Merge pull request #3228 from freqtrade/new_release2020.4

New release 2020.4
This commit is contained in:
hroff-1902 2020-04-28 12:18:54 +03:00 committed by GitHub
commit 2a9653cd4e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
65 changed files with 1427 additions and 374 deletions

View File

@ -3,6 +3,7 @@ version: '3'
services:
freqtrade:
image: freqtradeorg/freqtrade:master
# image: freqtradeorg/freqtrade:develop
# Build step - only needed when additional dependencies are needed
# build:
# context: .
@ -14,7 +15,7 @@ services:
# Default command used when running `docker compose up`
command: >
trade
--logfile /freqtrade/user_data/freqtrade.log
--logfile /freqtrade/user_data/logs/freqtrade.log
--db-url sqlite:////freqtrade/user_data/tradesv3.sqlite
--config /freqtrade/user_data/config.json
--strategy SampleStrategy

View File

@ -37,30 +37,30 @@ as the watchdog.
## Advanced Logging
On many Linux systems the bot can be configured to send its log messages to `syslog` or `journald` system services. Logging to a remote `syslog` server is also available on Windows. The special values for the `--logfilename` command line option can be used for this.
On many Linux systems the bot can be configured to send its log messages to `syslog` or `journald` system services. Logging to a remote `syslog` server is also available on Windows. The special values for the `--logfile` command line option can be used for this.
### Logging to syslog
To send Freqtrade log messages to a local or remote `syslog` service use the `--logfilename` command line option with the value in the following format:
To send Freqtrade log messages to a local or remote `syslog` service use the `--logfile` command line option with the value in the following format:
* `--logfilename syslog:<syslog_address>` -- send log messages to `syslog` service using the `<syslog_address>` as the syslog address.
* `--logfile syslog:<syslog_address>` -- send log messages to `syslog` service using the `<syslog_address>` as the syslog address.
The syslog address can be either a Unix domain socket (socket filename) or a UDP socket specification, consisting of IP address and UDP port, separated by the `:` character.
So, the following are the examples of possible usages:
* `--logfilename syslog:/dev/log` -- log to syslog (rsyslog) using the `/dev/log` socket, suitable for most systems.
* `--logfilename syslog` -- same as above, the shortcut for `/dev/log`.
* `--logfilename syslog:/var/run/syslog` -- log to syslog (rsyslog) using the `/var/run/syslog` socket. Use this on MacOS.
* `--logfilename syslog:localhost:514` -- log to local syslog using UDP socket, if it listens on port 514.
* `--logfilename syslog:<ip>:514` -- log to remote syslog at IP address and port 514. This may be used on Windows for remote logging to an external syslog server.
* `--logfile syslog:/dev/log` -- log to syslog (rsyslog) using the `/dev/log` socket, suitable for most systems.
* `--logfile syslog` -- same as above, the shortcut for `/dev/log`.
* `--logfile syslog:/var/run/syslog` -- log to syslog (rsyslog) using the `/var/run/syslog` socket. Use this on MacOS.
* `--logfile syslog:localhost:514` -- log to local syslog using UDP socket, if it listens on port 514.
* `--logfile syslog:<ip>:514` -- log to remote syslog at IP address and port 514. This may be used on Windows for remote logging to an external syslog server.
Log messages are send to `syslog` with the `user` facility. So you can see them with the following commands:
* `tail -f /var/log/user`, or
* install a comprehensive graphical viewer (for instance, 'Log File Viewer' for Ubuntu).
On many systems `syslog` (`rsyslog`) fetches data from `journald` (and vice versa), so both `--logfilename syslog` or `--logfilename journald` can be used and the messages be viewed with both `journalctl` and a syslog viewer utility. You can combine this in any way which suites you better.
On many systems `syslog` (`rsyslog`) fetches data from `journald` (and vice versa), so both `--logfile syslog` or `--logfile journald` can be used and the messages be viewed with both `journalctl` and a syslog viewer utility. You can combine this in any way which suites you better.
For `rsyslog` the messages from the bot can be redirected into a separate dedicated log file. To achieve this, add
```
@ -78,9 +78,9 @@ $RepeatedMsgReduction on
This needs the `systemd` python package installed as the dependency, which is not available on Windows. Hence, the whole journald logging functionality is not available for a bot running on Windows.
To send Freqtrade log messages to `journald` system service use the `--logfilename` command line option with the value in the following format:
To send Freqtrade log messages to `journald` system service use the `--logfile` command line option with the value in the following format:
* `--logfilename journald` -- send log messages to `journald`.
* `--logfile journald` -- send log messages to `journald`.
Log messages are send to `journald` with the `user` facility. So you can see them with the following commands:
@ -89,4 +89,4 @@ Log messages are send to `journald` with the `user` facility. So you can see the
There are many other options in the `journalctl` utility to filter the messages, see manual pages for this utility.
On many systems `syslog` (`rsyslog`) fetches data from `journald` (and vice versa), so both `--logfilename syslog` or `--logfilename journald` can be used and the messages be viewed with both `journalctl` and a syslog viewer utility. You can combine this in any way which suites you better.
On many systems `syslog` (`rsyslog`) fetches data from `journald` (and vice versa), so both `--logfile syslog` or `--logfile journald` can be used and the messages be viewed with both `journalctl` and a syslog viewer utility. You can combine this in any way which suites you better.

View File

@ -144,10 +144,10 @@ It is recommended to use version control to keep track of changes to your strate
### How to use **--strategy**?
This parameter will allow you to load your custom strategy class.
Per default without `--strategy` or `-s` the bot will load the
`DefaultStrategy` included with the bot (`freqtrade/strategy/default_strategy.py`).
To test the bot installation, you can use the `SampleStrategy` installed by the `create-userdir` subcommand (usually `user_data/strategy/sample_strategy.py`).
The bot will search your strategy file within `user_data/strategies` and `freqtrade/strategy`.
The bot will search your strategy file within `user_data/strategies`.
To use other directories, please read the next section about `--strategy-path`.
To load a strategy, simply pass the class name (e.g.: `CustomStrategy`) in this parameter.

View File

@ -34,7 +34,7 @@ The prevelance for all Options is as follows:
- CLI arguments override any other option
- Configuration files are used in sequence (last file wins), and override Strategy configurations.
- Strategy configurations are only used if they are not set via configuration or via command line arguments. These options are market with [Strategy Override](#parameters-in-the-strategy) in the below table.
- Strategy configurations are only used if they are not set via configuration or via command line arguments. These options are marked with [Strategy Override](#parameters-in-the-strategy) in the below table.
Mandatory parameters are marked as **Required**, which means that they are required to be set in one of the possible ways.

View File

@ -79,7 +79,7 @@ So lets say your Win rate is 28% and your Risk Reward Ratio is 5:
Expectancy = (5 X 0.28) 0.72 = 0.68
```
Superficially, this means that on average you expect this strategys trades to return .68 times the size of your loses. This is important for two reasons: First, it may seem obvious, but you know right away that you have a positive return. Second, you now have a number you can compare to other candidate systems to make decisions about which ones you employ.
Superficially, this means that on average you expect this strategys trades to return 1.68 times the size of your loses. Said another way, you can expect to win $1.68 for every $1 you lose. This is important for two reasons: First, it may seem obvious, but you know right away that you have a positive return. Second, you now have a number you can compare to other candidate systems to make decisions about which ones you employ.
It is important to remember that any system with an expectancy greater than 0 is profitable using past data. The key is finding one that will be profitable in the future.

View File

@ -100,7 +100,7 @@ $ tail -f /path/to/mylogfile.log | grep 'something'
```
from a separate terminal window.
On Windows, the `--logfilename` option is also supported by Freqtrade and you can use the `findstr` command to search the log for the string of interest:
On Windows, the `--logfile` option is also supported by Freqtrade and you can use the `findstr` command to search the log for the string of interest:
```
> type \path\to\mylogfile.log | findstr "something"
```

View File

@ -6,9 +6,7 @@ algorithms included in the `scikit-optimize` package to accomplish this. The
search will burn all your CPU cores, make your laptop sound like a fighter jet
and still take a long time.
In general, the search for best parameters starts with a few random combinations and then uses Bayesian search with a
ML regressor algorithm (currently ExtraTreesRegressor) to quickly find a combination of parameters in the search hyperspace
that minimizes the value of the [loss function](#loss-functions).
In general, the search for best parameters starts with a few random combinations (see [below](#reproducible-results) for more details) and then uses Bayesian search with a ML regressor algorithm (currently ExtraTreesRegressor) to quickly find a combination of parameters in the search hyperspace that minimizes the value of the [loss function](#loss-functions).
Hyperopt requires historic data to be available, just as backtesting does.
To learn how to get data for the pairs and exchange you're interested in, head over to the [Data Downloading](data-download.md) section of the documentation.
@ -16,6 +14,24 @@ To learn how to get data for the pairs and exchange you're interested in, head o
!!! Bug
Hyperopt can crash when used with only 1 CPU Core as found out in [Issue #1133](https://github.com/freqtrade/freqtrade/issues/1133)
## Install hyperopt dependencies
Since Hyperopt dependencies are not needed to run the bot itself, are heavy, can not be easily built on some platforms (like Raspberry PI), they are not installed by default. Before you run Hyperopt, you need to install the corresponding dependencies, as described in this section below.
!!! Note
Since Hyperopt is a resource intensive process, running it on a Raspberry Pi is not recommended nor supported.
### Docker
The docker-image includes hyperopt dependencies, no further action needed.
### Easy installation script (setup.sh) / Manual installation
```bash
source .env/bin/activate
pip install -r requirements-hyperopt.txt
```
## Prepare Hyperopting
Before we start digging into Hyperopt, we recommend you to take a look at
@ -47,6 +63,9 @@ Optional - can also be loaded from a strategy:
!!! Note
Assuming the optional methods are not in your hyperopt file, please use `--strategy AweSomeStrategy` which contains these methods so hyperopt can use these methods instead.
!!! Note
You always have to provide a strategy to Hyperopt, even if your custom Hyperopt class contains all methods.
Rarely you may also need to override:
* `roi_space` - for custom ROI optimization (if you need the ranges for the ROI parameters in the optimization hyperspace that differ from default)
@ -293,7 +312,7 @@ You can also enable position stacking in the configuration file by explicitly se
### Reproducible results
The search for optimal parameters starts with a few (currently 30) random combinations in the hyperspace of parameters, random Hyperopt epochs. These random epochs are marked with a leading asterisk sign at the Hyperopt output.
The search for optimal parameters starts with a few (currently 30) random combinations in the hyperspace of parameters, random Hyperopt epochs. These random epochs are marked with an asterisk character (`*`) in the first column in the Hyperopt output.
The initial state for generation of these random values (random state) is controlled by the value of the `--random-state` command line option. You can set it to some arbitrary value of your choice to obtain reproducible results.

View File

@ -1,2 +1,2 @@
mkdocs-material==4.6.3
mkdocs-material==5.1.3
mdx_truly_sane_lists==1.2

View File

@ -67,22 +67,32 @@ SELECT * FROM trades;
!!! Warning
Manually selling a pair on the exchange will not be detected by the bot and it will try to sell anyway. Whenever possible, forcesell <tradeid> should be used to accomplish the same thing.
It is strongly advised to backup your database file before making any manual changes.
It is strongly advised to backup your database file before making any manual changes.
!!! Note
This should not be necessary after /forcesell, as forcesell orders are closed automatically by the bot on the next iteration.
```sql
UPDATE trades
SET is_open=0, close_date=<close_date>, close_rate=<close_rate>, close_profit=close_rate/open_rate-1, sell_reason=<sell_reason>
SET is_open=0,
close_date=<close_date>,
close_rate=<close_rate>,
close_profit=close_rate/open_rate-1,
close_profit_abs = (amount * <close_rate> * (1 - fee_close) - (amount * open_rate * 1 - fee_open),
sell_reason=<sell_reason>
WHERE id=<trade_ID_to_update>;
```
##### Example
### Example
```sql
UPDATE trades
SET is_open=0, close_date='2017-12-20 03:08:45.103418', close_rate=0.19638016, close_profit=0.0496, sell_reason='force_sell'
SET is_open=0,
close_date='2017-12-20 03:08:45.103418',
close_rate=0.19638016,
close_profit=0.0496,
close_profit_abs = (amount * 0.19638016 * (1 - fee_close) - (amount * open_rate * 1 - fee_open)
sell_reason='force_sell'
WHERE id=31;
```
@ -99,10 +109,3 @@ VALUES ('bittrex', 'ETH/BTC', 1, 0.0025, 0.0025, <open_rate>, <stake_amount>, <a
INSERT INTO trades (exchange, pair, is_open, fee_open, fee_close, open_rate, stake_amount, amount, open_date)
VALUES ('bittrex', 'ETH/BTC', 1, 0.0025, 0.0025, 0.00258580, 0.002, 0.7715262081, '2017-11-28 12:44:24.000000')
```
## Fix wrong fees in the table
If your DB was created before [PR#200](https://github.com/freqtrade/freqtrade/pull/200) was merged (before 12/23/17).
```sql
UPDATE trades SET fee=0.0025 WHERE fee=0.005;
```

91
docs/strategy-advanced.md Normal file
View File

@ -0,0 +1,91 @@
# Advanced Strategies
This page explains some advanced concepts available for strategies.
If you're just getting started, please be familiar with the methods described in the [Strategy Customization](strategy-customization.md) documentation first.
## Custom order timeout rules
Simple, timebased order-timeouts can be configured either via strategy or in the configuration in the `unfilledtimeout` section.
However, freqtrade also offers a custom callback for both ordertypes, which allows you to decide based on custom criteria if a order did time out or not.
!!! Note
Unfilled order timeouts are not relevant during backtesting or hyperopt, and are only relevant during real (live) trading. Therefore these methods are only called in these circumstances.
### Custom order timeout example
A simple example, which applies different unfilled-timeouts depending on the price of the asset can be seen below.
It applies a tight timeout for higher priced assets, while allowing more time to fill on cheap coins.
The function must return either `True` (cancel order) or `False` (keep order alive).
``` python
from datetime import datetime, timestamp
from freqtrade.persistence import Trade
class Awesomestrategy(IStrategy):
# ... populate_* methods
# Set unfilledtimeout to 25 hours, since our maximum timeout from below is 24 hours.
unfilledtimeout = {
'buy': 60 * 25,
'sell': 60 * 25
}
def check_buy_timeout(self, pair: str, trade: 'Trade', order: dict, **kwargs) -> bool:
if trade.open_rate > 100 and trade.open_date < datetime.utcnow() - timedelta(minutes=5):
return True
elif trade.open_rate > 10 and trade.open_date < datetime.utcnow() - timedelta(minutes=3):
return True
elif trade.open_rate < 1 and trade.open_date < datetime.utcnow() - timedelta(hours=24):
return True
return False
def check_sell_timeout(self, pair: str, trade: 'Trade', order: dict, **kwargs) -> bool:
if trade.open_rate > 100 and trade.open_date < datetime.utcnow() - timedelta(minutes=5):
return True
elif trade.open_rate > 10 and trade.open_date < datetime.utcnow() - timedelta(minutes=3):
return True
elif trade.open_rate < 1 and trade.open_date < datetime.utcnow() - timedelta(hours=24):
return True
return False
```
!!! Note
For the above example, `unfilledtimeout` must be set to something bigger than 24h, otherwise that type of timeout will apply first.
### Custom order timeout example (using additional data)
``` python
from datetime import datetime, timestamp
from freqtrade.persistence import Trade
class Awesomestrategy(IStrategy):
# ... populate_* methods
# Set unfilledtimeout to 25 hours, since our maximum timeout from below is 24 hours.
unfilledtimeout = {
'buy': 60 * 25,
'sell': 60 * 25
}
def check_buy_timeout(self, pair: str, trade: Trade, order: dict, **kwargs) -> bool:
ob = self.dp.orderbook(pair, 1)
current_price = ob['bids'][0][0]
# Cancel buy order if price is more than 2% above the order.
if current_price > order['price'] * 1.02:
return True
return False
def check_sell_timeout(self, pair: str, trade: Trade, order: dict, **kwargs) -> bool:
ob = self.dp.orderbook(pair, 1)
current_price = ob['asks'][0][0]
# Cancel sell order if price is more than 2% below the order.
if current_price < order['price'] * 0.98:
return True
return False
```

View File

@ -1,7 +1,6 @@
# Strategy Customization
This page explains where to customize your strategies, and add new
indicators.
This page explains where to customize your strategies, and add new indicators.
## Install a custom strategy file

View File

@ -77,7 +77,7 @@ Results will be located in `user_data/strategies/<strategyclassname>.py`.
``` output
usage: freqtrade new-strategy [-h] [--userdir PATH] [-s NAME]
[--template {full,minimal}]
[--template {full,minimal,advanced}]
optional arguments:
-h, --help show this help message and exit
@ -86,10 +86,10 @@ optional arguments:
-s NAME, --strategy NAME
Specify strategy class name which will be used by the
bot.
--template {full,minimal}
Use a template which is either `minimal` or `full`
(containing multiple sample indicators). Default:
`full`.
--template {full,minimal,advanced}
Use a template which is either `minimal`, `full`
(containing multiple sample indicators) or `advanced`.
Default: `full`.
```
@ -105,6 +105,12 @@ With custom user directory
freqtrade new-strategy --userdir ~/.freqtrade/ --strategy AwesomeStrategy
```
Using the advanced template (populates all optional functions and methods)
```bash
freqtrade new-strategy --strategy AwesomeStrategy --template advanced
```
## Create new hyperopt
Creates a new hyperopt from a template similar to SampleHyperopt.
@ -114,7 +120,7 @@ Results will be located in `user_data/hyperopts/<classname>.py`.
``` output
usage: freqtrade new-hyperopt [-h] [--userdir PATH] [--hyperopt NAME]
[--template {full,minimal}]
[--template {full,minimal,advanced}]
optional arguments:
-h, --help show this help message and exit
@ -122,10 +128,10 @@ optional arguments:
Path to userdata directory.
--hyperopt NAME Specify hyperopt class name which will be used by the
bot.
--template {full,minimal}
Use a template which is either `minimal` or `full`
(containing multiple sample indicators). Default:
`full`.
--template {full,minimal,advanced}
Use a template which is either `minimal`, `full`
(containing multiple sample indicators) or `advanced`.
Default: `full`.
```
### Sample usage of new-hyperopt

View File

@ -1,5 +1,5 @@
""" Freqtrade bot """
__version__ = '2020.3'
__version__ = '2020.4'
if __version__ == 'develop':
@ -24,4 +24,11 @@ if __version__ == 'develop':
# stderr=subprocess.DEVNULL).decode("utf-8").rstrip().strip('"')
except Exception:
# git not available, ignore
pass
try:
# Try Fallback to freqtrade_commit file (created by CI while building docker image)
from pathlib import Path
versionfile = Path('./freqtrade_commit')
if versionfile.is_file():
__version__ = f"docker-{versionfile.read_text()[:8]}"
except Exception:
pass

View File

@ -387,9 +387,9 @@ AVAILABLE_CLI_OPTIONS = {
# Templating options
"template": Arg(
'--template',
help='Use a template which is either `minimal` or '
'`full` (containing multiple sample indicators). Default: `%(default)s`.',
choices=['full', 'minimal'],
help='Use a template which is either `minimal`, '
'`full` (containing multiple sample indicators) or `advanced`. Default: `%(default)s`.',
choices=['full', 'minimal', 'advanced'],
default='full',
),
# Plot dataframe

View File

@ -8,7 +8,7 @@ from freqtrade.configuration.directory_operations import (copy_sample_files,
create_userdata_dir)
from freqtrade.constants import USERPATH_HYPEROPTS, USERPATH_STRATEGIES
from freqtrade.exceptions import OperationalException
from freqtrade.misc import render_template
from freqtrade.misc import render_template, render_template_with_fallback
from freqtrade.state import RunMode
logger = logging.getLogger(__name__)
@ -32,10 +32,27 @@ def deploy_new_strategy(strategy_name: str, strategy_path: Path, subtemplate: st
"""
Deploy new strategy from template to strategy_path
"""
indicators = render_template(templatefile=f"subtemplates/indicators_{subtemplate}.j2",)
buy_trend = render_template(templatefile=f"subtemplates/buy_trend_{subtemplate}.j2",)
sell_trend = render_template(templatefile=f"subtemplates/sell_trend_{subtemplate}.j2",)
plot_config = render_template(templatefile=f"subtemplates/plot_config_{subtemplate}.j2",)
fallback = 'full'
indicators = render_template_with_fallback(
templatefile=f"subtemplates/indicators_{subtemplate}.j2",
templatefallbackfile=f"subtemplates/indicators_{fallback}.j2",
)
buy_trend = render_template_with_fallback(
templatefile=f"subtemplates/buy_trend_{subtemplate}.j2",
templatefallbackfile=f"subtemplates/buy_trend_{fallback}.j2",
)
sell_trend = render_template_with_fallback(
templatefile=f"subtemplates/sell_trend_{subtemplate}.j2",
templatefallbackfile=f"subtemplates/sell_trend_{fallback}.j2",
)
plot_config = render_template_with_fallback(
templatefile=f"subtemplates/plot_config_{subtemplate}.j2",
templatefallbackfile=f"subtemplates/plot_config_{fallback}.j2",
)
additional_methods = render_template_with_fallback(
templatefile=f"subtemplates/strategy_methods_{subtemplate}.j2",
templatefallbackfile=f"subtemplates/strategy_methods_empty.j2",
)
strategy_text = render_template(templatefile='base_strategy.py.j2',
arguments={"strategy": strategy_name,
@ -43,6 +60,7 @@ def deploy_new_strategy(strategy_name: str, strategy_path: Path, subtemplate: st
"buy_trend": buy_trend,
"sell_trend": sell_trend,
"plot_config": plot_config,
"additional_methods": additional_methods,
})
logger.info(f"Writing strategy to `{strategy_path}`.")
@ -73,14 +91,23 @@ def deploy_new_hyperopt(hyperopt_name: str, hyperopt_path: Path, subtemplate: st
"""
Deploys a new hyperopt template to hyperopt_path
"""
buy_guards = render_template(
templatefile=f"subtemplates/hyperopt_buy_guards_{subtemplate}.j2",)
sell_guards = render_template(
templatefile=f"subtemplates/hyperopt_sell_guards_{subtemplate}.j2",)
buy_space = render_template(
templatefile=f"subtemplates/hyperopt_buy_space_{subtemplate}.j2",)
sell_space = render_template(
templatefile=f"subtemplates/hyperopt_sell_space_{subtemplate}.j2",)
fallback = 'full'
buy_guards = render_template_with_fallback(
templatefile=f"subtemplates/hyperopt_buy_guards_{subtemplate}.j2",
templatefallbackfile=f"subtemplates/hyperopt_buy_guards_{fallback}.j2",
)
sell_guards = render_template_with_fallback(
templatefile=f"subtemplates/hyperopt_sell_guards_{subtemplate}.j2",
templatefallbackfile=f"subtemplates/hyperopt_sell_guards_{fallback}.j2",
)
buy_space = render_template_with_fallback(
templatefile=f"subtemplates/hyperopt_buy_space_{subtemplate}.j2",
templatefallbackfile=f"subtemplates/hyperopt_buy_space_{fallback}.j2",
)
sell_space = render_template_with_fallback(
templatefile=f"subtemplates/hyperopt_sell_space_{subtemplate}.j2",
templatefallbackfile=f"subtemplates/hyperopt_sell_space_{fallback}.j2",
)
strategy_text = render_template(templatefile='base_hyperopt.py.j2',
arguments={"hyperopt": hyperopt_name,

View File

@ -52,8 +52,8 @@ def start_hyperopt_list(args: Dict[str, Any]) -> None:
if not export_csv:
try:
Hyperopt.print_result_table(config, trials, total_epochs,
not filteroptions['only_best'], print_colorized, 0)
print(Hyperopt.get_result_table(config, trials, total_epochs,
not filteroptions['only_best'], print_colorized, 0))
except KeyboardInterrupt:
print('User interrupted..')

View File

@ -33,8 +33,8 @@ def create_userdata_dir(directory: str, create_dir: bool = False) -> Path:
:param create_dir: Create directory if it does not exist.
:return: Path object containing the directory
"""
sub_dirs = ["backtest_results", "data", "hyperopts", "hyperopt_results", "notebooks",
"plot", "strategies", ]
sub_dirs = ["backtest_results", "data", "hyperopts", "hyperopt_results", "logs",
"notebooks", "plot", "strategies", ]
folder = Path(directory)
if not folder.is_dir():
if create_dir:

View File

@ -151,13 +151,20 @@ def load_trades(source: str, db_url: str, exportfilename: Path,
return load_backtest_data(exportfilename)
def extract_trades_of_period(dataframe: pd.DataFrame, trades: pd.DataFrame) -> pd.DataFrame:
def extract_trades_of_period(dataframe: pd.DataFrame, trades: pd.DataFrame,
date_index=False) -> pd.DataFrame:
"""
Compare trades and backtested pair DataFrames to get trades performed on backtested period
:return: the DataFrame of a trades of period
"""
trades = trades.loc[(trades['open_time'] >= dataframe.iloc[0]['date']) &
(trades['close_time'] <= dataframe.iloc[-1]['date'])]
if date_index:
trades_start = dataframe.index[0]
trades_stop = dataframe.index[-1]
else:
trades_start = dataframe.iloc[0]['date']
trades_stop = dataframe.iloc[-1]['date']
trades = trades.loc[(trades['open_time'] >= trades_start) &
(trades['close_time'] <= trades_stop)]
return trades
@ -213,13 +220,15 @@ def calculate_max_drawdown(trades: pd.DataFrame, *, date_col: str = 'close_time'
"""
if len(trades) == 0:
raise ValueError("Trade dataframe empty.")
profit_results = trades.sort_values(date_col)
profit_results = trades.sort_values(date_col).reset_index(drop=True)
max_drawdown_df = pd.DataFrame()
max_drawdown_df['cumulative'] = profit_results[value_col].cumsum()
max_drawdown_df['high_value'] = max_drawdown_df['cumulative'].cummax()
max_drawdown_df['drawdown'] = max_drawdown_df['cumulative'] - max_drawdown_df['high_value']
high_date = profit_results.loc[max_drawdown_df['high_value'].idxmax(), date_col]
low_date = profit_results.loc[max_drawdown_df['drawdown'].idxmin(), date_col]
idxmin = max_drawdown_df['drawdown'].idxmin()
if idxmin == 0:
raise ValueError("No losing trade, therefore no drawdown.")
high_date = profit_results.loc[max_drawdown_df.iloc[:idxmin]['high_value'].idxmax(), date_col]
low_date = profit_results.loc[idxmin, date_col]
return abs(min(max_drawdown_df['drawdown'])), high_date, low_date

View File

@ -35,3 +35,10 @@ class TemporaryError(FreqtradeException):
This could happen when an exchange is congested, unavailable, or the user
has networking problems. Usually resolves itself after a time.
"""
class StrategyError(FreqtradeException):
"""
Errors with custom user-code deteced.
Usually caused by errors in the strategy.
"""

View File

@ -452,6 +452,17 @@ class Exchange:
price = ceil(big_price) / pow(10, symbol_prec)
return price
def price_get_one_pip(self, pair: str, price: float) -> float:
"""
Get's the "1 pip" value for this pair.
Used in PriceFilter to calculate the 1pip movements.
"""
precision = self.markets[pair]['precision']['price']
if self.precisionMode == TICK_SIZE:
return precision
else:
return 1 / pow(10, precision)
def dry_run_order(self, pair: str, ordertype: str, side: str, amount: float,
rate: float, params: Dict = {}) -> Dict[str, Any]:
order_id = f'dry_run_{side}_{randint(0, 10**6)}'
@ -902,10 +913,18 @@ class Exchange:
self._async_get_trade_history(pair=pair, since=since,
until=until, from_id=from_id))
def check_order_canceled_empty(self, order: Dict) -> bool:
"""
Verify if an order has been cancelled without being partially filled
:param order: Order dict as returned from get_order()
:return: True if order has been cancelled without being filled, False otherwise.
"""
return order.get('status') in ('closed', 'canceled') and order.get('filled') == 0.0
@retrier
def cancel_order(self, order_id: str, pair: str) -> None:
def cancel_order(self, order_id: str, pair: str) -> Dict:
if self._config['dry_run']:
return
return {}
try:
return self._api.cancel_order(order_id, pair)
@ -918,6 +937,37 @@ class Exchange:
except ccxt.BaseError as e:
raise OperationalException(e) from e
def is_cancel_order_result_suitable(self, corder) -> bool:
if not isinstance(corder, dict):
return False
required = ('fee', 'status', 'amount')
return all(k in corder for k in required)
def cancel_order_with_result(self, order_id: str, pair: str, amount: float) -> Dict:
"""
Cancel order returning a result.
Creates a fake result if cancel order returns a non-usable result
and get_order does not work (certain exchanges don't return cancelled orders)
:param order_id: Orderid to cancel
:param pair: Pair corresponding to order_id
:param amount: Amount to use for fake response
:return: Result from either cancel_order if usable, or fetch_order
"""
try:
corder = self.cancel_order(order_id, pair)
if self.is_cancel_order_result_suitable(corder):
return corder
except InvalidOrderException:
logger.warning(f"Could not cancel order {order_id}.")
try:
order = self.get_order(order_id, pair)
except InvalidOrderException:
logger.warning(f"Could not fetch cancelled order {order_id}.")
order = {'fee': {}, 'status': 'canceled', 'amount': amount, 'info': {}}
return order
@retrier
def get_order(self, order_id: str, pair: str) -> Dict:
if self._config['dry_run']:

View File

@ -20,12 +20,14 @@ from freqtrade.data.dataprovider import DataProvider
from freqtrade.edge import Edge
from freqtrade.exceptions import DependencyException, InvalidOrderException
from freqtrade.exchange import timeframe_to_minutes, timeframe_to_next_date
from freqtrade.misc import safe_value_fallback
from freqtrade.pairlist.pairlistmanager import PairListManager
from freqtrade.persistence import Trade
from freqtrade.resolvers import ExchangeResolver, StrategyResolver
from freqtrade.rpc import RPCManager, RPCMessageType
from freqtrade.state import State
from freqtrade.strategy.interface import IStrategy, SellType
from freqtrade.strategy.strategy_wrapper import strategy_safe_wrapper
from freqtrade.wallets import Wallets
logger = logging.getLogger(__name__)
@ -143,6 +145,10 @@ class FreqtradeBot:
self.dataprovider.refresh(self._create_pair_whitelist(self.active_pair_whitelist),
self.strategy.informative_pairs())
with self._sell_lock:
# Check and handle any timed out open orders
self.check_handle_timedout()
# Protect from collisions with forcesell.
# Without this, freqtrade my try to recreate stoploss_on_exchange orders
# while selling is in process, since telegram messages arrive in an different thread.
@ -154,8 +160,6 @@ class FreqtradeBot:
if self.get_free_open_trades():
self.enter_positions()
# Check and handle any timed out open orders
self.check_handle_timedout()
Trade.session.flush()
def _refresh_whitelist(self, trades: List[Trade] = []) -> List[str]:
@ -600,7 +604,6 @@ class FreqtradeBot:
trades_closed = 0
for trade in trades:
try:
self.update_trade_state(trade)
if (self.strategy.order_types.get('stoploss_on_exchange') and
self.handle_stoploss_on_exchange(trade)):
@ -860,30 +863,35 @@ class FreqtradeBot:
continue
order = self.exchange.get_order(trade.open_order_id, trade.pair)
except (RequestException, DependencyException, InvalidOrderException):
logger.info(
'Cannot query order for %s due to %s',
trade,
traceback.format_exc())
logger.info('Cannot query order for %s due to %s', trade, traceback.format_exc())
continue
# Check if trade is still actually open
if float(order.get('remaining', 0.0)) == 0.0:
self.wallets.update()
continue
trade_state_update = self.update_trade_state(trade, order)
if (order['side'] == 'buy' and (
trade_state_update
or self._check_timed_out('buy', order)
or strategy_safe_wrapper(self.strategy.check_buy_timeout,
default_retval=False)(pair=trade.pair,
trade=trade,
order=order))):
if ((order['side'] == 'buy' and order['status'] == 'canceled')
or (self._check_timed_out('buy', order))):
self.handle_timedout_limit_buy(trade, order)
self.wallets.update()
order_type = self.strategy.order_types['buy']
self._notify_buy_cancel(trade, order_type)
elif ((order['side'] == 'sell' and order['status'] == 'canceled')
or (self._check_timed_out('sell', order))):
self.handle_timedout_limit_sell(trade, order)
elif (order['side'] == 'sell' and (
trade_state_update
or self._check_timed_out('sell', order)
or strategy_safe_wrapper(self.strategy.check_sell_timeout,
default_retval=False)(pair=trade.pair,
trade=trade,
order=order))):
reason = self.handle_timedout_limit_sell(trade, order)
self.wallets.update()
order_type = self.strategy.order_types['sell']
self._notify_sell_cancel(trade, order_type)
self._notify_sell_cancel(trade, order_type, reason)
def handle_timedout_limit_buy(self, trade: Trade, order: Dict) -> bool:
"""
@ -892,18 +900,17 @@ class FreqtradeBot:
"""
if order['status'] != 'canceled':
reason = "cancelled due to timeout"
corder = self.exchange.cancel_order(trade.open_order_id, trade.pair)
# Some exchanges don't return a dict here.
if not isinstance(corder, dict):
corder = {}
logger.info('Buy order %s for %s.', reason, trade)
corder = self.exchange.cancel_order_with_result(trade.open_order_id, trade.pair,
trade.amount)
else:
# Order was cancelled already, so we can reuse the existing dict
corder = order
reason = "cancelled on exchange"
logger.info('Buy order %s for %s.', reason, trade)
if corder.get('remaining', order['remaining']) == order['amount']:
logger.info('Buy order %s for %s.', reason, trade)
if safe_value_fallback(corder, order, 'remaining', 'remaining') == order['amount']:
logger.info('Buy order fully cancelled. Removing %s from database.', trade)
# if trade is not partially completed, just delete the trade
Trade.session.delete(trade)
Trade.session.flush()
@ -914,19 +921,10 @@ class FreqtradeBot:
# cancel_order may not contain the full order dict, so we need to fallback
# to the order dict aquired before cancelling.
# we need to fall back to the values from order if corder does not contain these keys.
trade.amount = order['amount'] - corder.get('remaining', order['remaining'])
trade.amount = order['amount'] - safe_value_fallback(corder, order,
'remaining', 'remaining')
trade.stake_amount = trade.amount * trade.open_rate
# verify if fees were taken from amount to avoid problems during selling
try:
new_amount = self.get_real_amount(trade, corder if 'fee' in corder else order,
trade.amount)
if not isclose(order['amount'], new_amount, abs_tol=constants.MATH_CLOSE_PREC):
trade.amount = new_amount
# Fee was applied, so set to 0
trade.fee_open = 0
trade.recalc_open_trade_price()
except DependencyException as e:
logger.warning("Could not update trade amount: %s", e)
self.update_trade_state(trade, corder, trade.amount)
trade.open_order_id = None
logger.info('Partial buy order timeout for %s.', trade)
@ -936,14 +934,14 @@ class FreqtradeBot:
})
return False
def handle_timedout_limit_sell(self, trade: Trade, order: Dict) -> bool:
def handle_timedout_limit_sell(self, trade: Trade, order: Dict) -> str:
"""
Sell timeout - cancel order and update trade
:return: True if order was fully cancelled
:return: Reason for cancel
"""
# if trade is not partially completed, just cancel the trade
if order['remaining'] == order['amount']:
if order["status"] != "canceled":
if order['remaining'] == order['amount'] or order.get('filled') == 0.0:
if not self.exchange.check_order_canceled_empty(order):
reason = "cancelled due to timeout"
# if trade is not partially completed, just delete the trade
self.exchange.cancel_order(trade.open_order_id, trade.pair)
@ -953,16 +951,17 @@ class FreqtradeBot:
logger.info('Sell order %s for %s.', reason, trade)
trade.close_rate = None
trade.close_rate_requested = None
trade.close_profit = None
trade.close_profit_abs = None
trade.close_date = None
trade.is_open = True
trade.open_order_id = None
return True
return reason
# TODO: figure out how to handle partially complete sell orders
return False
return 'partially filled - keeping order open'
def _safe_sell_amount(self, pair: str, amount: float) -> float:
"""
@ -1081,7 +1080,7 @@ class FreqtradeBot:
# Send the message
self.rpc.send_msg(msg)
def _notify_sell_cancel(self, trade: Trade, order_type: str) -> None:
def _notify_sell_cancel(self, trade: Trade, order_type: str, reason: str) -> None:
"""
Sends rpc notification when a sell cancel occured.
"""
@ -1108,6 +1107,7 @@ class FreqtradeBot:
'close_date': trade.close_date,
'stake_currency': self.config['stake_currency'],
'fiat_currency': self.config.get('fiat_display_currency', None),
'reason': reason,
}
if 'fiat_display_currency' in self.config:
@ -1122,9 +1122,12 @@ class FreqtradeBot:
# Common update trade state methods
#
def update_trade_state(self, trade: Trade, action_order: dict = None) -> None:
def update_trade_state(self, trade: Trade, action_order: dict = None,
order_amount: float = None) -> bool:
"""
Checks trades with open orders and updates the amount if necessary
Handles closing both buy and sell orders.
:return: True if order has been cancelled without being filled partially, False otherwise
"""
# Get order details for actual price per unit
if trade.open_order_id:
@ -1134,25 +1137,31 @@ class FreqtradeBot:
order = action_order or self.exchange.get_order(trade.open_order_id, trade.pair)
except InvalidOrderException as exception:
logger.warning('Unable to fetch order %s: %s', trade.open_order_id, exception)
return
return False
# Try update amount (binance-fix)
try:
new_amount = self.get_real_amount(trade, order)
new_amount = self.get_real_amount(trade, order, order_amount)
if not isclose(order['amount'], new_amount, abs_tol=constants.MATH_CLOSE_PREC):
order['amount'] = new_amount
order.pop('filled', None)
# Fee was applied, so set to 0
trade.fee_open = 0
trade.recalc_open_trade_price()
except DependencyException as exception:
logger.warning("Could not update trade amount: %s", exception)
if self.exchange.check_order_canceled_empty(order):
# Trade has been cancelled on exchange
# Handling of this will happen in check_handle_timeout.
return True
trade.update(order)
# Updating wallets when order is closed
if not trade.is_open:
self.wallets.update()
return False
def get_real_amount(self, trade: Trade, order: Dict, order_amount: float = None) -> float:
"""
Get real amount for the trade

View File

@ -18,13 +18,13 @@ def _set_loggers(verbosity: int = 0) -> None:
"""
logging.getLogger('requests').setLevel(
logging.INFO if verbosity <= 1 else logging.DEBUG
logging.INFO if verbosity <= 1 else logging.DEBUG
)
logging.getLogger("urllib3").setLevel(
logging.INFO if verbosity <= 1 else logging.DEBUG
logging.INFO if verbosity <= 1 else logging.DEBUG
)
logging.getLogger('ccxt.base.exchange').setLevel(
logging.INFO if verbosity <= 2 else logging.DEBUG
logging.INFO if verbosity <= 2 else logging.DEBUG
)
logging.getLogger('telegram').setLevel(logging.INFO)

View File

@ -134,6 +134,21 @@ def round_dict(d, n):
return {k: (round(v, n) if isinstance(v, float) else v) for k, v in d.items()}
def safe_value_fallback(dict1: dict, dict2: dict, key1: str, key2: str, default_value=None):
"""
Search a value in dict1, return this if it's not None.
Fall back to dict2 - return key2 from dict2 if it's not None.
Else falls back to None.
"""
if key1 in dict1 and dict1[key1] is not None:
return dict1[key1]
else:
if key2 in dict2 and dict2[key2] is not None:
return dict2[key2]
return default_value
def plural(num: float, singular: str, plural: str = None) -> str:
return singular if (num == 1 or num == -1) else plural or singular + 's'
@ -148,3 +163,15 @@ def render_template(templatefile: str, arguments: dict = {}) -> str:
)
template = env.get_template(templatefile)
return template.render(**arguments)
def render_template_with_fallback(templatefile: str, templatefallbackfile: str,
arguments: dict = {}) -> str:
"""
Use templatefile if possible, otherwise fall back to templatefallbackfile
"""
from jinja2.exceptions import TemplateNotFound
try:
return render_template(templatefile, arguments)
except TemplateNotFound:
return render_template(templatefallbackfile, arguments)

View File

@ -149,8 +149,8 @@ class Backtesting:
# To avoid using data from future, we use buy/sell signals shifted
# from the previous candle
df_analyzed.loc[:, 'buy'] = df_analyzed['buy'].shift(1)
df_analyzed.loc[:, 'sell'] = df_analyzed['sell'].shift(1)
df_analyzed.loc[:, 'buy'] = df_analyzed.loc[:, 'buy'].shift(1)
df_analyzed.loc[:, 'sell'] = df_analyzed.loc[:, 'sell'].shift(1)
df_analyzed.drop(df_analyzed.head(1).index, inplace=True)

View File

@ -7,7 +7,6 @@ This module contains the hyperopt logic
import locale
import logging
import random
import sys
import warnings
from math import ceil
from collections import OrderedDict
@ -18,10 +17,10 @@ from typing import Any, Dict, List, Optional
import rapidjson
from colorama import Fore, Style
from colorama import init as colorama_init
from joblib import (Parallel, cpu_count, delayed, dump, load,
wrap_non_picklable_objects)
from pandas import DataFrame, json_normalize, isna
import progressbar
import tabulate
from os import path
import io
@ -43,7 +42,8 @@ with warnings.catch_warnings():
from skopt import Optimizer
from skopt.space import Dimension
progressbar.streams.wrap_stderr()
progressbar.streams.wrap_stdout()
logger = logging.getLogger(__name__)
@ -266,36 +266,17 @@ class Hyperopt:
Log results if it is better than any previous evaluation
"""
is_best = results['is_best']
if not self.print_all:
# Print '\n' after each 100th epoch to separate dots from the log messages.
# Otherwise output is messy on a terminal.
print('.', end='' if results['current_epoch'] % 100 != 0 else None) # type: ignore
sys.stdout.flush()
if self.print_all or is_best:
if not self.print_all:
# Separate the results explanation string from dots
print("\n")
self.print_result_table(self.config, results, self.total_epochs,
self.print_all, self.print_colorized,
self.hyperopt_table_header)
print(
self.get_result_table(
self.config, results, self.total_epochs,
self.print_all, self.print_colorized,
self.hyperopt_table_header
)
)
self.hyperopt_table_header = 2
@staticmethod
def print_results_explanation(results, total_epochs, highlight_best: bool,
print_colorized: bool) -> None:
"""
Log results explanation string
"""
explanation_str = Hyperopt._format_explanation_string(results, total_epochs)
# Colorize output
if print_colorized:
if results['total_profit'] > 0:
explanation_str = Fore.GREEN + explanation_str
if highlight_best and results['is_best']:
explanation_str = Style.BRIGHT + explanation_str
print(explanation_str)
@staticmethod
def _format_explanation_string(results, total_epochs) -> str:
return (("*" if results['is_initial_point'] else " ") +
@ -304,13 +285,13 @@ class Hyperopt:
f"Objective: {results['loss']:.5f}")
@staticmethod
def print_result_table(config: dict, results: list, total_epochs: int, highlight_best: bool,
print_colorized: bool, remove_header: int) -> None:
def get_result_table(config: dict, results: list, total_epochs: int, highlight_best: bool,
print_colorized: bool, remove_header: int) -> str:
"""
Log result table
"""
if not results:
return
return ''
tabulate.PRESERVE_WHITESPACE = True
@ -323,8 +304,9 @@ class Hyperopt:
trials.columns = ['Best', 'Epoch', 'Trades', 'Avg profit', 'Total profit',
'Profit', 'Avg duration', 'Objective', 'is_initial_point', 'is_best']
trials['is_profit'] = False
trials.loc[trials['is_initial_point'], 'Best'] = '*'
trials.loc[trials['is_initial_point'], 'Best'] = '* '
trials.loc[trials['is_best'], 'Best'] = 'Best'
trials.loc[trials['is_initial_point'] & trials['is_best'], 'Best'] = '* Best'
trials.loc[trials['Total profit'] > 0, 'is_profit'] = True
trials['Trades'] = trials['Trades'].astype(str)
@ -381,7 +363,7 @@ class Hyperopt:
trials.to_dict(orient='list'), tablefmt='psql',
headers='keys', stralign="right"
)
print(table)
return table
@staticmethod
def export_csv_file(config: dict, results: list, total_epochs: int, highlight_best: bool,
@ -415,6 +397,7 @@ class Hyperopt:
trials['is_profit'] = False
trials.loc[trials['is_initial_point'], 'Best'] = '*'
trials.loc[trials['is_best'], 'Best'] = 'Best'
trials.loc[trials['is_initial_point'] & trials['is_best'], 'Best'] = '* Best'
trials.loc[trials['Total profit'] > 0, 'is_profit'] = True
trials['Epoch'] = trials['Epoch'].astype(str)
trials['Trades'] = trials['Trades'].astype(str)
@ -653,48 +636,75 @@ class Hyperopt:
self.dimensions: List[Dimension] = self.hyperopt_space()
self.opt = self.get_optimizer(self.dimensions, config_jobs)
if self.print_colorized:
colorama_init(autoreset=True)
try:
with Parallel(n_jobs=config_jobs) as parallel:
jobs = parallel._effective_n_jobs()
logger.info(f'Effective number of parallel workers used: {jobs}')
EVALS = ceil(self.total_epochs / jobs)
for i in range(EVALS):
# Correct the number of epochs to be processed for the last
# iteration (should not exceed self.total_epochs in total)
n_rest = (i + 1) * jobs - self.total_epochs
current_jobs = jobs - n_rest if n_rest > 0 else jobs
asked = self.opt.ask(n_points=current_jobs)
f_val = self.run_optimizer_parallel(parallel, asked, i)
self.opt.tell(asked, [v['loss'] for v in f_val])
self.fix_optimizer_models_list()
# Define progressbar
if self.print_colorized:
widgets = [
' [Epoch ', progressbar.Counter(), ' of ', str(self.total_epochs),
' (', progressbar.Percentage(), ')] ',
progressbar.Bar(marker=progressbar.AnimatedMarker(
fill='\N{FULL BLOCK}',
fill_wrap=Fore.GREEN + '{}' + Fore.RESET,
marker_wrap=Style.BRIGHT + '{}' + Style.RESET_ALL,
)),
' [', progressbar.ETA(), ', ', progressbar.Timer(), ']',
]
else:
widgets = [
' [Epoch ', progressbar.Counter(), ' of ', str(self.total_epochs),
' (', progressbar.Percentage(), ')] ',
progressbar.Bar(marker=progressbar.AnimatedMarker(
fill='\N{FULL BLOCK}',
)),
' [', progressbar.ETA(), ', ', progressbar.Timer(), ']',
]
with progressbar.ProgressBar(
maxval=self.total_epochs, redirect_stdout=False, redirect_stderr=False,
widgets=widgets
) as pbar:
EVALS = ceil(self.total_epochs / jobs)
for i in range(EVALS):
# Correct the number of epochs to be processed for the last
# iteration (should not exceed self.total_epochs in total)
n_rest = (i + 1) * jobs - self.total_epochs
current_jobs = jobs - n_rest if n_rest > 0 else jobs
for j, val in enumerate(f_val):
# Use human-friendly indexes here (starting from 1)
current = i * jobs + j + 1
val['current_epoch'] = current
val['is_initial_point'] = current <= INITIAL_POINTS
logger.debug(f"Optimizer epoch evaluated: {val}")
asked = self.opt.ask(n_points=current_jobs)
f_val = self.run_optimizer_parallel(parallel, asked, i)
self.opt.tell(asked, [v['loss'] for v in f_val])
self.fix_optimizer_models_list()
is_best = self.is_best_loss(val, self.current_best_loss)
# This value is assigned here and not in the optimization method
# to keep proper order in the list of results. That's because
# evaluations can take different time. Here they are aligned in the
# order they will be shown to the user.
val['is_best'] = is_best
# Calculate progressbar outputs
for j, val in enumerate(f_val):
# Use human-friendly indexes here (starting from 1)
current = i * jobs + j + 1
val['current_epoch'] = current
val['is_initial_point'] = current <= INITIAL_POINTS
self.print_results(val)
logger.debug(f"Optimizer epoch evaluated: {val}")
is_best = self.is_best_loss(val, self.current_best_loss)
# This value is assigned here and not in the optimization method
# to keep proper order in the list of results. That's because
# evaluations can take different time. Here they are aligned in the
# order they will be shown to the user.
val['is_best'] = is_best
self.print_results(val)
if is_best:
self.current_best_loss = val['loss']
self.trials.append(val)
# Save results after each best epoch and every 100 epochs
if is_best or current % 100 == 0:
self.save_trials()
pbar.update(current)
if is_best:
self.current_best_loss = val['loss']
self.trials.append(val)
# Save results after each best epoch and every 100 epochs
if is_best or current % 100 == 0:
self.save_trials()
except KeyboardInterrupt:
print('User interrupted..')

View File

@ -24,13 +24,14 @@ def store_backtest_result(recordfilename: Path, all_results: Dict[str, DataFrame
for index, t in results.iterrows()]
if records:
filename = recordfilename
if len(all_results) > 1:
# Inject strategy to filename
recordfilename = Path.joinpath(
filename = Path.joinpath(
recordfilename.parent,
f'{recordfilename.stem}-{strategy}').with_suffix(recordfilename.suffix)
logger.info(f'Dumping backtest results to {recordfilename}')
file_dump_json(recordfilename, records)
logger.info(f'Dumping backtest results to {filename}')
file_dump_json(filename, records)
def generate_text_table(data: Dict[str, Dict], stake_currency: str, max_open_trades: int,

View File

@ -9,6 +9,8 @@ from abc import ABC, abstractmethod, abstractproperty
from copy import deepcopy
from typing import Any, Dict, List
from cachetools import TTLCache, cached
from freqtrade.exchange import market_is_active
logger = logging.getLogger(__name__)
@ -31,6 +33,9 @@ class IPairList(ABC):
self._config = config
self._pairlistconfig = pairlistconfig
self._pairlist_pos = pairlist_pos
self.refresh_period = self._pairlistconfig.get('refresh_period', 1800)
self._last_refresh = 0
self._log_cache = TTLCache(maxsize=1024, ttl=self.refresh_period)
@property
def name(self) -> str:
@ -40,6 +45,24 @@ class IPairList(ABC):
"""
return self.__class__.__name__
def log_on_refresh(self, logmethod, message: str) -> None:
"""
Logs message - not more often than "refresh_period" to avoid log spamming
Logs the log-message as debug as well to simplify debugging.
:param logmethod: Function that'll be called. Most likely `logger.info`.
:param message: String containing the message to be sent to the function.
:return: None.
"""
@cached(cache=self._log_cache)
def _log_on_refresh(message: str):
logmethod(message)
# Log as debug first
logger.debug(message)
# Call hidden function.
_log_on_refresh(message)
@abstractproperty
def needstickers(self) -> bool:
"""

View File

@ -39,8 +39,9 @@ class PrecisionFilter(IPairList):
stop_gap_price = self._exchange.price_to_precision(ticker["symbol"], stop_price * 0.99)
logger.debug(f"{ticker['symbol']} - {sp} : {stop_gap_price}")
if sp <= stop_gap_price:
logger.info(f"Removed {ticker['symbol']} from whitelist, "
f"because stop price {sp} would be <= stop limit {stop_gap_price}")
self.log_on_refresh(logger.info,
f"Removed {ticker['symbol']} from whitelist, "
f"because stop price {sp} would be <= stop limit {stop_gap_price}")
return False
return True

View File

@ -35,21 +35,24 @@ class PriceFilter(IPairList):
"""
Check if if one price-step (pip) is > than a certain barrier.
:param ticker: ticker dict as returned from ccxt.load_markets()
:param precision: Precision
:return: True if the pair can stay, false if it should be removed
"""
precision = self._exchange.markets[ticker['symbol']]['precision']['price']
if ticker['last'] is None:
compare = ticker['last'] + 1 / pow(10, precision)
self.log_on_refresh(logger.info,
f"Removed {ticker['symbol']} from whitelist, because "
"ticker['last'] is empty (Usually no trade in the last 24h).")
return False
compare = ticker['last'] + self._exchange.price_get_one_pip(ticker['symbol'],
ticker['last'])
changeperc = (compare - ticker['last']) / ticker['last']
if changeperc > self._low_price_ratio:
logger.info(f"Removed {ticker['symbol']} from whitelist, "
f"because 1 unit is {changeperc * 100:.3f}%")
self.log_on_refresh(logger.info, f"Removed {ticker['symbol']} from whitelist, "
f"because 1 unit is {changeperc * 100:.3f}%")
return False
return True
def filter_pairlist(self, pairlist: List[str], tickers: Dict) -> List[str]:
"""
Filters and sorts pairlist and returns the whitelist again.
Called on each bot iteration - please use internal caching if necessary

View File

@ -49,9 +49,9 @@ class SpreadFilter(IPairList):
if 'bid' in ticker and 'ask' in ticker:
spread = 1 - ticker['bid'] / ticker['ask']
if not ticker or spread > self._max_spread_ratio:
logger.info(f"Removed {ticker['symbol']} from whitelist, "
f"because spread {spread * 100:.3f}% >"
f"{self._max_spread_ratio * 100}%")
self.log_on_refresh(logger.info, f"Removed {ticker['symbol']} from whitelist, "
f"because spread {spread * 100:.3f}% >"
f"{self._max_spread_ratio * 100}%")
pairlist.remove(p)
else:
pairlist.remove(p)

View File

@ -39,7 +39,6 @@ class VolumePairList(IPairList):
if not self._validate_keys(self._sort_key):
raise OperationalException(
f'key {self._sort_key} not in {SORT_VALUES}')
self._last_refresh = 0
@property
def needstickers(self) -> bool:
@ -68,16 +67,18 @@ class VolumePairList(IPairList):
:return: new whitelist
"""
# Generate dynamic whitelist
if self._last_refresh + self.refresh_period < datetime.now().timestamp():
# Must always run if this pairlist is not the first in the list.
if (self._pairlist_pos != 0 or
(self._last_refresh + self.refresh_period < datetime.now().timestamp())):
self._last_refresh = int(datetime.now().timestamp())
return self._gen_pair_whitelist(pairlist,
tickers,
self._config['stake_currency'],
self._sort_key,
self._min_value
)
pairs = self._gen_pair_whitelist(pairlist, tickers,
self._config['stake_currency'],
self._sort_key, self._min_value)
else:
return pairlist
pairs = pairlist
self.log_on_refresh(logger.info, f"Searching {self._number_pairs} pairs: {pairs}")
return pairs
def _gen_pair_whitelist(self, pairlist: List[str], tickers: Dict,
base_currency: str, key: str, min_val: int) -> List[str]:
@ -88,7 +89,6 @@ class VolumePairList(IPairList):
:param tickers: Tickers (from exchange.get_tickers()).
:return: List of pairs
"""
if self._pairlist_pos == 0:
# If VolumePairList is the first in the list, use fresh pairlist
# Check if pair quote currency equals to the stake currency.
@ -109,6 +109,5 @@ class VolumePairList(IPairList):
pairs = self._verify_blacklist(pairs, aswarning=False)
# Limit to X number of pairs
pairs = pairs[:self._number_pairs]
logger.info(f"Searching {self._number_pairs} pairs: {pairs}")
return pairs

View File

@ -188,7 +188,7 @@ class Trade(_DECL_BASE):
fee_close = Column(Float, nullable=False, default=0.0)
open_rate = Column(Float)
open_rate_requested = Column(Float)
# open_trade_price - calcuated via _calc_open_trade_price
# open_trade_price - calculated via _calc_open_trade_price
open_trade_price = Column(Float)
close_rate = Column(Float)
close_rate_requested = Column(Float)
@ -233,6 +233,9 @@ class Trade(_DECL_BASE):
return {
'trade_id': self.id,
'pair': self.pair,
'is_open': self.is_open,
'fee_open': self.fee_open,
'fee_close': self.fee_close,
'open_date_hum': arrow.get(self.open_date).humanize(),
'open_date': self.open_date.strftime("%Y-%m-%d %H:%M:%S"),
'close_date_hum': (arrow.get(self.close_date).humanize()
@ -240,14 +243,24 @@ class Trade(_DECL_BASE):
'close_date': (self.close_date.strftime("%Y-%m-%d %H:%M:%S")
if self.close_date else None),
'open_rate': self.open_rate,
'open_rate_requested': self.open_rate_requested,
'open_trade_price': self.open_trade_price,
'close_rate': self.close_rate,
'close_rate_requested': self.close_rate_requested,
'amount': round(self.amount, 8),
'stake_amount': round(self.stake_amount, 8),
'close_profit': self.close_profit,
'sell_reason': self.sell_reason,
'stop_loss': self.stop_loss,
'stop_loss_pct': (self.stop_loss_pct * 100) if self.stop_loss_pct else None,
'initial_stop_loss': self.initial_stop_loss,
'initial_stop_loss_pct': (self.initial_stop_loss_pct * 100
if self.initial_stop_loss_pct else None),
'min_rate': self.min_rate,
'max_rate': self.max_rate,
'strategy': self.strategy,
'ticker_interval': self.ticker_interval,
'open_order_id': self.open_order_id,
}
def adjust_min_max_rates(self, current_price: float) -> None:
@ -315,7 +328,7 @@ class Trade(_DECL_BASE):
if order_type in ('market', 'limit') and order['side'] == 'buy':
# Update open rate and actual amount
self.open_rate = Decimal(order['price'])
self.amount = Decimal(order['amount'])
self.amount = Decimal(order.get('filled', order['amount']))
self.recalc_open_trade_price()
logger.info('%s_BUY has been fulfilled for %s.', order_type.upper(), self)
self.open_order_id = None

View File

@ -10,6 +10,7 @@ from freqtrade.data.btanalysis import (calculate_max_drawdown,
create_cum_profit,
extract_trades_of_period, load_trades)
from freqtrade.data.converter import trim_dataframe
from freqtrade.exchange import timeframe_to_prev_date
from freqtrade.data.history import load_data
from freqtrade.misc import pair_to_filename
from freqtrade.resolvers import StrategyResolver
@ -122,7 +123,8 @@ def add_profit(fig, row, data: pd.DataFrame, column: str, name: str) -> make_sub
return fig
def add_max_drawdown(fig, row, trades: pd.DataFrame, df_comb: pd.DataFrame) -> make_subplots:
def add_max_drawdown(fig, row, trades: pd.DataFrame, df_comb: pd.DataFrame,
timeframe: str) -> make_subplots:
"""
Add scatter points indicating max drawdown
"""
@ -132,12 +134,12 @@ def add_max_drawdown(fig, row, trades: pd.DataFrame, df_comb: pd.DataFrame) -> m
drawdown = go.Scatter(
x=[highdate, lowdate],
y=[
df_comb.loc[highdate, 'cum_profit'],
df_comb.loc[lowdate, 'cum_profit'],
df_comb.loc[timeframe_to_prev_date(timeframe, highdate), 'cum_profit'],
df_comb.loc[timeframe_to_prev_date(timeframe, lowdate), 'cum_profit'],
],
mode='markers',
name=f"Max drawdown {max_drawdown:.2f}%",
text=f"Max drawdown {max_drawdown:.2f}%",
name=f"Max drawdown {max_drawdown * 100:.2f}%",
text=f"Max drawdown {max_drawdown * 100:.2f}%",
marker=dict(
symbol='square-open',
size=9,
@ -383,6 +385,9 @@ def generate_profit_graph(pairs: str, data: Dict[str, pd.DataFrame],
# Combine close-values for all pairs, rename columns to "pair"
df_comb = combine_dataframes_with_mean(data, "close")
# Trim trades to available OHLCV data
trades = extract_trades_of_period(df_comb, trades, date_index=True)
# Add combined cumulative profit
df_comb = create_cum_profit(df_comb, trades, 'cum_profit', timeframe)
@ -405,7 +410,7 @@ def generate_profit_graph(pairs: str, data: Dict[str, pd.DataFrame],
fig.add_trace(avgclose, 1, 1)
fig = add_profit(fig, 2, df_comb, 'cum_profit', 'Profit')
fig = add_max_drawdown(fig, 2, trades, df_comb)
fig = add_max_drawdown(fig, 2, trades, df_comb, timeframe)
for pair in pairs:
profit_col = f'cum_profit_{pair}'

View File

@ -173,7 +173,8 @@ class ApiServer(RPC):
view_func=self._show_config, methods=['GET'])
self.app.add_url_rule(f'{BASE_URI}/ping', 'ping',
view_func=self._ping, methods=['GET'])
self.app.add_url_rule(f'{BASE_URI}/trades', 'trades',
view_func=self._trades, methods=['GET'])
# Combined actions and infos
self.app.add_url_rule(f'{BASE_URI}/blacklist', 'blacklist', view_func=self._blacklist,
methods=['GET', 'POST'])
@ -358,6 +359,18 @@ class ApiServer(RPC):
self._config.get('fiat_display_currency', ''))
return self.rest_dump(results)
@require_login
@rpc_catch_errors
def _trades(self):
"""
Handler for /trades.
Returns the X last trades in json format
"""
limit = int(request.args.get('limit', 0))
results = self._rpc_trade_history(limit)
return self.rest_dump(results)
@require_login
@rpc_catch_errors
def _whitelist(self):

View File

@ -226,6 +226,20 @@ class RPC:
for key, value in profit_days.items()
]
def _rpc_trade_history(self, limit: int) -> Dict:
""" Returns the X last trades """
if limit > 0:
trades = Trade.get_trades().order_by(Trade.id.desc()).limit(limit)
else:
trades = Trade.get_trades().order_by(Trade.id.desc()).all()
output = [trade.to_json() for trade in trades]
return {
"trades": output,
"trades_count": len(output)
}
def _rpc_trade_statistics(
self, stake_currency: str, fiat_display_currency: str) -> Dict[str, Any]:
""" Returns cumulative profit statistics """

View File

@ -172,7 +172,8 @@ class Telegram(RPC):
' / {profit_fiat:.3f} {fiat_currency})`').format(**msg)
elif msg['type'] == RPCMessageType.SELL_CANCEL_NOTIFICATION:
message = "*{exchange}:* Cancelling Open Sell Order for {pair}".format(**msg)
message = ("*{exchange}:* Cancelling Open Sell Order "
"for {pair}. Reason: {reason}").format(**msg)
elif msg['type'] == RPCMessageType.STATUS_NOTIFICATION:
message = '*Status:* `{status}`'.format(**msg)

View File

@ -3,21 +3,22 @@ IStrategy interface
This module defines the interface to apply for strategies
"""
import logging
import warnings
from abc import ABC, abstractmethod
from datetime import datetime, timezone
from enum import Enum
from typing import Dict, List, NamedTuple, Optional, Tuple
import warnings
import arrow
from pandas import DataFrame
from freqtrade.data.dataprovider import DataProvider
from freqtrade.exceptions import StrategyError
from freqtrade.exchange import timeframe_to_minutes
from freqtrade.persistence import Trade
from freqtrade.strategy.strategy_wrapper import strategy_safe_wrapper
from freqtrade.wallets import Wallets
logger = logging.getLogger(__name__)
@ -148,6 +149,42 @@ class IStrategy(ABC):
:return: DataFrame with sell column
"""
def check_buy_timeout(self, pair: str, trade: Trade, order: dict, **kwargs) -> bool:
"""
Check buy timeout function callback.
This method can be used to override the buy-timeout.
It is called whenever a limit buy order has been created,
and is not yet fully filled.
Configuration options in `unfilledtimeout` will be verified before this,
so ensure to set these timeouts high enough.
When not implemented by a strategy, this simply returns False.
:param pair: Pair the trade is for
:param trade: trade object.
:param order: Order dictionary as returned from CCXT.
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
:return bool: When True is returned, then the buy-order is cancelled.
"""
return False
def check_sell_timeout(self, pair: str, trade: Trade, order: dict, **kwargs) -> bool:
"""
Check sell timeout function callback.
This method can be used to override the sell-timeout.
It is called whenever a limit sell order has been created,
and is not yet fully filled.
Configuration options in `unfilledtimeout` will be verified before this,
so ensure to set these timeouts high enough.
When not implemented by a strategy, this simply returns False.
:param pair: Pair the trade is for
:param trade: trade object.
:param order: Order dictionary as returned from CCXT.
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
:return bool: When True is returned, then the sell-order is cancelled.
"""
return False
def informative_pairs(self) -> List[Tuple[str, str]]:
"""
Define additional, informative pair/interval combinations to be cached from the exchange.
@ -241,8 +278,25 @@ class IStrategy(ABC):
return dataframe
def get_signal(self, pair: str, interval: str,
dataframe: DataFrame) -> Tuple[bool, bool]:
@staticmethod
def preserve_df(dataframe: DataFrame) -> Tuple[int, float, datetime]:
""" keep some data for dataframes """
return len(dataframe), dataframe["close"].iloc[-1], dataframe["date"].iloc[-1]
@staticmethod
def assert_df(dataframe: DataFrame, df_len: int, df_close: float, df_date: datetime):
""" make sure data is unmodified """
message = ""
if df_len != len(dataframe):
message = "length"
elif df_close != dataframe["close"].iloc[-1]:
message = "last close price"
elif df_date != dataframe["date"].iloc[-1]:
message = "last date"
if message:
raise StrategyError(f"Dataframe returned from strategy has mismatching {message}.")
def get_signal(self, pair: str, interval: str, dataframe: DataFrame) -> Tuple[bool, bool]:
"""
Calculates current signal based several technical analysis indicators
:param pair: pair in format ANT/BTC
@ -254,28 +308,23 @@ class IStrategy(ABC):
logger.warning('Empty candle (OHLCV) data for pair %s', pair)
return False, False
latest_date = dataframe['date'].max()
try:
dataframe = self._analyze_ticker_internal(dataframe, {'pair': pair})
except ValueError as error:
logger.warning(
'Unable to analyze candle (OHLCV) data for pair %s: %s',
pair,
str(error)
)
return False, False
except Exception as error:
logger.exception(
'Unexpected error when analyzing candle (OHLCV) data for pair %s: %s',
pair,
str(error)
)
df_len, df_close, df_date = self.preserve_df(dataframe)
dataframe = strategy_safe_wrapper(
self._analyze_ticker_internal, message=""
)(dataframe, {'pair': pair})
self.assert_df(dataframe, df_len, df_close, df_date)
except StrategyError as error:
logger.warning(f"Unable to analyze candle (OHLCV) data for pair {pair}: {error}")
return False, False
if dataframe.empty:
logger.warning('Empty dataframe for pair %s', pair)
return False, False
latest = dataframe.iloc[-1]
latest = dataframe.loc[dataframe['date'] == latest_date].iloc[-1]
# Check if dataframe is out of date
signal_date = arrow.get(latest['date'])
@ -444,8 +493,11 @@ class IStrategy(ABC):
"""
Creates a dataframe and populates indicators for given candle (OHLCV) data
Used by optimize operations only, not during dry / live runs.
Using .copy() to get a fresh copy of the dataframe for every strategy run.
Has positive effects on memory usage for whatever reason - also when
using only one strategy.
"""
return {pair: self.advise_indicators(pair_data, {'pair': pair})
return {pair: self.advise_indicators(pair_data.copy(), {'pair': pair})
for pair, pair_data in data.items()}
def advise_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:

View File

@ -0,0 +1,35 @@
import logging
from freqtrade.exceptions import StrategyError
logger = logging.getLogger(__name__)
def strategy_safe_wrapper(f, message: str = "", default_retval=None):
"""
Wrapper around user-provided methods and functions.
Caches all exceptions and returns either the default_retval (if it's not None) or raises
a StrategyError exception, which then needs to be handled by the calling method.
"""
def wrapper(*args, **kwargs):
try:
return f(*args, **kwargs)
except ValueError as error:
logger.warning(
f"{message}"
f"Strategy caused the following exception: {error}"
f"{f}"
)
if default_retval is None:
raise StrategyError(str(error)) from error
return default_retval
except Exception as error:
logger.exception(
f"{message}"
f"Unexpected error {error} calling {f}"
)
if default_retval is None:
raise StrategyError(str(error)) from error
return default_retval
return wrapper

View File

@ -137,3 +137,4 @@ class {{ strategy }}(IStrategy):
),
'sell'] = 1
return dataframe
{{ additional_methods | indent(4) }}

View File

@ -0,0 +1,40 @@
def check_buy_timeout(self, pair: str, trade: 'Trade', order: dict, **kwargs) -> bool:
"""
Check buy timeout function callback.
This method can be used to override the buy-timeout.
It is called whenever a limit buy order has been created,
and is not yet fully filled.
Configuration options in `unfilledtimeout` will be verified before this,
so ensure to set these timeouts high enough.
For full documentation please go to https://www.freqtrade.io/en/latest/strategy-advanced/
When not implemented by a strategy, this simply returns False.
:param pair: Pair the trade is for
:param trade: trade object.
:param order: Order dictionary as returned from CCXT.
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
:return bool: When True is returned, then the buy-order is cancelled.
"""
return False
def check_sell_timeout(self, pair: str, trade: 'Trade', order: dict, **kwargs) -> bool:
"""
Check sell timeout function callback.
This method can be used to override the sell-timeout.
It is called whenever a limit sell order has been created,
and is not yet fully filled.
Configuration options in `unfilledtimeout` will be verified before this,
so ensure to set these timeouts high enough.
For full documentation please go to https://www.freqtrade.io/en/latest/strategy-advanced/
When not implemented by a strategy, this simply returns False.
:param pair: Pair the trade is for
:param trade: trade object.
:param order: Order dictionary as returned from CCXT.
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
:return bool: When True is returned, then the sell-order is cancelled.
"""
return False

View File

@ -24,6 +24,7 @@ nav:
- Plotting: plotting.md
- SQL Cheatsheet: sql_cheatsheet.md
- Advanced Post-installation Tasks: advanced-setup.md
- Advanced Strategy: strategy-advanced.md
- Advanced Hyperopt: advanced-hyperopt.md
- Sandbox Testing: sandbox-testing.md
- Deprecated Features: deprecated.md

View File

@ -1,18 +1,18 @@
# requirements without requirements installable via conda
# mainly used for Raspberry pi installs
ccxt==1.24.83
SQLAlchemy==1.3.15
python-telegram-bot==12.4.2
ccxt==1.27.1
SQLAlchemy==1.3.16
python-telegram-bot==12.6.1
arrow==0.15.5
cachetools==4.0.0
cachetools==4.1.0
requests==2.23.0
urllib3==1.25.8
urllib3==1.25.9
wrapt==1.12.1
jsonschema==3.2.0
TA-Lib==0.4.17
tabulate==0.8.7
pycoingecko==1.2.0
jinja2==2.11.1
jinja2==2.11.2
# find first, C search in arrays
py_find_1st==1.1.4
@ -24,10 +24,10 @@ python-rapidjson==0.9.1
sdnotify==0.3.2
# Api server
flask==1.1.1
flask==1.1.2
# Support for colorized terminal output
colorama==0.4.3
# Building config files interactively
questionary==1.5.1
prompt-toolkit==3.0.4
questionary==1.5.2
prompt-toolkit==3.0.5

View File

@ -3,15 +3,15 @@
-r requirements-plot.txt
-r requirements-hyperopt.txt
coveralls==1.11.1
coveralls==2.0.0
flake8==3.7.9
flake8-type-annotations==0.1.0
flake8-tidy-imports==4.0.0
flake8-tidy-imports==4.1.0
mypy==0.770
pytest==5.4.1
pytest-asyncio==0.10.0
pytest-asyncio==0.11.0
pytest-cov==2.8.1
pytest-mock==2.0.0
pytest-mock==3.1.0
pytest-random-order==1.0.4
# Convert jupyter notebooks to markdown documents

View File

@ -7,3 +7,4 @@ scikit-learn==0.22.2.post1
scikit-optimize==0.7.4
filelock==3.0.12
joblib==0.14.1
progressbar2==3.51.0

View File

@ -1,5 +1,5 @@
# Include all requirements to run the bot.
-r requirements.txt
plotly==4.5.4
plotly==4.6.0

View File

@ -1,5 +1,5 @@
# Load common requirements
-r requirements-common.txt
numpy==1.18.2
numpy==1.18.3
pandas==1.0.3

View File

@ -156,6 +156,14 @@ class FtRestClient():
"""
return self._get("show_config")
def trades(self, limit=None):
"""Return trades history.
:param limit: Limits trades to the X last trades. No limit to get all the trades.
:return: json object
"""
return self._get("trades", params={"limit": limit} if limit else 0)
def whitelist(self):
"""Show the current whitelist.

View File

@ -24,6 +24,7 @@ hyperopt = [
'scikit-optimize',
'filelock',
'joblib',
'progressbar2',
]
develop = [

View File

@ -252,7 +252,9 @@ function install() {
echo "-------------------------"
echo "Run the bot !"
echo "-------------------------"
echo "You can now use the bot by executing 'source .env/bin/activate; freqtrade trade'."
echo "You can now use the bot by executing 'source .env/bin/activate; freqtrade <subcommand>'."
echo "You can see the list of available bot subcommands by executing 'source .env/bin/activate; freqtrade --help'."
echo "You verify that freqtrade is installed successfully by running 'source .env/bin/activate; freqtrade --version'."
}
function plot() {

View File

@ -166,6 +166,52 @@ def patch_get_signal(freqtrade: FreqtradeBot, value=(True, False)) -> None:
freqtrade.exchange.refresh_latest_ohlcv = lambda p: None
def create_mock_trades(fee):
"""
Create some fake trades ...
"""
# Simulate dry_run entries
trade = Trade(
pair='ETH/BTC',
stake_amount=0.001,
amount=123.0,
fee_open=fee.return_value,
fee_close=fee.return_value,
open_rate=0.123,
exchange='bittrex',
open_order_id='dry_run_buy_12345'
)
Trade.session.add(trade)
trade = Trade(
pair='ETC/BTC',
stake_amount=0.001,
amount=123.0,
fee_open=fee.return_value,
fee_close=fee.return_value,
open_rate=0.123,
close_rate=0.128,
close_profit=0.005,
exchange='bittrex',
is_open=False,
open_order_id='dry_run_sell_12345'
)
Trade.session.add(trade)
# Simulate prod entry
trade = Trade(
pair='ETC/BTC',
stake_amount=0.001,
amount=123.0,
fee_open=fee.return_value,
fee_close=fee.return_value,
open_rate=0.123,
exchange='bittrex',
open_order_id='prod_buy_12345'
)
Trade.session.add(trade)
@pytest.fixture(autouse=True)
def patch_coingekko(mocker) -> None:
"""
@ -693,6 +739,31 @@ def shitcoinmarkets(markets):
"future": False,
"active": True
},
'ADAHALF/USDT': {
"percentage": True,
"tierBased": False,
"taker": 0.001,
"maker": 0.001,
"precision": {
"base": 8,
"quote": 8,
"amount": 2,
"price": 4
},
"limits": {
},
"id": "ADAHALFUSDT",
"symbol": "ADAHALF/USDT",
"base": "ADAHALF",
"quote": "USDT",
"baseId": "ADAHALF",
"quoteId": "USDT",
"info": {},
"type": "spot",
"spot": True,
"future": False,
"active": True
},
})
return shitmarkets
@ -712,6 +783,7 @@ def limit_buy_order():
'datetime': arrow.utcnow().isoformat(),
'price': 0.00001099,
'amount': 90.99181073,
'filled': 90.99181073,
'remaining': 0.0,
'status': 'closed'
}
@ -727,6 +799,7 @@ def market_buy_order():
'datetime': arrow.utcnow().isoformat(),
'price': 0.00004099,
'amount': 91.99181073,
'filled': 91.99181073,
'remaining': 0.0,
'status': 'closed'
}
@ -742,6 +815,7 @@ def market_sell_order():
'datetime': arrow.utcnow().isoformat(),
'price': 0.00004173,
'amount': 91.99181073,
'filled': 91.99181073,
'remaining': 0.0,
'status': 'closed'
}
@ -757,6 +831,7 @@ def limit_buy_order_old():
'datetime': str(arrow.utcnow().shift(minutes=-601).datetime),
'price': 0.00001099,
'amount': 90.99181073,
'filled': 0.0,
'remaining': 90.99181073,
'status': 'open'
}
@ -772,6 +847,7 @@ def limit_sell_order_old():
'datetime': arrow.utcnow().shift(minutes=-601).isoformat(),
'price': 0.00001099,
'amount': 90.99181073,
'filled': 0.0,
'remaining': 90.99181073,
'status': 'open'
}
@ -787,6 +863,7 @@ def limit_buy_order_old_partial():
'datetime': arrow.utcnow().shift(minutes=-601).isoformat(),
'price': 0.00001099,
'amount': 90.99181073,
'filled': 23.0,
'remaining': 67.99181073,
'status': 'open'
}
@ -810,6 +887,7 @@ def limit_sell_order():
'datetime': arrow.utcnow().isoformat(),
'price': 0.00001173,
'amount': 90.99181073,
'filled': 90.99181073,
'remaining': 0.0,
'status': 'closed'
}
@ -1190,6 +1268,29 @@ def tickers():
"quoteVolume": 323652.075405,
"info": {}
},
# Example of leveraged pair with incomplete info
"ADAHALF/USDT": {
"symbol": "ADAHALF/USDT",
"timestamp": 1580469388244,
"datetime": "2020-01-31T11:16:28.244Z",
"high": None,
"low": None,
"bid": 0.7305,
"bidVolume": None,
"ask": 0.7342,
"askVolume": None,
"vwap": None,
"open": None,
"close": None,
"last": None,
"previousClose": None,
"change": None,
"percentage": 2.628,
"average": None,
"baseVolume": 0.0,
"quoteVolume": 0.0,
"info": {}
},
})

View File

@ -15,7 +15,7 @@ from freqtrade.data.btanalysis import (BT_DATA_COLUMNS,
load_backtest_data, load_trades,
load_trades_from_db)
from freqtrade.data.history import load_data, load_pair_history
from tests.test_persistence import create_mock_trades
from tests.conftest import create_mock_trades
def test_load_backtest_data(testdatadir):
@ -191,3 +191,28 @@ def test_calculate_max_drawdown(testdatadir):
assert low == Timestamp('2018-01-30 04:45:00', tz='UTC')
with pytest.raises(ValueError, match='Trade dataframe empty.'):
drawdown, h, low = calculate_max_drawdown(DataFrame())
def test_calculate_max_drawdown2():
values = [0.011580, 0.010048, 0.011340, 0.012161, 0.010416, 0.010009, 0.020024,
-0.024662, -0.022350, 0.020496, -0.029859, -0.030511, 0.010041, 0.010872,
-0.025782, 0.010400, 0.012374, 0.012467, 0.114741, 0.010303, 0.010088,
-0.033961, 0.010680, 0.010886, -0.029274, 0.011178, 0.010693, 0.010711]
dates = [Arrow(2020, 1, 1).shift(days=i) for i in range(len(values))]
df = DataFrame(zip(values, dates), columns=['profit', 'open_time'])
# sort by profit and reset index
df = df.sort_values('profit').reset_index(drop=True)
df1 = df.copy()
drawdown, h, low = calculate_max_drawdown(df, date_col='open_time', value_col='profit')
# Ensure df has not been altered.
assert df.equals(df1)
assert isinstance(drawdown, float)
# High must be before low
assert h < low
assert drawdown == 0.091755
df = DataFrame(zip(values[:5], dates[:5]), columns=['profit', 'open_time'])
with pytest.raises(ValueError, match='No losing trade, therefore no drawdown.'):
calculate_max_drawdown(df, date_col='open_time', value_col='profit')

View File

@ -253,6 +253,32 @@ def test_price_to_precision(default_conf, mocker, price, precision_mode, precisi
assert pytest.approx(exchange.price_to_precision(pair, price)) == expected
@pytest.mark.parametrize("price,precision_mode,precision,expected", [
(2.34559, 2, 4, 0.0001),
(2.34559, 2, 5, 0.00001),
(2.34559, 2, 3, 0.001),
(2.9999, 2, 3, 0.001),
(200.0511, 2, 3, 0.001),
# Tests for Tick_size
(2.34559, 4, 0.0001, 0.0001),
(2.34559, 4, 0.00001, 0.00001),
(2.34559, 4, 0.0025, 0.0025),
(2.9909, 4, 0.0025, 0.0025),
(234.43, 4, 0.5, 0.5),
(234.43, 4, 0.0025, 0.0025),
(234.43, 4, 0.00013, 0.00013),
])
def test_price_get_one_pip(default_conf, mocker, price, precision_mode, precision, expected):
markets = PropertyMock(return_value={'ETH/BTC': {'precision': {'price': precision}}})
exchange = get_patched_exchange(mocker, default_conf, id="binance")
mocker.patch('freqtrade.exchange.Exchange.markets', markets)
mocker.patch('freqtrade.exchange.Exchange.precisionMode',
PropertyMock(return_value=precision_mode))
pair = 'ETH/BTC'
assert pytest.approx(exchange.price_get_one_pip(pair, price)) == expected
def test_set_sandbox(default_conf, mocker):
"""
Test working scenario
@ -1702,7 +1728,69 @@ def test_get_historic_trades_notsupported(default_conf, mocker, caplog, exchange
def test_cancel_order_dry_run(default_conf, mocker, exchange_name):
default_conf['dry_run'] = True
exchange = get_patched_exchange(mocker, default_conf, id=exchange_name)
assert exchange.cancel_order(order_id='123', pair='TKN/BTC') is None
assert exchange.cancel_order(order_id='123', pair='TKN/BTC') == {}
@pytest.mark.parametrize("exchange_name", EXCHANGES)
@pytest.mark.parametrize("order,result", [
({'status': 'closed', 'filled': 10}, False),
({'status': 'closed', 'filled': 0.0}, True),
({'status': 'canceled', 'filled': 0.0}, True),
({'status': 'canceled', 'filled': 10.0}, False),
({'status': 'unknown', 'filled': 10.0}, False),
({'result': 'testest123'}, False),
])
def test_check_order_canceled_empty(mocker, default_conf, exchange_name, order, result):
exchange = get_patched_exchange(mocker, default_conf, id=exchange_name)
assert exchange.check_order_canceled_empty(order) == result
@pytest.mark.parametrize("exchange_name", EXCHANGES)
@pytest.mark.parametrize("order,result", [
({'status': 'closed', 'amount': 10, 'fee': {}}, True),
({'status': 'closed', 'amount': 0.0, 'fee': {}}, True),
({'status': 'canceled', 'amount': 0.0, 'fee': {}}, True),
({'status': 'canceled', 'amount': 10.0}, False),
({'amount': 10.0, 'fee': {}}, False),
({'result': 'testest123'}, False),
('hello_world', False),
])
def test_is_cancel_order_result_suitable(mocker, default_conf, exchange_name, order, result):
exchange = get_patched_exchange(mocker, default_conf, id=exchange_name)
assert exchange.is_cancel_order_result_suitable(order) == result
@pytest.mark.parametrize("exchange_name", EXCHANGES)
@pytest.mark.parametrize("corder,call_corder,call_forder", [
({'status': 'closed', 'amount': 10, 'fee': {}}, 1, 0),
({'amount': 10, 'fee': {}}, 1, 1),
])
def test_cancel_order_with_result(default_conf, mocker, exchange_name, corder,
call_corder, call_forder):
default_conf['dry_run'] = False
api_mock = MagicMock()
api_mock.cancel_order = MagicMock(return_value=corder)
api_mock.fetch_order = MagicMock(return_value={})
exchange = get_patched_exchange(mocker, default_conf, api_mock, id=exchange_name)
res = exchange.cancel_order_with_result('1234', 'ETH/BTC', 1234)
assert isinstance(res, dict)
assert api_mock.cancel_order.call_count == call_corder
assert api_mock.fetch_order.call_count == call_forder
@pytest.mark.parametrize("exchange_name", EXCHANGES)
def test_cancel_order_with_result_error(default_conf, mocker, exchange_name, caplog):
default_conf['dry_run'] = False
api_mock = MagicMock()
api_mock.cancel_order = MagicMock(side_effect=ccxt.InvalidOrder("Did not find order"))
api_mock.fetch_order = MagicMock(side_effect=ccxt.InvalidOrder("Did not find order"))
exchange = get_patched_exchange(mocker, default_conf, api_mock, id=exchange_name)
res = exchange.cancel_order_with_result('1234', 'ETH/BTC', 1541)
assert isinstance(res, dict)
assert log_has("Could not cancel order 1234.", caplog)
assert log_has("Could not fetch cancelled order 1234.", caplog)
assert res['amount'] == 1541
# Ensure that if not dry_run, we should call API

View File

@ -160,10 +160,14 @@ def test_backtest_record(default_conf, fee, mocker):
# reset test to test with strategy name
names = []
records = []
results['Strat'] = pd.DataFrame()
results['Strat'] = results['DefStrat']
results['Strat2'] = results['DefStrat']
store_backtest_result(Path("backtest-result.json"), results)
# Assert file_dump_json was only called once
assert names == [Path('backtest-result-DefStrat.json')]
assert names == [
Path('backtest-result-DefStrat.json'),
Path('backtest-result-Strat.json'),
Path('backtest-result-Strat2.json'),
]
records = records[0]
# Ensure records are of correct type
assert len(records) == 4

View File

@ -46,6 +46,28 @@ def static_pl_conf(whitelist_conf):
return whitelist_conf
def test_log_on_refresh(mocker, static_pl_conf, markets, tickers):
mocker.patch.multiple('freqtrade.exchange.Exchange',
markets=PropertyMock(return_value=markets),
exchange_has=MagicMock(return_value=True),
get_tickers=tickers
)
freqtrade = get_patched_freqtradebot(mocker, static_pl_conf)
logmock = MagicMock()
# Assign starting whitelist
pl = freqtrade.pairlists._pairlists[0]
pl.log_on_refresh(logmock, 'Hello world')
assert logmock.call_count == 1
pl.log_on_refresh(logmock, 'Hello world')
assert logmock.call_count == 1
assert pl._log_cache.currsize == 1
assert ('Hello world',) in pl._log_cache._Cache__data
pl.log_on_refresh(logmock, 'Hello world2')
assert logmock.call_count == 2
assert pl._log_cache.currsize == 2
def test_load_pairlist_noexist(mocker, markets, default_conf):
bot = get_patched_freqtradebot(mocker, default_conf)
mocker.patch('freqtrade.exchange.Exchange.markets', PropertyMock(return_value=markets))
@ -141,7 +163,7 @@ def test_VolumePairList_refresh_empty(mocker, markets_empty, whitelist_conf):
([{"method": "VolumePairList", "number_assets": 5, "sort_key": "bidVolume"}],
"BTC", ['HOT/BTC', 'FUEL/BTC', 'XRP/BTC', 'LTC/BTC', 'TKN/BTC']),
([{"method": "VolumePairList", "number_assets": 5, "sort_key": "quoteVolume"}],
"USDT", ['ETH/USDT', 'NANO/USDT']),
"USDT", ['ETH/USDT', 'NANO/USDT', 'ADAHALF/USDT']),
# No pair for ETH ...
([{"method": "VolumePairList", "number_assets": 5, "sort_key": "quoteVolume"}],
"ETH", []),
@ -155,6 +177,10 @@ def test_VolumePairList_refresh_empty(mocker, markets_empty, whitelist_conf):
([{"method": "VolumePairList", "number_assets": 5, "sort_key": "quoteVolume"},
{"method": "PriceFilter", "low_price_ratio": 0.03}],
"BTC", ['ETH/BTC', 'TKN/BTC', 'LTC/BTC', 'XRP/BTC']),
# PriceFilter and VolumePairList
([{"method": "VolumePairList", "number_assets": 5, "sort_key": "quoteVolume"},
{"method": "PriceFilter", "low_price_ratio": 0.03}],
"USDT", ['ETH/USDT', 'NANO/USDT']),
# Hot is removed by precision_filter, Fuel by low_price_filter.
([{"method": "VolumePairList", "number_assets": 6, "sort_key": "quoteVolume"},
{"method": "PrecisionFilter"},
@ -199,7 +225,9 @@ def test_VolumePairList_whitelist_gen(mocker, whitelist_conf, shitcoinmarkets, t
assert log_has_re(r'^Removed .* from whitelist, because stop price .* '
r'would be <= stop limit.*', caplog)
if pairlist['method'] == 'PriceFilter':
assert log_has_re(r'^Removed .* from whitelist, because 1 unit is .*%$', caplog)
assert (log_has_re(r'^Removed .* from whitelist, because 1 unit is .*%$', caplog) or
log_has_re(r"^Removed .* from whitelist, because ticker\['last'\] is empty.*",
caplog))
def test_gen_pair_whitelist_not_supported(mocker, default_conf, tickers) -> None:

View File

@ -13,7 +13,7 @@ from freqtrade.persistence import Trade
from freqtrade.rpc import RPC, RPCException
from freqtrade.rpc.fiat_convert import CryptoToFiatConverter
from freqtrade.state import State
from tests.conftest import get_patched_freqtradebot, patch_get_signal
from tests.conftest import get_patched_freqtradebot, patch_get_signal, create_mock_trades
# Functions for recurrent object patching
@ -49,6 +49,18 @@ def test_rpc_trade_status(default_conf, ticker, fee, mocker) -> None:
'base_currency': 'BTC',
'open_date': ANY,
'open_date_hum': ANY,
'is_open': ANY,
'fee_open': ANY,
'fee_close': ANY,
'open_rate_requested': ANY,
'open_trade_price': ANY,
'close_rate_requested': ANY,
'sell_reason': ANY,
'min_rate': ANY,
'max_rate': ANY,
'strategy': ANY,
'ticker_interval': ANY,
'open_order_id': ANY,
'close_date': None,
'close_date_hum': None,
'open_rate': 1.098e-05,
@ -76,6 +88,18 @@ def test_rpc_trade_status(default_conf, ticker, fee, mocker) -> None:
'base_currency': 'BTC',
'open_date': ANY,
'open_date_hum': ANY,
'is_open': ANY,
'fee_open': ANY,
'fee_close': ANY,
'open_rate_requested': ANY,
'open_trade_price': ANY,
'close_rate_requested': ANY,
'sell_reason': ANY,
'min_rate': ANY,
'max_rate': ANY,
'strategy': ANY,
'ticker_interval': ANY,
'open_order_id': ANY,
'close_date': None,
'close_date_hum': None,
'open_rate': 1.098e-05,
@ -187,6 +211,32 @@ def test_rpc_daily_profit(default_conf, update, ticker, fee,
rpc._rpc_daily_profit(0, stake_currency, fiat_display_currency)
def test_rpc_trade_history(mocker, default_conf, markets, fee):
mocker.patch('freqtrade.rpc.telegram.Telegram', MagicMock())
mocker.patch.multiple(
'freqtrade.exchange.Exchange',
markets=PropertyMock(return_value=markets)
)
freqtradebot = get_patched_freqtradebot(mocker, default_conf)
create_mock_trades(fee)
rpc = RPC(freqtradebot)
rpc._fiat_converter = CryptoToFiatConverter()
trades = rpc._rpc_trade_history(2)
assert len(trades['trades']) == 2
assert trades['trades_count'] == 2
assert isinstance(trades['trades'][0], dict)
assert isinstance(trades['trades'][1], dict)
trades = rpc._rpc_trade_history(0)
assert len(trades['trades']) == 3
assert trades['trades_count'] == 3
# The first trade is for ETH ... sorting is descending
assert trades['trades'][-1]['pair'] == 'ETH/BTC'
assert trades['trades'][0]['pair'] == 'ETC/BTC'
assert trades['trades'][1]['pair'] == 'ETC/BTC'
def test_rpc_trade_statistics(default_conf, ticker, ticker_sell_up, fee,
limit_buy_order, limit_sell_order, mocker) -> None:
mocker.patch.multiple(

View File

@ -13,7 +13,7 @@ from freqtrade.__init__ import __version__
from freqtrade.persistence import Trade
from freqtrade.rpc.api_server import BASE_URI, ApiServer
from freqtrade.state import State
from tests.conftest import get_patched_freqtradebot, log_has, patch_get_signal
from tests.conftest import get_patched_freqtradebot, log_has, patch_get_signal, create_mock_trades
_TEST_USER = "FreqTrader"
_TEST_PASS = "SuperSecurePassword1!"
@ -302,6 +302,30 @@ def test_api_daily(botclient, mocker, ticker, fee, markets):
assert rc.json[0][0] == str(datetime.utcnow().date())
def test_api_trades(botclient, mocker, ticker, fee, markets):
ftbot, client = botclient
patch_get_signal(ftbot, (True, False))
mocker.patch.multiple(
'freqtrade.exchange.Exchange',
markets=PropertyMock(return_value=markets)
)
rc = client_get(client, f"{BASE_URI}/trades")
assert_response(rc)
assert len(rc.json) == 2
assert rc.json['trades_count'] == 0
create_mock_trades(fee)
rc = client_get(client, f"{BASE_URI}/trades")
assert_response(rc)
assert len(rc.json['trades']) == 3
assert rc.json['trades_count'] == 3
rc = client_get(client, f"{BASE_URI}/trades?limit=2")
assert_response(rc)
assert len(rc.json['trades']) == 2
assert rc.json['trades_count'] == 2
def test_api_edge_disabled(botclient, mocker, ticker, fee, markets):
ftbot, client = botclient
patch_get_signal(ftbot, (True, False))
@ -444,7 +468,21 @@ def test_api_status(botclient, mocker, ticker, fee, markets):
'stake_amount': 0.001,
'stop_loss': 0.0,
'stop_loss_pct': None,
'trade_id': 1}]
'trade_id': 1,
'close_rate_requested': None,
'current_rate': 1.099e-05,
'fee_close': 0.0025,
'fee_open': 0.0025,
'open_date': ANY,
'is_open': True,
'max_rate': 0.0,
'min_rate': None,
'open_order_id': ANY,
'open_rate_requested': 1.098e-05,
'open_trade_price': 0.0010025,
'sell_reason': None,
'strategy': 'DefaultStrategy',
'ticker_interval': 5}]
def test_api_version(botclient):
@ -533,7 +571,21 @@ def test_api_forcebuy(botclient, mocker, fee):
'stake_amount': 1,
'stop_loss': None,
'stop_loss_pct': None,
'trade_id': None}
'trade_id': None,
'close_profit': None,
'close_rate_requested': None,
'fee_close': 0.0025,
'fee_open': 0.0025,
'is_open': False,
'max_rate': None,
'min_rate': None,
'open_order_id': '123456',
'open_rate_requested': None,
'open_trade_price': 0.2460546025,
'sell_reason': None,
'strategy': None,
'ticker_interval': None
}
def test_api_forcesell(botclient, mocker, ticker, fee, markets):

View File

@ -1316,18 +1316,20 @@ def test_send_msg_sell_cancel_notification(default_conf, mocker) -> None:
'type': RPCMessageType.SELL_CANCEL_NOTIFICATION,
'exchange': 'Binance',
'pair': 'KEY/ETH',
'reason': 'Cancelled on exchange'
})
assert msg_mock.call_args[0][0] \
== ('*Binance:* Cancelling Open Sell Order for KEY/ETH')
== ('*Binance:* Cancelling Open Sell Order for KEY/ETH. Reason: Cancelled on exchange')
msg_mock.reset_mock()
telegram.send_msg({
'type': RPCMessageType.SELL_CANCEL_NOTIFICATION,
'exchange': 'Binance',
'pair': 'KEY/ETH',
'reason': 'timeout'
})
assert msg_mock.call_args[0][0] \
== ('*Binance:* Cancelling Open Sell Order for KEY/ETH')
== ('*Binance:* Cancelling Open Sell Order for KEY/ETH. Reason: timeout')
# Reset singleton function to avoid random breaks
telegram._fiat_converter.convert_amount = old_convamount

View File

@ -4,46 +4,53 @@ import logging
from unittest.mock import MagicMock
import arrow
import pytest
from pandas import DataFrame
from freqtrade.configuration import TimeRange
from freqtrade.data.history import load_data
from freqtrade.exceptions import StrategyError
from freqtrade.persistence import Trade
from freqtrade.resolvers import StrategyResolver
from freqtrade.strategy.strategy_wrapper import strategy_safe_wrapper
from tests.conftest import get_patched_exchange, log_has, log_has_re
from .strats.default_strategy import DefaultStrategy
from tests.conftest import get_patched_exchange, log_has
# Avoid to reinit the same object again and again
_STRATEGY = DefaultStrategy(config={})
def test_returns_latest_buy_signal(mocker, default_conf, ohlcv_history):
mocker.patch.object(
_STRATEGY, '_analyze_ticker_internal',
return_value=DataFrame([{'buy': 1, 'sell': 0, 'date': arrow.utcnow()}])
)
assert _STRATEGY.get_signal('ETH/BTC', '5m', ohlcv_history) == (True, False)
def test_returns_latest_signal(mocker, default_conf, ohlcv_history):
ohlcv_history.loc[1, 'date'] = arrow.utcnow()
# Take a copy to correctly modify the call
mocked_history = ohlcv_history.copy()
mocked_history['sell'] = 0
mocked_history['buy'] = 0
mocked_history.loc[1, 'sell'] = 1
mocker.patch.object(
_STRATEGY, '_analyze_ticker_internal',
return_value=DataFrame([{'buy': 0, 'sell': 1, 'date': arrow.utcnow()}])
)
assert _STRATEGY.get_signal('ETH/BTC', '5m', ohlcv_history) == (False, True)
def test_returns_latest_sell_signal(mocker, default_conf, ohlcv_history):
mocker.patch.object(
_STRATEGY, '_analyze_ticker_internal',
return_value=DataFrame([{'sell': 1, 'buy': 0, 'date': arrow.utcnow()}])
return_value=mocked_history
)
assert _STRATEGY.get_signal('ETH/BTC', '5m', ohlcv_history) == (False, True)
mocked_history.loc[1, 'sell'] = 0
mocked_history.loc[1, 'buy'] = 1
mocker.patch.object(
_STRATEGY, '_analyze_ticker_internal',
return_value=DataFrame([{'sell': 0, 'buy': 1, 'date': arrow.utcnow()}])
return_value=mocked_history
)
assert _STRATEGY.get_signal('ETH/BTC', '5m', ohlcv_history) == (True, False)
mocked_history.loc[1, 'sell'] = 0
mocked_history.loc[1, 'buy'] = 0
mocker.patch.object(
_STRATEGY, '_analyze_ticker_internal',
return_value=mocked_history
)
assert _STRATEGY.get_signal('ETH/BTC', '5m', ohlcv_history) == (False, False)
def test_get_signal_empty(default_conf, mocker, caplog):
@ -65,7 +72,7 @@ def test_get_signal_exception_valueerror(default_conf, mocker, caplog, ohlcv_his
)
assert (False, False) == _STRATEGY.get_signal('foo', default_conf['ticker_interval'],
ohlcv_history)
assert log_has('Unable to analyze candle (OHLCV) data for pair foo: xyz', caplog)
assert log_has_re(r'Strategy caused the following exception: xyz.*', caplog)
def test_get_signal_empty_dataframe(default_conf, mocker, caplog, ohlcv_history):
@ -74,26 +81,74 @@ def test_get_signal_empty_dataframe(default_conf, mocker, caplog, ohlcv_history)
_STRATEGY, '_analyze_ticker_internal',
return_value=DataFrame([])
)
mocker.patch.object(_STRATEGY, 'assert_df')
assert (False, False) == _STRATEGY.get_signal('xyz', default_conf['ticker_interval'],
ohlcv_history)
assert log_has('Empty dataframe for pair xyz', caplog)
def test_get_signal_old_dataframe(default_conf, mocker, caplog, ohlcv_history):
caplog.set_level(logging.INFO)
# default_conf defines a 5m interval. we check interval * 2 + 5m
# this is necessary as the last candle is removed (partial candles) by default
oldtime = arrow.utcnow().shift(minutes=-16)
ticks = DataFrame([{'buy': 1, 'date': oldtime}])
ohlcv_history.loc[1, 'date'] = arrow.utcnow().shift(minutes=-16)
# Take a copy to correctly modify the call
mocked_history = ohlcv_history.copy()
mocked_history['sell'] = 0
mocked_history['buy'] = 0
mocked_history.loc[1, 'buy'] = 1
caplog.set_level(logging.INFO)
mocker.patch.object(
_STRATEGY, '_analyze_ticker_internal',
return_value=DataFrame(ticks)
return_value=mocked_history
)
mocker.patch.object(_STRATEGY, 'assert_df')
assert (False, False) == _STRATEGY.get_signal('xyz', default_conf['ticker_interval'],
ohlcv_history)
assert log_has('Outdated history for pair xyz. Last tick is 16 minutes old', caplog)
def test_assert_df_raise(default_conf, mocker, caplog, ohlcv_history):
# default_conf defines a 5m interval. we check interval * 2 + 5m
# this is necessary as the last candle is removed (partial candles) by default
ohlcv_history.loc[1, 'date'] = arrow.utcnow().shift(minutes=-16)
# Take a copy to correctly modify the call
mocked_history = ohlcv_history.copy()
mocked_history['sell'] = 0
mocked_history['buy'] = 0
mocked_history.loc[1, 'buy'] = 1
caplog.set_level(logging.INFO)
mocker.patch.object(
_STRATEGY, 'assert_df',
side_effect=StrategyError('Dataframe returned...')
)
assert (False, False) == _STRATEGY.get_signal('xyz', default_conf['ticker_interval'],
ohlcv_history)
assert log_has('Unable to analyze candle (OHLCV) data for pair xyz: Dataframe returned...',
caplog)
def test_assert_df(default_conf, mocker, ohlcv_history):
# Ensure it's running when passed correctly
_STRATEGY.assert_df(ohlcv_history, len(ohlcv_history),
ohlcv_history.loc[1, 'close'], ohlcv_history.loc[1, 'date'])
with pytest.raises(StrategyError, match=r"Dataframe returned from strategy.*length\."):
_STRATEGY.assert_df(ohlcv_history, len(ohlcv_history) + 1,
ohlcv_history.loc[1, 'close'], ohlcv_history.loc[1, 'date'])
with pytest.raises(StrategyError,
match=r"Dataframe returned from strategy.*last close price\."):
_STRATEGY.assert_df(ohlcv_history, len(ohlcv_history),
ohlcv_history.loc[1, 'close'] + 0.01, ohlcv_history.loc[1, 'date'])
with pytest.raises(StrategyError,
match=r"Dataframe returned from strategy.*last date\."):
_STRATEGY.assert_df(ohlcv_history, len(ohlcv_history),
ohlcv_history.loc[1, 'close'], ohlcv_history.loc[0, 'date'])
def test_get_signal_handles_exceptions(mocker, default_conf):
exchange = get_patched_exchange(mocker, default_conf)
mocker.patch.object(
@ -114,6 +169,19 @@ def test_ohlcvdata_to_dataframe(default_conf, testdatadir) -> None:
assert len(processed['UNITTEST/BTC']) == 102 # partial candle was removed
def test_ohlcvdata_to_dataframe_copy(mocker, default_conf, testdatadir) -> None:
default_conf.update({'strategy': 'DefaultStrategy'})
strategy = StrategyResolver.load_strategy(default_conf)
aimock = mocker.patch('freqtrade.strategy.interface.IStrategy.advise_indicators')
timerange = TimeRange.parse_timerange('1510694220-1510700340')
data = load_data(testdatadir, '1m', ['UNITTEST/BTC'], timerange=timerange,
fill_up_missing=True)
strategy.ohlcvdata_to_dataframe(data)
assert aimock.call_count == 1
# Ensure that a copy of the dataframe is passed to advice_indicators
assert aimock.call_args_list[0][0][0] is not data
def test_min_roi_reached(default_conf, fee) -> None:
# Use list to confirm sequence does not matter
@ -322,3 +390,38 @@ def test_is_pair_locked(default_conf):
pair = 'ETH/BTC'
strategy.unlock_pair(pair)
assert not strategy.is_pair_locked(pair)
@pytest.mark.parametrize('error', [
ValueError, KeyError, Exception,
])
def test_strategy_safe_wrapper_error(caplog, error):
def failing_method():
raise error('This is an error.')
def working_method(argumentpassedin):
return argumentpassedin
with pytest.raises(StrategyError, match=r'This is an error.'):
strategy_safe_wrapper(failing_method, message='DeadBeef')()
assert log_has_re(r'DeadBeef.*', caplog)
ret = strategy_safe_wrapper(failing_method, message='DeadBeef', default_retval=True)()
assert isinstance(ret, bool)
assert ret
@pytest.mark.parametrize('value', [
1, 22, 55, True, False, {'a': 1, 'b': '112'},
[1, 2, 3, 4], (4, 2, 3, 6)
])
def test_strategy_safe_wrapper(value):
def working_method(argumentpassedin):
return argumentpassedin
ret = strategy_safe_wrapper(working_method, message='DeadBeef')(value)
assert type(ret) == type(value)
assert ret == value

View File

@ -25,7 +25,7 @@ def test_create_userdata_dir(mocker, default_conf, caplog) -> None:
md = mocker.patch.object(Path, 'mkdir', MagicMock())
x = create_userdata_dir('/tmp/bar', create_dir=True)
assert md.call_count == 8
assert md.call_count == 9
assert md.call_args[1]['parents'] is False
assert log_has(f'Created user-data directory: {Path("/tmp/bar")}', caplog)
assert isinstance(x, Path)

View File

@ -1592,13 +1592,13 @@ def test_exit_positions_exception(mocker, default_conf, limit_buy_order, caplog)
mocker.patch('freqtrade.exchange.Exchange.get_order', return_value=limit_buy_order)
trade = MagicMock()
trade.open_order_id = '123'
trade.open_order_id = None
trade.open_fee = 0.001
trades = [trade]
# Test raise of DependencyException exception
mocker.patch(
'freqtrade.freqtradebot.FreqtradeBot.update_trade_state',
'freqtrade.freqtradebot.FreqtradeBot.handle_trade',
side_effect=DependencyException()
)
n = freqtrade.exit_positions(trades)
@ -1939,8 +1939,10 @@ def test_close_trade(default_conf, ticker, limit_buy_order, limit_sell_order,
freqtrade.handle_trade(trade)
def test_check_handle_timedout_buy(default_conf, ticker, limit_buy_order_old, open_trade,
fee, mocker) -> None:
def test_check_handle_timedout_buy_usercustom(default_conf, ticker, limit_buy_order_old, open_trade,
fee, mocker) -> None:
default_conf["unfilledtimeout"] = {"buy": 1400, "sell": 30}
rpc_mock = patch_RPCManager(mocker)
cancel_order_mock = MagicMock(return_value=limit_buy_order_old)
patch_exchange(mocker)
@ -1955,6 +1957,52 @@ def test_check_handle_timedout_buy(default_conf, ticker, limit_buy_order_old, op
Trade.session.add(open_trade)
# Return false - trade remains open
freqtrade.strategy.check_buy_timeout = MagicMock(return_value=False)
freqtrade.check_handle_timedout()
assert cancel_order_mock.call_count == 0
trades = Trade.query.filter(Trade.open_order_id.is_(open_trade.open_order_id)).all()
nb_trades = len(trades)
assert nb_trades == 1
assert freqtrade.strategy.check_buy_timeout.call_count == 1
# Raise Keyerror ... (no impact on trade)
freqtrade.strategy.check_buy_timeout = MagicMock(side_effect=KeyError)
freqtrade.check_handle_timedout()
assert cancel_order_mock.call_count == 0
trades = Trade.query.filter(Trade.open_order_id.is_(open_trade.open_order_id)).all()
nb_trades = len(trades)
assert nb_trades == 1
assert freqtrade.strategy.check_buy_timeout.call_count == 1
freqtrade.strategy.check_buy_timeout = MagicMock(return_value=True)
# Trade should be closed since the function returns true
freqtrade.check_handle_timedout()
assert cancel_order_mock.call_count == 1
assert rpc_mock.call_count == 1
trades = Trade.query.filter(Trade.open_order_id.is_(open_trade.open_order_id)).all()
nb_trades = len(trades)
assert nb_trades == 0
assert freqtrade.strategy.check_buy_timeout.call_count == 1
def test_check_handle_timedout_buy(default_conf, ticker, limit_buy_order_old, open_trade,
fee, mocker) -> None:
rpc_mock = patch_RPCManager(mocker)
cancel_order_mock = MagicMock(return_value=limit_buy_order_old)
patch_exchange(mocker)
mocker.patch.multiple(
'freqtrade.exchange.Exchange',
fetch_ticker=ticker,
get_order=MagicMock(return_value=limit_buy_order_old),
cancel_order_with_result=cancel_order_mock,
get_fee=fee
)
freqtrade = FreqtradeBot(default_conf)
Trade.session.add(open_trade)
freqtrade.strategy.check_buy_timeout = MagicMock(return_value=False)
# check it does cancel buy orders over the time limit
freqtrade.check_handle_timedout()
assert cancel_order_mock.call_count == 1
@ -1962,6 +2010,8 @@ def test_check_handle_timedout_buy(default_conf, ticker, limit_buy_order_old, op
trades = Trade.query.filter(Trade.open_order_id.is_(open_trade.open_order_id)).all()
nb_trades = len(trades)
assert nb_trades == 0
# Custom user buy-timeout is never called
assert freqtrade.strategy.check_buy_timeout.call_count == 0
def test_check_handle_cancelled_buy(default_conf, ticker, limit_buy_order_old, open_trade,
@ -1970,7 +2020,7 @@ def test_check_handle_cancelled_buy(default_conf, ticker, limit_buy_order_old, o
rpc_mock = patch_RPCManager(mocker)
cancel_order_mock = MagicMock()
patch_exchange(mocker)
limit_buy_order_old.update({"status": "canceled"})
limit_buy_order_old.update({"status": "canceled", 'filled': 0.0})
mocker.patch.multiple(
'freqtrade.exchange.Exchange',
fetch_ticker=ticker,
@ -2018,6 +2068,51 @@ def test_check_handle_timedout_buy_exception(default_conf, ticker, limit_buy_ord
assert nb_trades == 1
def test_check_handle_timedout_sell_usercustom(default_conf, ticker, limit_sell_order_old, mocker,
open_trade) -> None:
default_conf["unfilledtimeout"] = {"buy": 1440, "sell": 1440}
rpc_mock = patch_RPCManager(mocker)
cancel_order_mock = MagicMock()
patch_exchange(mocker)
mocker.patch.multiple(
'freqtrade.exchange.Exchange',
fetch_ticker=ticker,
get_order=MagicMock(return_value=limit_sell_order_old),
cancel_order=cancel_order_mock
)
freqtrade = FreqtradeBot(default_conf)
open_trade.open_date = arrow.utcnow().shift(hours=-5).datetime
open_trade.close_date = arrow.utcnow().shift(minutes=-601).datetime
open_trade.is_open = False
Trade.session.add(open_trade)
freqtrade.strategy.check_sell_timeout = MagicMock(return_value=False)
# Return false - No impact
freqtrade.check_handle_timedout()
assert cancel_order_mock.call_count == 0
assert rpc_mock.call_count == 0
assert open_trade.is_open is False
assert freqtrade.strategy.check_sell_timeout.call_count == 1
freqtrade.strategy.check_sell_timeout = MagicMock(side_effect=KeyError)
# Return Error - No impact
freqtrade.check_handle_timedout()
assert cancel_order_mock.call_count == 0
assert rpc_mock.call_count == 0
assert open_trade.is_open is False
assert freqtrade.strategy.check_sell_timeout.call_count == 1
# Return True - sells!
freqtrade.strategy.check_sell_timeout = MagicMock(return_value=True)
freqtrade.check_handle_timedout()
assert cancel_order_mock.call_count == 1
assert rpc_mock.call_count == 1
assert open_trade.is_open is True
assert freqtrade.strategy.check_sell_timeout.call_count == 1
def test_check_handle_timedout_sell(default_conf, ticker, limit_sell_order_old, mocker,
open_trade) -> None:
rpc_mock = patch_RPCManager(mocker)
@ -2037,11 +2132,14 @@ def test_check_handle_timedout_sell(default_conf, ticker, limit_sell_order_old,
Trade.session.add(open_trade)
freqtrade.strategy.check_sell_timeout = MagicMock(return_value=False)
# check it does cancel sell orders over the time limit
freqtrade.check_handle_timedout()
assert cancel_order_mock.call_count == 1
assert rpc_mock.call_count == 1
assert open_trade.is_open is True
# Custom user sell-timeout is never called
assert freqtrade.strategy.check_sell_timeout.call_count == 0
def test_check_handle_cancelled_sell(default_conf, ticker, limit_sell_order_old, open_trade,
@ -2049,13 +2147,13 @@ def test_check_handle_cancelled_sell(default_conf, ticker, limit_sell_order_old,
""" Handle sell order cancelled on exchange"""
rpc_mock = patch_RPCManager(mocker)
cancel_order_mock = MagicMock()
limit_sell_order_old.update({"status": "canceled"})
limit_sell_order_old.update({"status": "canceled", 'filled': 0.0})
patch_exchange(mocker)
mocker.patch.multiple(
'freqtrade.exchange.Exchange',
fetch_ticker=ticker,
get_order=MagicMock(return_value=limit_sell_order_old),
cancel_order=cancel_order_mock
cancel_order_with_result=cancel_order_mock
)
freqtrade = FreqtradeBot(default_conf)
@ -2082,7 +2180,7 @@ def test_check_handle_timedout_partial(default_conf, ticker, limit_buy_order_old
'freqtrade.exchange.Exchange',
fetch_ticker=ticker,
get_order=MagicMock(return_value=limit_buy_order_old_partial),
cancel_order=cancel_order_mock
cancel_order_with_result=cancel_order_mock
)
freqtrade = FreqtradeBot(default_conf)
@ -2109,7 +2207,7 @@ def test_check_handle_timedout_partial_fee(default_conf, ticker, open_trade, cap
'freqtrade.exchange.Exchange',
fetch_ticker=ticker,
get_order=MagicMock(return_value=limit_buy_order_old_partial),
cancel_order=cancel_order_mock,
cancel_order_with_result=cancel_order_mock,
get_trades_for_order=MagicMock(return_value=trades_for_order),
)
freqtrade = FreqtradeBot(default_conf)
@ -2129,7 +2227,7 @@ def test_check_handle_timedout_partial_fee(default_conf, ticker, open_trade, cap
assert rpc_mock.call_count == 2
trades = Trade.query.filter(Trade.open_order_id.is_(open_trade.open_order_id)).all()
assert len(trades) == 1
# Verify that tradehas been updated
# Verify that trade has been updated
assert trades[0].amount == (limit_buy_order_old_partial['amount'] -
limit_buy_order_old_partial['remaining']) - 0.0001
assert trades[0].open_order_id is None
@ -2146,7 +2244,7 @@ def test_check_handle_timedout_partial_except(default_conf, ticker, open_trade,
'freqtrade.exchange.Exchange',
fetch_ticker=ticker,
get_order=MagicMock(return_value=limit_buy_order_old_partial),
cancel_order=cancel_order_mock,
cancel_order_with_result=cancel_order_mock,
get_trades_for_order=MagicMock(return_value=trades_for_order),
)
mocker.patch('freqtrade.freqtradebot.FreqtradeBot.get_real_amount',
@ -2168,7 +2266,7 @@ def test_check_handle_timedout_partial_except(default_conf, ticker, open_trade,
assert rpc_mock.call_count == 2
trades = Trade.query.filter(Trade.open_order_id.is_(open_trade.open_order_id)).all()
assert len(trades) == 1
# Verify that tradehas been updated
# Verify that trade has been updated
assert trades[0].amount == (limit_buy_order_old_partial['amount'] -
limit_buy_order_old_partial['remaining'])
@ -2204,14 +2302,11 @@ def test_check_handle_timedout_exception(default_conf, ticker, open_trade, mocke
caplog)
def test_handle_timedout_limit_buy(mocker, default_conf, limit_buy_order) -> None:
def test_handle_timedout_limit_buy(mocker, caplog, default_conf, limit_buy_order) -> None:
patch_RPCManager(mocker)
patch_exchange(mocker)
cancel_order_mock = MagicMock(return_value=limit_buy_order)
mocker.patch.multiple(
'freqtrade.exchange.Exchange',
cancel_order=cancel_order_mock
)
mocker.patch('freqtrade.exchange.Exchange.cancel_order_with_result', cancel_order_mock)
freqtrade = FreqtradeBot(default_conf)
@ -2227,9 +2322,13 @@ def test_handle_timedout_limit_buy(mocker, default_conf, limit_buy_order) -> Non
assert not freqtrade.handle_timedout_limit_buy(trade, limit_buy_order)
assert cancel_order_mock.call_count == 1
mocker.patch('freqtrade.exchange.Exchange.cancel_order', side_effect=InvalidOrderException)
assert not freqtrade.handle_timedout_limit_buy(trade, limit_buy_order)
@pytest.mark.parametrize('cancelorder', [
{},
{'remaining': None},
'String Return value',
123
])
@ -2276,7 +2375,8 @@ def test_handle_timedout_limit_sell(mocker, default_conf) -> None:
assert freqtrade.handle_timedout_limit_sell(trade, order)
assert cancel_order_mock.call_count == 1
order['amount'] = 2
assert not freqtrade.handle_timedout_limit_sell(trade, order)
assert (freqtrade.handle_timedout_limit_sell(trade, order)
== 'partially filled - keeping order open')
# Assert cancel_order was not called (callcount remains unchanged)
assert cancel_order_mock.call_count == 1
@ -2499,6 +2599,7 @@ def test_execute_sell_with_stoploss_on_exchange(default_conf, ticker, fee, ticke
assert trade
trades = [trade]
freqtrade.check_handle_timedout()
freqtrade.exit_positions(trades)
# Increase the price and sell it
@ -2544,8 +2645,11 @@ def test_may_execute_sell_after_stoploss_on_exchange_hit(default_conf, ticker, f
# Create some test data
freqtrade.enter_positions()
freqtrade.check_handle_timedout()
trade = Trade.query.first()
trades = [trade]
assert trade.stoploss_order_id is None
freqtrade.exit_positions(trades)
assert trade
assert trade.stoploss_order_id == '123'

View File

@ -9,7 +9,9 @@ import pytest
from freqtrade.data.converter import ohlcv_to_dataframe
from freqtrade.misc import (datesarray_to_datetimearray, file_dump_json,
file_load_json, format_ms_time, pair_to_filename,
plural, shorten_date)
plural, render_template,
render_template_with_fallback, safe_value_fallback,
shorten_date)
def test_shorten_date() -> None:
@ -93,6 +95,27 @@ def test_format_ms_time() -> None:
assert format_ms_time(date_in_epoch_ms) == res.astimezone(None).strftime('%Y-%m-%dT%H:%M:%S')
def test_safe_value_fallback():
dict1 = {'keya': None, 'keyb': 2, 'keyc': 5, 'keyd': None}
dict2 = {'keya': 20, 'keyb': None, 'keyc': 6, 'keyd': None}
assert safe_value_fallback(dict1, dict2, 'keya', 'keya') == 20
assert safe_value_fallback(dict2, dict1, 'keya', 'keya') == 20
assert safe_value_fallback(dict1, dict2, 'keyb', 'keyb') == 2
assert safe_value_fallback(dict2, dict1, 'keyb', 'keyb') == 2
assert safe_value_fallback(dict1, dict2, 'keyc', 'keyc') == 5
assert safe_value_fallback(dict2, dict1, 'keyc', 'keyc') == 6
assert safe_value_fallback(dict1, dict2, 'keyd', 'keyd') is None
assert safe_value_fallback(dict2, dict1, 'keyd', 'keyd') is None
assert safe_value_fallback(dict2, dict1, 'keyd', 'keyd', 1234) == 1234
assert safe_value_fallback(dict1, dict2, 'keyNo', 'keyNo') is None
assert safe_value_fallback(dict2, dict1, 'keyNo', 'keyNo') is None
assert safe_value_fallback(dict2, dict1, 'keyNo', 'keyNo', 1234) == 1234
def test_plural() -> None:
assert plural(0, "page") == "pages"
assert plural(0.0, "page") == "pages"
@ -123,3 +146,17 @@ def test_plural() -> None:
assert plural(1.5, "ox", "oxen") == "oxen"
assert plural(-0.5, "ox", "oxen") == "oxen"
assert plural(-1.5, "ox", "oxen") == "oxen"
def test_render_template_fallback(mocker):
from jinja2.exceptions import TemplateNotFound
with pytest.raises(TemplateNotFound):
val = render_template(
templatefile='subtemplates/indicators_does-not-exist.j2',)
val = render_template_with_fallback(
templatefile='subtemplates/indicators_does-not-exist.j2',
templatefallbackfile='subtemplates/indicators_minimal.j2',
)
assert isinstance(val, str)
assert 'if self.dp' in val

View File

@ -9,53 +9,7 @@ from sqlalchemy import create_engine
from freqtrade import constants
from freqtrade.exceptions import OperationalException
from freqtrade.persistence import Trade, clean_dry_run_db, init
from tests.conftest import log_has
def create_mock_trades(fee):
"""
Create some fake trades ...
"""
# Simulate dry_run entries
trade = Trade(
pair='ETH/BTC',
stake_amount=0.001,
amount=123.0,
fee_open=fee.return_value,
fee_close=fee.return_value,
open_rate=0.123,
exchange='bittrex',
open_order_id='dry_run_buy_12345'
)
Trade.session.add(trade)
trade = Trade(
pair='ETC/BTC',
stake_amount=0.001,
amount=123.0,
fee_open=fee.return_value,
fee_close=fee.return_value,
open_rate=0.123,
close_rate=0.128,
close_profit=0.005,
exchange='bittrex',
is_open=False,
open_order_id='dry_run_sell_12345'
)
Trade.session.add(trade)
# Simulate prod entry
trade = Trade(
pair='ETC/BTC',
stake_amount=0.001,
amount=123.0,
fee_open=fee.return_value,
fee_close=fee.return_value,
open_rate=0.123,
exchange='bittrex',
open_order_id='prod_buy_12345'
)
Trade.session.add(trade)
from tests.conftest import log_has, create_mock_trades
def test_init_create_session(default_conf):
@ -777,18 +731,31 @@ def test_to_json(default_conf, fee):
assert result == {'trade_id': None,
'pair': 'ETH/BTC',
'is_open': None,
'open_date_hum': '2 hours ago',
'open_date': trade.open_date.strftime("%Y-%m-%d %H:%M:%S"),
'open_order_id': 'dry_run_buy_12345',
'close_date_hum': None,
'close_date': None,
'open_rate': 0.123,
'open_rate_requested': None,
'open_trade_price': 15.1668225,
'fee_close': 0.0025,
'fee_open': 0.0025,
'close_rate': None,
'close_rate_requested': None,
'amount': 123.0,
'stake_amount': 0.001,
'close_profit': None,
'sell_reason': None,
'stop_loss': None,
'stop_loss_pct': None,
'initial_stop_loss': None,
'initial_stop_loss_pct': None}
'initial_stop_loss_pct': None,
'min_rate': None,
'max_rate': None,
'strategy': None,
'ticker_interval': None}
# Simulate dry_run entries
trade = Trade(
@ -819,7 +786,20 @@ def test_to_json(default_conf, fee):
'stop_loss': None,
'stop_loss_pct': None,
'initial_stop_loss': None,
'initial_stop_loss_pct': None}
'initial_stop_loss_pct': None,
'close_profit': None,
'close_rate_requested': None,
'fee_close': 0.0025,
'fee_open': 0.0025,
'is_open': None,
'max_rate': None,
'min_rate': None,
'open_order_id': None,
'open_rate_requested': None,
'open_trade_price': 12.33075,
'sell_reason': None,
'strategy': None,
'ticker_interval': None}
def test_stoploss_reinitialization(default_conf, fee):

View File

@ -266,7 +266,7 @@ def test_generate_profit_graph(testdatadir):
filename = testdatadir / "backtest-result_test.json"
trades = load_backtest_data(filename)
timerange = TimeRange.parse_timerange("20180110-20180112")
pairs = ["TRX/BTC", "ADA/BTC"]
pairs = ["TRX/BTC", "XLM/BTC"]
trades = trades[trades['close_time'] < pd.Timestamp('2018-01-12', tz='UTC')]
data = history.load_data(datadir=testdatadir,
@ -292,7 +292,7 @@ def test_generate_profit_graph(testdatadir):
profit = find_trace_in_fig_data(figure.data, "Profit")
assert isinstance(profit, go.Scatter)
profit = find_trace_in_fig_data(figure.data, "Max drawdown 0.00%")
profit = find_trace_in_fig_data(figure.data, "Max drawdown 10.45%")
assert isinstance(profit, go.Scatter)
for pair in pairs:

0
user_data/logs/.gitkeep Normal file
View File