Move hyperopt-loss functions to their own package
This commit is contained in:
63
freqtrade/optimize/hyperopt_loss/hyperopt_loss_calmar.py
Normal file
63
freqtrade/optimize/hyperopt_loss/hyperopt_loss_calmar.py
Normal file
@@ -0,0 +1,63 @@
|
||||
"""
|
||||
CalmarHyperOptLoss
|
||||
|
||||
This module defines the alternative HyperOptLoss class which can be used for
|
||||
Hyperoptimization.
|
||||
"""
|
||||
from datetime import datetime
|
||||
from math import sqrt as msqrt
|
||||
from typing import Any, Dict
|
||||
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.data.btanalysis import calculate_max_drawdown
|
||||
from freqtrade.optimize.hyperopt import IHyperOptLoss
|
||||
|
||||
|
||||
class CalmarHyperOptLoss(IHyperOptLoss):
|
||||
"""
|
||||
Defines the loss function for hyperopt.
|
||||
|
||||
This implementation uses the Calmar Ratio calculation.
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def hyperopt_loss_function(
|
||||
results: DataFrame,
|
||||
trade_count: int,
|
||||
min_date: datetime,
|
||||
max_date: datetime,
|
||||
config: Dict,
|
||||
processed: Dict[str, DataFrame],
|
||||
backtest_stats: Dict[str, Any],
|
||||
*args,
|
||||
**kwargs
|
||||
) -> float:
|
||||
"""
|
||||
Objective function, returns smaller number for more optimal results.
|
||||
|
||||
Uses Calmar Ratio calculation.
|
||||
"""
|
||||
total_profit = backtest_stats["profit_total"]
|
||||
days_period = (max_date - min_date).days
|
||||
|
||||
# adding slippage of 0.1% per trade
|
||||
total_profit = total_profit - 0.0005
|
||||
expected_returns_mean = total_profit.sum() / days_period * 100
|
||||
|
||||
# calculate max drawdown
|
||||
try:
|
||||
_, _, _, _, _, max_drawdown = calculate_max_drawdown(
|
||||
results, value_col="profit_abs"
|
||||
)
|
||||
except ValueError:
|
||||
max_drawdown = 0
|
||||
|
||||
if max_drawdown != 0:
|
||||
calmar_ratio = expected_returns_mean / max_drawdown * msqrt(365)
|
||||
else:
|
||||
# Define high (negative) calmar ratio to be clear that this is NOT optimal.
|
||||
calmar_ratio = -20.0
|
||||
|
||||
# print(expected_returns_mean, max_drawdown, calmar_ratio)
|
||||
return -calmar_ratio
|
@@ -0,0 +1,41 @@
|
||||
"""
|
||||
MaxDrawDownHyperOptLoss
|
||||
|
||||
This module defines the alternative HyperOptLoss class which can be used for
|
||||
Hyperoptimization.
|
||||
"""
|
||||
from datetime import datetime
|
||||
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.data.btanalysis import calculate_max_drawdown
|
||||
from freqtrade.optimize.hyperopt import IHyperOptLoss
|
||||
|
||||
|
||||
class MaxDrawDownHyperOptLoss(IHyperOptLoss):
|
||||
|
||||
"""
|
||||
Defines the loss function for hyperopt.
|
||||
|
||||
This implementation optimizes for max draw down and profit
|
||||
Less max drawdown more profit -> Lower return value
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def hyperopt_loss_function(results: DataFrame, trade_count: int,
|
||||
min_date: datetime, max_date: datetime,
|
||||
*args, **kwargs) -> float:
|
||||
|
||||
"""
|
||||
Objective function.
|
||||
|
||||
Uses profit ratio weighted max_drawdown when drawdown is available.
|
||||
Otherwise directly optimizes profit ratio.
|
||||
"""
|
||||
total_profit = results['profit_abs'].sum()
|
||||
try:
|
||||
max_drawdown = calculate_max_drawdown(results, value_col='profit_abs')
|
||||
except ValueError:
|
||||
# No losing trade, therefore no drawdown.
|
||||
return -total_profit
|
||||
return -total_profit / max_drawdown[0]
|
26
freqtrade/optimize/hyperopt_loss/hyperopt_loss_onlyprofit.py
Normal file
26
freqtrade/optimize/hyperopt_loss/hyperopt_loss_onlyprofit.py
Normal file
@@ -0,0 +1,26 @@
|
||||
"""
|
||||
OnlyProfitHyperOptLoss
|
||||
|
||||
This module defines the alternative HyperOptLoss class which can be used for
|
||||
Hyperoptimization.
|
||||
"""
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.optimize.hyperopt import IHyperOptLoss
|
||||
|
||||
|
||||
class OnlyProfitHyperOptLoss(IHyperOptLoss):
|
||||
"""
|
||||
Defines the loss function for hyperopt.
|
||||
|
||||
This implementation takes only absolute profit into account, not looking at any other indicator.
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def hyperopt_loss_function(results: DataFrame, trade_count: int,
|
||||
*args, **kwargs) -> float:
|
||||
"""
|
||||
Objective function, returns smaller number for better results.
|
||||
"""
|
||||
total_profit = results['profit_abs'].sum()
|
||||
return -1 * total_profit
|
@@ -0,0 +1,30 @@
|
||||
"""
|
||||
ProfitDrawDownHyperOptLoss
|
||||
|
||||
This module defines the alternative HyperOptLoss class based on Profit &
|
||||
Drawdown objective which can be used for Hyperoptimization.
|
||||
|
||||
Possible to change `DRAWDOWN_MULT` to penalize drawdown objective for
|
||||
individual needs.
|
||||
"""
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.data.btanalysis import calculate_max_drawdown
|
||||
from freqtrade.optimize.hyperopt import IHyperOptLoss
|
||||
|
||||
|
||||
# higher numbers penalize drawdowns more severely
|
||||
DRAWDOWN_MULT = 0.075
|
||||
|
||||
|
||||
class ProfitDrawDownHyperOptLoss(IHyperOptLoss):
|
||||
@staticmethod
|
||||
def hyperopt_loss_function(results: DataFrame, trade_count: int, *args, **kwargs) -> float:
|
||||
total_profit = results["profit_abs"].sum()
|
||||
|
||||
try:
|
||||
max_drawdown_abs = calculate_max_drawdown(results, value_col="profit_abs")[5]
|
||||
except ValueError:
|
||||
max_drawdown_abs = 0
|
||||
|
||||
return -1 * (total_profit * (1 - max_drawdown_abs * DRAWDOWN_MULT))
|
46
freqtrade/optimize/hyperopt_loss/hyperopt_loss_sharpe.py
Normal file
46
freqtrade/optimize/hyperopt_loss/hyperopt_loss_sharpe.py
Normal file
@@ -0,0 +1,46 @@
|
||||
"""
|
||||
SharpeHyperOptLoss
|
||||
|
||||
This module defines the alternative HyperOptLoss class which can be used for
|
||||
Hyperoptimization.
|
||||
"""
|
||||
from datetime import datetime
|
||||
|
||||
import numpy as np
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.optimize.hyperopt import IHyperOptLoss
|
||||
|
||||
|
||||
class SharpeHyperOptLoss(IHyperOptLoss):
|
||||
"""
|
||||
Defines the loss function for hyperopt.
|
||||
|
||||
This implementation uses the Sharpe Ratio calculation.
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def hyperopt_loss_function(results: DataFrame, trade_count: int,
|
||||
min_date: datetime, max_date: datetime,
|
||||
*args, **kwargs) -> float:
|
||||
"""
|
||||
Objective function, returns smaller number for more optimal results.
|
||||
|
||||
Uses Sharpe Ratio calculation.
|
||||
"""
|
||||
total_profit = results["profit_ratio"]
|
||||
days_period = (max_date - min_date).days
|
||||
|
||||
# adding slippage of 0.1% per trade
|
||||
total_profit = total_profit - 0.0005
|
||||
expected_returns_mean = total_profit.sum() / days_period
|
||||
up_stdev = np.std(total_profit)
|
||||
|
||||
if up_stdev != 0:
|
||||
sharp_ratio = expected_returns_mean / up_stdev * np.sqrt(365)
|
||||
else:
|
||||
# Define high (negative) sharpe ratio to be clear that this is NOT optimal.
|
||||
sharp_ratio = -20.
|
||||
|
||||
# print(expected_returns_mean, up_stdev, sharp_ratio)
|
||||
return -sharp_ratio
|
@@ -0,0 +1,62 @@
|
||||
"""
|
||||
SharpeHyperOptLossDaily
|
||||
|
||||
This module defines the alternative HyperOptLoss class which can be used for
|
||||
Hyperoptimization.
|
||||
"""
|
||||
import math
|
||||
from datetime import datetime
|
||||
|
||||
from pandas import DataFrame, date_range
|
||||
|
||||
from freqtrade.optimize.hyperopt import IHyperOptLoss
|
||||
|
||||
|
||||
class SharpeHyperOptLossDaily(IHyperOptLoss):
|
||||
"""
|
||||
Defines the loss function for hyperopt.
|
||||
|
||||
This implementation uses the Sharpe Ratio calculation.
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def hyperopt_loss_function(results: DataFrame, trade_count: int,
|
||||
min_date: datetime, max_date: datetime,
|
||||
*args, **kwargs) -> float:
|
||||
"""
|
||||
Objective function, returns smaller number for more optimal results.
|
||||
|
||||
Uses Sharpe Ratio calculation.
|
||||
"""
|
||||
resample_freq = '1D'
|
||||
slippage_per_trade_ratio = 0.0005
|
||||
days_in_year = 365
|
||||
annual_risk_free_rate = 0.0
|
||||
risk_free_rate = annual_risk_free_rate / days_in_year
|
||||
|
||||
# apply slippage per trade to profit_ratio
|
||||
results.loc[:, 'profit_ratio_after_slippage'] = \
|
||||
results['profit_ratio'] - slippage_per_trade_ratio
|
||||
|
||||
# create the index within the min_date and end max_date
|
||||
t_index = date_range(start=min_date, end=max_date, freq=resample_freq,
|
||||
normalize=True)
|
||||
|
||||
sum_daily = (
|
||||
results.resample(resample_freq, on='close_date').agg(
|
||||
{"profit_ratio_after_slippage": sum}).reindex(t_index).fillna(0)
|
||||
)
|
||||
|
||||
total_profit = sum_daily["profit_ratio_after_slippage"] - risk_free_rate
|
||||
expected_returns_mean = total_profit.mean()
|
||||
up_stdev = total_profit.std()
|
||||
|
||||
if up_stdev != 0:
|
||||
sharp_ratio = expected_returns_mean / up_stdev * math.sqrt(days_in_year)
|
||||
else:
|
||||
# Define high (negative) sharpe ratio to be clear that this is NOT optimal.
|
||||
sharp_ratio = -20.
|
||||
|
||||
# print(t_index, sum_daily, total_profit)
|
||||
# print(risk_free_rate, expected_returns_mean, up_stdev, sharp_ratio)
|
||||
return -sharp_ratio
|
@@ -0,0 +1,56 @@
|
||||
"""
|
||||
ShortTradeDurHyperOptLoss
|
||||
This module defines the default HyperoptLoss class which is being used for
|
||||
Hyperoptimization.
|
||||
"""
|
||||
from math import exp
|
||||
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.optimize.hyperopt import IHyperOptLoss
|
||||
|
||||
|
||||
# Set TARGET_TRADES to suit your number concurrent trades so its realistic
|
||||
# to the number of days
|
||||
TARGET_TRADES = 600
|
||||
|
||||
# This is assumed to be expected avg profit * expected trade count.
|
||||
# For example, for 0.35% avg per trade (or 0.0035 as ratio) and 1100 trades,
|
||||
# expected max profit = 3.85
|
||||
# Check that the reported Σ% values do not exceed this!
|
||||
# Note, this is ratio. 3.85 stated above means 385Σ%.
|
||||
EXPECTED_MAX_PROFIT = 3.0
|
||||
|
||||
# Max average trade duration in minutes.
|
||||
# If eval ends with higher value, we consider it a failed eval.
|
||||
MAX_ACCEPTED_TRADE_DURATION = 300
|
||||
|
||||
|
||||
class ShortTradeDurHyperOptLoss(IHyperOptLoss):
|
||||
"""
|
||||
Defines the default loss function for hyperopt
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def hyperopt_loss_function(results: DataFrame, trade_count: int,
|
||||
*args, **kwargs) -> float:
|
||||
"""
|
||||
Objective function, returns smaller number for better results
|
||||
This is the Default algorithm
|
||||
Weights are distributed as follows:
|
||||
* 0.4 to trade duration
|
||||
* 0.25: Avoiding trade loss
|
||||
* 1.0 to total profit, compared to the expected value (`EXPECTED_MAX_PROFIT`) defined above
|
||||
"""
|
||||
total_profit = results['profit_ratio'].sum()
|
||||
trade_duration = results['trade_duration'].mean()
|
||||
|
||||
trade_loss = 1 - 0.25 * exp(-(trade_count - TARGET_TRADES) ** 2 / 10 ** 5.8)
|
||||
profit_loss = max(0, 1 - total_profit / EXPECTED_MAX_PROFIT)
|
||||
duration_loss = 0.4 * min(trade_duration / MAX_ACCEPTED_TRADE_DURATION, 1)
|
||||
result = trade_loss + profit_loss + duration_loss
|
||||
return result
|
||||
|
||||
|
||||
# Create an alias for This to allow the legacy Method to work as well.
|
||||
DefaultHyperOptLoss = ShortTradeDurHyperOptLoss
|
49
freqtrade/optimize/hyperopt_loss/hyperopt_loss_sortino.py
Normal file
49
freqtrade/optimize/hyperopt_loss/hyperopt_loss_sortino.py
Normal file
@@ -0,0 +1,49 @@
|
||||
"""
|
||||
SortinoHyperOptLoss
|
||||
|
||||
This module defines the alternative HyperOptLoss class which can be used for
|
||||
Hyperoptimization.
|
||||
"""
|
||||
from datetime import datetime
|
||||
|
||||
import numpy as np
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.optimize.hyperopt import IHyperOptLoss
|
||||
|
||||
|
||||
class SortinoHyperOptLoss(IHyperOptLoss):
|
||||
"""
|
||||
Defines the loss function for hyperopt.
|
||||
|
||||
This implementation uses the Sortino Ratio calculation.
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def hyperopt_loss_function(results: DataFrame, trade_count: int,
|
||||
min_date: datetime, max_date: datetime,
|
||||
*args, **kwargs) -> float:
|
||||
"""
|
||||
Objective function, returns smaller number for more optimal results.
|
||||
|
||||
Uses Sortino Ratio calculation.
|
||||
"""
|
||||
total_profit = results["profit_ratio"]
|
||||
days_period = (max_date - min_date).days
|
||||
|
||||
# adding slippage of 0.1% per trade
|
||||
total_profit = total_profit - 0.0005
|
||||
expected_returns_mean = total_profit.sum() / days_period
|
||||
|
||||
results['downside_returns'] = 0
|
||||
results.loc[total_profit < 0, 'downside_returns'] = results['profit_ratio']
|
||||
down_stdev = np.std(results['downside_returns'])
|
||||
|
||||
if down_stdev != 0:
|
||||
sortino_ratio = expected_returns_mean / down_stdev * np.sqrt(365)
|
||||
else:
|
||||
# Define high (negative) sortino ratio to be clear that this is NOT optimal.
|
||||
sortino_ratio = -20.
|
||||
|
||||
# print(expected_returns_mean, down_stdev, sortino_ratio)
|
||||
return -sortino_ratio
|
@@ -0,0 +1,70 @@
|
||||
"""
|
||||
SortinoHyperOptLossDaily
|
||||
|
||||
This module defines the alternative HyperOptLoss class which can be used for
|
||||
Hyperoptimization.
|
||||
"""
|
||||
import math
|
||||
from datetime import datetime
|
||||
|
||||
from pandas import DataFrame, date_range
|
||||
|
||||
from freqtrade.optimize.hyperopt import IHyperOptLoss
|
||||
|
||||
|
||||
class SortinoHyperOptLossDaily(IHyperOptLoss):
|
||||
"""
|
||||
Defines the loss function for hyperopt.
|
||||
|
||||
This implementation uses the Sortino Ratio calculation.
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def hyperopt_loss_function(results: DataFrame, trade_count: int,
|
||||
min_date: datetime, max_date: datetime,
|
||||
*args, **kwargs) -> float:
|
||||
"""
|
||||
Objective function, returns smaller number for more optimal results.
|
||||
|
||||
Uses Sortino Ratio calculation.
|
||||
|
||||
Sortino Ratio calculated as described in
|
||||
http://www.redrockcapital.com/Sortino__A__Sharper__Ratio_Red_Rock_Capital.pdf
|
||||
"""
|
||||
resample_freq = '1D'
|
||||
slippage_per_trade_ratio = 0.0005
|
||||
days_in_year = 365
|
||||
minimum_acceptable_return = 0.0
|
||||
|
||||
# apply slippage per trade to profit_ratio
|
||||
results.loc[:, 'profit_ratio_after_slippage'] = \
|
||||
results['profit_ratio'] - slippage_per_trade_ratio
|
||||
|
||||
# create the index within the min_date and end max_date
|
||||
t_index = date_range(start=min_date, end=max_date, freq=resample_freq,
|
||||
normalize=True)
|
||||
|
||||
sum_daily = (
|
||||
results.resample(resample_freq, on='close_date').agg(
|
||||
{"profit_ratio_after_slippage": sum}).reindex(t_index).fillna(0)
|
||||
)
|
||||
|
||||
total_profit = sum_daily["profit_ratio_after_slippage"] - minimum_acceptable_return
|
||||
expected_returns_mean = total_profit.mean()
|
||||
|
||||
sum_daily['downside_returns'] = 0
|
||||
sum_daily.loc[total_profit < 0, 'downside_returns'] = total_profit
|
||||
total_downside = sum_daily['downside_returns']
|
||||
# Here total_downside contains min(0, P - MAR) values,
|
||||
# where P = sum_daily["profit_ratio_after_slippage"]
|
||||
down_stdev = math.sqrt((total_downside**2).sum() / len(total_downside))
|
||||
|
||||
if down_stdev != 0:
|
||||
sortino_ratio = expected_returns_mean / down_stdev * math.sqrt(days_in_year)
|
||||
else:
|
||||
# Define high (negative) sortino ratio to be clear that this is NOT optimal.
|
||||
sortino_ratio = -20.
|
||||
|
||||
# print(t_index, sum_daily, total_profit)
|
||||
# print(minimum_acceptable_return, expected_returns_mean, down_stdev, sortino_ratio)
|
||||
return -sortino_ratio
|
Reference in New Issue
Block a user