Move hyperopt-loss functions to their own package

This commit is contained in:
Matthias
2022-04-30 13:59:23 +02:00
parent bfae732ba4
commit 2acb68e6e2
11 changed files with 2 additions and 2 deletions

View File

@@ -0,0 +1,63 @@
"""
CalmarHyperOptLoss
This module defines the alternative HyperOptLoss class which can be used for
Hyperoptimization.
"""
from datetime import datetime
from math import sqrt as msqrt
from typing import Any, Dict
from pandas import DataFrame
from freqtrade.data.btanalysis import calculate_max_drawdown
from freqtrade.optimize.hyperopt import IHyperOptLoss
class CalmarHyperOptLoss(IHyperOptLoss):
"""
Defines the loss function for hyperopt.
This implementation uses the Calmar Ratio calculation.
"""
@staticmethod
def hyperopt_loss_function(
results: DataFrame,
trade_count: int,
min_date: datetime,
max_date: datetime,
config: Dict,
processed: Dict[str, DataFrame],
backtest_stats: Dict[str, Any],
*args,
**kwargs
) -> float:
"""
Objective function, returns smaller number for more optimal results.
Uses Calmar Ratio calculation.
"""
total_profit = backtest_stats["profit_total"]
days_period = (max_date - min_date).days
# adding slippage of 0.1% per trade
total_profit = total_profit - 0.0005
expected_returns_mean = total_profit.sum() / days_period * 100
# calculate max drawdown
try:
_, _, _, _, _, max_drawdown = calculate_max_drawdown(
results, value_col="profit_abs"
)
except ValueError:
max_drawdown = 0
if max_drawdown != 0:
calmar_ratio = expected_returns_mean / max_drawdown * msqrt(365)
else:
# Define high (negative) calmar ratio to be clear that this is NOT optimal.
calmar_ratio = -20.0
# print(expected_returns_mean, max_drawdown, calmar_ratio)
return -calmar_ratio

View File

@@ -0,0 +1,41 @@
"""
MaxDrawDownHyperOptLoss
This module defines the alternative HyperOptLoss class which can be used for
Hyperoptimization.
"""
from datetime import datetime
from pandas import DataFrame
from freqtrade.data.btanalysis import calculate_max_drawdown
from freqtrade.optimize.hyperopt import IHyperOptLoss
class MaxDrawDownHyperOptLoss(IHyperOptLoss):
"""
Defines the loss function for hyperopt.
This implementation optimizes for max draw down and profit
Less max drawdown more profit -> Lower return value
"""
@staticmethod
def hyperopt_loss_function(results: DataFrame, trade_count: int,
min_date: datetime, max_date: datetime,
*args, **kwargs) -> float:
"""
Objective function.
Uses profit ratio weighted max_drawdown when drawdown is available.
Otherwise directly optimizes profit ratio.
"""
total_profit = results['profit_abs'].sum()
try:
max_drawdown = calculate_max_drawdown(results, value_col='profit_abs')
except ValueError:
# No losing trade, therefore no drawdown.
return -total_profit
return -total_profit / max_drawdown[0]

View File

@@ -0,0 +1,26 @@
"""
OnlyProfitHyperOptLoss
This module defines the alternative HyperOptLoss class which can be used for
Hyperoptimization.
"""
from pandas import DataFrame
from freqtrade.optimize.hyperopt import IHyperOptLoss
class OnlyProfitHyperOptLoss(IHyperOptLoss):
"""
Defines the loss function for hyperopt.
This implementation takes only absolute profit into account, not looking at any other indicator.
"""
@staticmethod
def hyperopt_loss_function(results: DataFrame, trade_count: int,
*args, **kwargs) -> float:
"""
Objective function, returns smaller number for better results.
"""
total_profit = results['profit_abs'].sum()
return -1 * total_profit

View File

@@ -0,0 +1,30 @@
"""
ProfitDrawDownHyperOptLoss
This module defines the alternative HyperOptLoss class based on Profit &
Drawdown objective which can be used for Hyperoptimization.
Possible to change `DRAWDOWN_MULT` to penalize drawdown objective for
individual needs.
"""
from pandas import DataFrame
from freqtrade.data.btanalysis import calculate_max_drawdown
from freqtrade.optimize.hyperopt import IHyperOptLoss
# higher numbers penalize drawdowns more severely
DRAWDOWN_MULT = 0.075
class ProfitDrawDownHyperOptLoss(IHyperOptLoss):
@staticmethod
def hyperopt_loss_function(results: DataFrame, trade_count: int, *args, **kwargs) -> float:
total_profit = results["profit_abs"].sum()
try:
max_drawdown_abs = calculate_max_drawdown(results, value_col="profit_abs")[5]
except ValueError:
max_drawdown_abs = 0
return -1 * (total_profit * (1 - max_drawdown_abs * DRAWDOWN_MULT))

View File

@@ -0,0 +1,46 @@
"""
SharpeHyperOptLoss
This module defines the alternative HyperOptLoss class which can be used for
Hyperoptimization.
"""
from datetime import datetime
import numpy as np
from pandas import DataFrame
from freqtrade.optimize.hyperopt import IHyperOptLoss
class SharpeHyperOptLoss(IHyperOptLoss):
"""
Defines the loss function for hyperopt.
This implementation uses the Sharpe Ratio calculation.
"""
@staticmethod
def hyperopt_loss_function(results: DataFrame, trade_count: int,
min_date: datetime, max_date: datetime,
*args, **kwargs) -> float:
"""
Objective function, returns smaller number for more optimal results.
Uses Sharpe Ratio calculation.
"""
total_profit = results["profit_ratio"]
days_period = (max_date - min_date).days
# adding slippage of 0.1% per trade
total_profit = total_profit - 0.0005
expected_returns_mean = total_profit.sum() / days_period
up_stdev = np.std(total_profit)
if up_stdev != 0:
sharp_ratio = expected_returns_mean / up_stdev * np.sqrt(365)
else:
# Define high (negative) sharpe ratio to be clear that this is NOT optimal.
sharp_ratio = -20.
# print(expected_returns_mean, up_stdev, sharp_ratio)
return -sharp_ratio

View File

@@ -0,0 +1,62 @@
"""
SharpeHyperOptLossDaily
This module defines the alternative HyperOptLoss class which can be used for
Hyperoptimization.
"""
import math
from datetime import datetime
from pandas import DataFrame, date_range
from freqtrade.optimize.hyperopt import IHyperOptLoss
class SharpeHyperOptLossDaily(IHyperOptLoss):
"""
Defines the loss function for hyperopt.
This implementation uses the Sharpe Ratio calculation.
"""
@staticmethod
def hyperopt_loss_function(results: DataFrame, trade_count: int,
min_date: datetime, max_date: datetime,
*args, **kwargs) -> float:
"""
Objective function, returns smaller number for more optimal results.
Uses Sharpe Ratio calculation.
"""
resample_freq = '1D'
slippage_per_trade_ratio = 0.0005
days_in_year = 365
annual_risk_free_rate = 0.0
risk_free_rate = annual_risk_free_rate / days_in_year
# apply slippage per trade to profit_ratio
results.loc[:, 'profit_ratio_after_slippage'] = \
results['profit_ratio'] - slippage_per_trade_ratio
# create the index within the min_date and end max_date
t_index = date_range(start=min_date, end=max_date, freq=resample_freq,
normalize=True)
sum_daily = (
results.resample(resample_freq, on='close_date').agg(
{"profit_ratio_after_slippage": sum}).reindex(t_index).fillna(0)
)
total_profit = sum_daily["profit_ratio_after_slippage"] - risk_free_rate
expected_returns_mean = total_profit.mean()
up_stdev = total_profit.std()
if up_stdev != 0:
sharp_ratio = expected_returns_mean / up_stdev * math.sqrt(days_in_year)
else:
# Define high (negative) sharpe ratio to be clear that this is NOT optimal.
sharp_ratio = -20.
# print(t_index, sum_daily, total_profit)
# print(risk_free_rate, expected_returns_mean, up_stdev, sharp_ratio)
return -sharp_ratio

View File

@@ -0,0 +1,56 @@
"""
ShortTradeDurHyperOptLoss
This module defines the default HyperoptLoss class which is being used for
Hyperoptimization.
"""
from math import exp
from pandas import DataFrame
from freqtrade.optimize.hyperopt import IHyperOptLoss
# Set TARGET_TRADES to suit your number concurrent trades so its realistic
# to the number of days
TARGET_TRADES = 600
# This is assumed to be expected avg profit * expected trade count.
# For example, for 0.35% avg per trade (or 0.0035 as ratio) and 1100 trades,
# expected max profit = 3.85
# Check that the reported Σ% values do not exceed this!
# Note, this is ratio. 3.85 stated above means 385Σ%.
EXPECTED_MAX_PROFIT = 3.0
# Max average trade duration in minutes.
# If eval ends with higher value, we consider it a failed eval.
MAX_ACCEPTED_TRADE_DURATION = 300
class ShortTradeDurHyperOptLoss(IHyperOptLoss):
"""
Defines the default loss function for hyperopt
"""
@staticmethod
def hyperopt_loss_function(results: DataFrame, trade_count: int,
*args, **kwargs) -> float:
"""
Objective function, returns smaller number for better results
This is the Default algorithm
Weights are distributed as follows:
* 0.4 to trade duration
* 0.25: Avoiding trade loss
* 1.0 to total profit, compared to the expected value (`EXPECTED_MAX_PROFIT`) defined above
"""
total_profit = results['profit_ratio'].sum()
trade_duration = results['trade_duration'].mean()
trade_loss = 1 - 0.25 * exp(-(trade_count - TARGET_TRADES) ** 2 / 10 ** 5.8)
profit_loss = max(0, 1 - total_profit / EXPECTED_MAX_PROFIT)
duration_loss = 0.4 * min(trade_duration / MAX_ACCEPTED_TRADE_DURATION, 1)
result = trade_loss + profit_loss + duration_loss
return result
# Create an alias for This to allow the legacy Method to work as well.
DefaultHyperOptLoss = ShortTradeDurHyperOptLoss

View File

@@ -0,0 +1,49 @@
"""
SortinoHyperOptLoss
This module defines the alternative HyperOptLoss class which can be used for
Hyperoptimization.
"""
from datetime import datetime
import numpy as np
from pandas import DataFrame
from freqtrade.optimize.hyperopt import IHyperOptLoss
class SortinoHyperOptLoss(IHyperOptLoss):
"""
Defines the loss function for hyperopt.
This implementation uses the Sortino Ratio calculation.
"""
@staticmethod
def hyperopt_loss_function(results: DataFrame, trade_count: int,
min_date: datetime, max_date: datetime,
*args, **kwargs) -> float:
"""
Objective function, returns smaller number for more optimal results.
Uses Sortino Ratio calculation.
"""
total_profit = results["profit_ratio"]
days_period = (max_date - min_date).days
# adding slippage of 0.1% per trade
total_profit = total_profit - 0.0005
expected_returns_mean = total_profit.sum() / days_period
results['downside_returns'] = 0
results.loc[total_profit < 0, 'downside_returns'] = results['profit_ratio']
down_stdev = np.std(results['downside_returns'])
if down_stdev != 0:
sortino_ratio = expected_returns_mean / down_stdev * np.sqrt(365)
else:
# Define high (negative) sortino ratio to be clear that this is NOT optimal.
sortino_ratio = -20.
# print(expected_returns_mean, down_stdev, sortino_ratio)
return -sortino_ratio

View File

@@ -0,0 +1,70 @@
"""
SortinoHyperOptLossDaily
This module defines the alternative HyperOptLoss class which can be used for
Hyperoptimization.
"""
import math
from datetime import datetime
from pandas import DataFrame, date_range
from freqtrade.optimize.hyperopt import IHyperOptLoss
class SortinoHyperOptLossDaily(IHyperOptLoss):
"""
Defines the loss function for hyperopt.
This implementation uses the Sortino Ratio calculation.
"""
@staticmethod
def hyperopt_loss_function(results: DataFrame, trade_count: int,
min_date: datetime, max_date: datetime,
*args, **kwargs) -> float:
"""
Objective function, returns smaller number for more optimal results.
Uses Sortino Ratio calculation.
Sortino Ratio calculated as described in
http://www.redrockcapital.com/Sortino__A__Sharper__Ratio_Red_Rock_Capital.pdf
"""
resample_freq = '1D'
slippage_per_trade_ratio = 0.0005
days_in_year = 365
minimum_acceptable_return = 0.0
# apply slippage per trade to profit_ratio
results.loc[:, 'profit_ratio_after_slippage'] = \
results['profit_ratio'] - slippage_per_trade_ratio
# create the index within the min_date and end max_date
t_index = date_range(start=min_date, end=max_date, freq=resample_freq,
normalize=True)
sum_daily = (
results.resample(resample_freq, on='close_date').agg(
{"profit_ratio_after_slippage": sum}).reindex(t_index).fillna(0)
)
total_profit = sum_daily["profit_ratio_after_slippage"] - minimum_acceptable_return
expected_returns_mean = total_profit.mean()
sum_daily['downside_returns'] = 0
sum_daily.loc[total_profit < 0, 'downside_returns'] = total_profit
total_downside = sum_daily['downside_returns']
# Here total_downside contains min(0, P - MAR) values,
# where P = sum_daily["profit_ratio_after_slippage"]
down_stdev = math.sqrt((total_downside**2).sum() / len(total_downside))
if down_stdev != 0:
sortino_ratio = expected_returns_mean / down_stdev * math.sqrt(days_in_year)
else:
# Define high (negative) sortino ratio to be clear that this is NOT optimal.
sortino_ratio = -20.
# print(t_index, sum_daily, total_profit)
# print(minimum_acceptable_return, expected_returns_mean, down_stdev, sortino_ratio)
return -sortino_ratio