +
'=' * 50 + '\n'
'%s',
self._generate_text_table(
data,
results
# Print timeframe
min_date, max_date = self.get_timeframe(preprocessed)
logger.info(
'Measuring data from %s up to %s (%s days)..',
min_date.isoformat(),
max_date.isoformat(),
(max_date - min_date).days
)
)
# logger.info(
# results[['sell_reason']].groupby('sell_reason').count()
# )
logger.info(
'\n' +
' SELL READON STATS '.center(119, '=') +
'\n%s \n',
self._generate_text_table_sell_reason(data, results)
)
logger.info(
'\n' +
' LEFT OPEN TRADES REPORT '.center(119, '=') +
'\n%s',
self._generate_text_table(
data,
results.loc[results.open_at_end]
# Execute backtest and print results
all_results[self.strategy.get_strategy_name()] = self.backtest(
{
'stake_amount': self.config.get('stake_amount'),
'processed': preprocessed,
'max_open_trades': max_open_trades,
'position_stacking': self.config.get('position_stacking', False),
}
)
)
for strategy, results in all_results.items():
if self.config.get('export', False):
self._store_backtest_result(self.config['exportfilename'], results,
strategy if len(self.strategylist) > 1 else None)
print(f"Result for strategy {strategy}")
print(' BACKTESTING REPORT '.center(119, '='))
print(self._generate_text_table(data, results))
print(' SELL REASON STATS '.center(119, '='))
print(self._generate_text_table_sell_reason(data, results))
print(' LEFT OPEN TRADES REPORT '.center(119, '='))
print(self._generate_text_table(data, results.loc[results.open_at_end]))
print()
if len(all_results) > 1:
# Print Strategy summary table
print(' Strategy Summary '.center(119, '='))
print(self._generate_text_table_strategy(all_results))
print('\nFor more details, please look at the detail tables above')
def setup_configuration(args: Namespace) -> Dict[str, Any]:

View File

@@ -75,7 +75,7 @@ class Hyperopt(Backtesting):
return arg_dict
@staticmethod
def populate_indicators(dataframe: DataFrame) -> DataFrame:
def populate_indicators(dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe['adx'] = ta.ADX(dataframe)
macd = ta.MACD(dataframe)
dataframe['macd'] = macd['macd']
@@ -228,7 +228,7 @@ class Hyperopt(Backtesting):
"""
Define the buy strategy parameters to be used by hyperopt
"""
def populate_buy_trend(dataframe: DataFrame) -> DataFrame:
def populate_buy_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Buy strategy Hyperopt will build and use
"""
@@ -270,7 +270,7 @@ class Hyperopt(Backtesting):
self.strategy.minimal_roi = self.generate_roi_table(params)
if self.has_space('buy'):
self.populate_buy_trend = self.buy_strategy_generator(params)
self.advise_buy = self.buy_strategy_generator(params)
if self.has_space('stoploss'):
self.strategy.stoploss = params['stoploss']
@@ -351,7 +351,7 @@ class Hyperopt(Backtesting):
)
if self.has_space('buy'):
self.strategy.populate_indicators = Hyperopt.populate_indicators # type: ignore
self.strategy.advise_indicators = Hyperopt.populate_indicators # type: ignore
dump(self.tickerdata_to_dataframe(data), TICKERDATA_PICKLE)
self.exchange = None # type: ignore
self.load_previous_results()
@@ -360,7 +360,7 @@ class Hyperopt(Backtesting):
logger.info(f'Found {cpus} CPU cores. Let\'s make them scream!')
opt = self.get_optimizer(cpus)
EVALS = max(self.total_tries//cpus, 1)
EVALS = max(self.total_tries // cpus, 1)
try:
with Parallel(n_jobs=cpus) as parallel:
for i in range(EVALS):