Allow loading custom hyperopt loss functions
This commit is contained in:
parent
2fedae6060
commit
2a20423be6
@ -230,6 +230,14 @@ AVAILABLE_CLI_OPTIONS = {
|
|||||||
default=False,
|
default=False,
|
||||||
action='store_true',
|
action='store_true',
|
||||||
),
|
),
|
||||||
|
"loss_function": Arg(
|
||||||
|
'--loss-function',
|
||||||
|
help='Define the loss-function to use for hyperopt.'
|
||||||
|
'Possibilities are `legacy`, and `custom` (providing a custom loss-function).'
|
||||||
|
'Default: `%(default)s`.',
|
||||||
|
choices=['legacy', 'custom'],
|
||||||
|
default='legacy',
|
||||||
|
),
|
||||||
# List exchanges
|
# List exchanges
|
||||||
"print_one_column": Arg(
|
"print_one_column": Arg(
|
||||||
'-1', '--one-column',
|
'-1', '--one-column',
|
||||||
@ -317,7 +325,7 @@ ARGS_BACKTEST = ARGS_COMMON_OPTIMIZE + ["position_stacking", "use_max_market_pos
|
|||||||
ARGS_HYPEROPT = ARGS_COMMON_OPTIMIZE + ["hyperopt", "position_stacking", "epochs", "spaces",
|
ARGS_HYPEROPT = ARGS_COMMON_OPTIMIZE + ["hyperopt", "position_stacking", "epochs", "spaces",
|
||||||
"use_max_market_positions", "print_all", "hyperopt_jobs",
|
"use_max_market_positions", "print_all", "hyperopt_jobs",
|
||||||
"hyperopt_random_state", "hyperopt_min_trades",
|
"hyperopt_random_state", "hyperopt_min_trades",
|
||||||
"hyperopt_clean_state"]
|
"hyperopt_clean_state", "loss_function"]
|
||||||
|
|
||||||
ARGS_EDGE = ARGS_COMMON_OPTIMIZE + ["stoploss_range"]
|
ARGS_EDGE = ARGS_COMMON_OPTIMIZE + ["stoploss_range"]
|
||||||
|
|
||||||
|
@ -284,9 +284,13 @@ class Configuration(object):
|
|||||||
|
|
||||||
self._args_to_config(config, argname='hyperopt_min_trades',
|
self._args_to_config(config, argname='hyperopt_min_trades',
|
||||||
logstring='Parameter --min-trades detected: {}')
|
logstring='Parameter --min-trades detected: {}')
|
||||||
|
|
||||||
self._args_to_config(config, argname='hyperopt_clean_state',
|
self._args_to_config(config, argname='hyperopt_clean_state',
|
||||||
logstring='Removing hyperopt temp files')
|
logstring='Removing hyperopt temp files')
|
||||||
|
|
||||||
|
self._args_to_config(config, argname='loss_function',
|
||||||
|
logstring='Using loss function: {}')
|
||||||
|
|
||||||
return config
|
return config
|
||||||
|
|
||||||
def _load_plot_config(self, config: Dict[str, Any]) -> Dict[str, Any]:
|
def _load_plot_config(self, config: Dict[str, Any]) -> Dict[str, Any]:
|
||||||
|
@ -1,16 +1,30 @@
|
|||||||
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
|
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
|
||||||
|
|
||||||
|
from functools import reduce
|
||||||
|
from math import exp
|
||||||
|
from typing import Any, Callable, Dict, List
|
||||||
|
from datetime import datetime
|
||||||
|
|
||||||
import talib.abstract as ta
|
import talib.abstract as ta
|
||||||
from pandas import DataFrame
|
from pandas import DataFrame
|
||||||
from typing import Dict, Any, Callable, List
|
|
||||||
from functools import reduce
|
|
||||||
|
|
||||||
from skopt.space import Categorical, Dimension, Integer, Real
|
from skopt.space import Categorical, Dimension, Integer, Real
|
||||||
|
|
||||||
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
||||||
from freqtrade.optimize.hyperopt_interface import IHyperOpt
|
from freqtrade.optimize.hyperopt_interface import IHyperOpt
|
||||||
|
|
||||||
class_name = 'DefaultHyperOpts'
|
# set TARGET_TRADES to suit your number concurrent trades so its realistic
|
||||||
|
# to the number of days
|
||||||
|
TARGET_TRADES = 600
|
||||||
|
# This is assumed to be expected avg profit * expected trade count.
|
||||||
|
# For example, for 0.35% avg per trade (or 0.0035 as ratio) and 1100 trades,
|
||||||
|
# self.expected_max_profit = 3.85
|
||||||
|
# Check that the reported Σ% values do not exceed this!
|
||||||
|
# Note, this is ratio. 3.85 stated above means 385Σ%.
|
||||||
|
EXPECTED_MAX_PROFIT = 3.0
|
||||||
|
|
||||||
|
# max average trade duration in minutes
|
||||||
|
# if eval ends with higher value, we consider it a failed eval
|
||||||
|
MAX_ACCEPTED_TRADE_DURATION = 300
|
||||||
|
|
||||||
|
|
||||||
class DefaultHyperOpts(IHyperOpt):
|
class DefaultHyperOpts(IHyperOpt):
|
||||||
@ -19,6 +33,21 @@ class DefaultHyperOpts(IHyperOpt):
|
|||||||
You can override it with your own hyperopt
|
You can override it with your own hyperopt
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def hyperopt_loss_custom(results: DataFrame, trade_count: int,
|
||||||
|
min_date: datetime, max_date: datetime, *args, **kwargs) -> float:
|
||||||
|
"""
|
||||||
|
Objective function, returns smaller number for more optimal results
|
||||||
|
"""
|
||||||
|
total_profit = results.profit_percent.sum()
|
||||||
|
trade_duration = results.trade_duration.mean()
|
||||||
|
|
||||||
|
trade_loss = 1 - 0.25 * exp(-(trade_count - TARGET_TRADES) ** 2 / 10 ** 5.8)
|
||||||
|
profit_loss = max(0, 1 - total_profit / EXPECTED_MAX_PROFIT)
|
||||||
|
duration_loss = 0.4 * min(trade_duration / MAX_ACCEPTED_TRADE_DURATION, 1)
|
||||||
|
result = trade_loss + profit_loss + duration_loss
|
||||||
|
return result
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def populate_indicators(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
def populate_indicators(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||||
dataframe['adx'] = ta.ADX(dataframe)
|
dataframe['adx'] = ta.ADX(dataframe)
|
||||||
|
@ -7,7 +7,7 @@ This module contains the hyperopt logic
|
|||||||
import logging
|
import logging
|
||||||
import os
|
import os
|
||||||
import sys
|
import sys
|
||||||
from math import exp
|
|
||||||
from operator import itemgetter
|
from operator import itemgetter
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from pprint import pprint
|
from pprint import pprint
|
||||||
@ -22,6 +22,7 @@ from freqtrade.configuration import Arguments
|
|||||||
from freqtrade.data.history import load_data, get_timeframe
|
from freqtrade.data.history import load_data, get_timeframe
|
||||||
from freqtrade.optimize.backtesting import Backtesting
|
from freqtrade.optimize.backtesting import Backtesting
|
||||||
from freqtrade.resolvers.hyperopt_resolver import HyperOptResolver
|
from freqtrade.resolvers.hyperopt_resolver import HyperOptResolver
|
||||||
|
from freqtrade.optimize.hyperopt_loss import hyperopt_loss_legacy
|
||||||
|
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
@ -69,6 +70,20 @@ class Hyperopt(Backtesting):
|
|||||||
self.trials_file = TRIALSDATA_PICKLE
|
self.trials_file = TRIALSDATA_PICKLE
|
||||||
self.trials: List = []
|
self.trials: List = []
|
||||||
|
|
||||||
|
# Assign loss function
|
||||||
|
if self.config['loss_function'] == 'legacy':
|
||||||
|
self.calculate_loss = hyperopt_loss_legacy
|
||||||
|
elif (self.config['loss_function'] == 'custom' and
|
||||||
|
hasattr(self.custom_hyperopt, 'hyperopt_loss_custom')):
|
||||||
|
self.calculate_loss = self.custom_hyperopt.hyperopt_loss_custom
|
||||||
|
|
||||||
|
# Implement fallback to avoid odd crashes when custom-hyperopt fails to load.
|
||||||
|
# TODO: Maybe this should just stop hyperopt completely?
|
||||||
|
if not hasattr(self.custom_hyperopt, 'hyperopt_loss_custom'):
|
||||||
|
logger.warning("Could not load hyperopt configuration. "
|
||||||
|
"Falling back to legacy configuration.")
|
||||||
|
self.calculate_loss = hyperopt_loss_legacy
|
||||||
|
|
||||||
# Populate functions here (hasattr is slow so should not be run during "regular" operations)
|
# Populate functions here (hasattr is slow so should not be run during "regular" operations)
|
||||||
if hasattr(self.custom_hyperopt, 'populate_buy_trend'):
|
if hasattr(self.custom_hyperopt, 'populate_buy_trend'):
|
||||||
self.advise_buy = self.custom_hyperopt.populate_buy_trend # type: ignore
|
self.advise_buy = self.custom_hyperopt.populate_buy_trend # type: ignore
|
||||||
@ -160,16 +175,6 @@ class Hyperopt(Backtesting):
|
|||||||
print('.', end='')
|
print('.', end='')
|
||||||
sys.stdout.flush()
|
sys.stdout.flush()
|
||||||
|
|
||||||
def calculate_loss(self, total_profit: float, trade_count: int, trade_duration: float) -> float:
|
|
||||||
"""
|
|
||||||
Objective function, returns smaller number for more optimal results
|
|
||||||
"""
|
|
||||||
trade_loss = 1 - 0.25 * exp(-(trade_count - self.target_trades) ** 2 / 10 ** 5.8)
|
|
||||||
profit_loss = max(0, 1 - total_profit / self.expected_max_profit)
|
|
||||||
duration_loss = 0.4 * min(trade_duration / self.max_accepted_trade_duration, 1)
|
|
||||||
result = trade_loss + profit_loss + duration_loss
|
|
||||||
return result
|
|
||||||
|
|
||||||
def has_space(self, space: str) -> bool:
|
def has_space(self, space: str) -> bool:
|
||||||
"""
|
"""
|
||||||
Tell if a space value is contained in the configuration
|
Tell if a space value is contained in the configuration
|
||||||
@ -231,9 +236,7 @@ class Hyperopt(Backtesting):
|
|||||||
)
|
)
|
||||||
result_explanation = self.format_results(results)
|
result_explanation = self.format_results(results)
|
||||||
|
|
||||||
total_profit = results.profit_percent.sum()
|
|
||||||
trade_count = len(results.index)
|
trade_count = len(results.index)
|
||||||
trade_duration = results.trade_duration.mean()
|
|
||||||
|
|
||||||
# If this evaluation contains too short amount of trades to be
|
# If this evaluation contains too short amount of trades to be
|
||||||
# interesting -- consider it as 'bad' (assigned max. loss value)
|
# interesting -- consider it as 'bad' (assigned max. loss value)
|
||||||
@ -246,7 +249,8 @@ class Hyperopt(Backtesting):
|
|||||||
'result': result_explanation,
|
'result': result_explanation,
|
||||||
}
|
}
|
||||||
|
|
||||||
loss = self.calculate_loss(total_profit, trade_count, trade_duration)
|
loss = self.calculate_loss(results=results, trade_count=trade_count,
|
||||||
|
min_date=min_date.datetime, max_date=max_date.datetime)
|
||||||
|
|
||||||
return {
|
return {
|
||||||
'loss': loss,
|
'loss': loss,
|
||||||
|
37
freqtrade/optimize/hyperopt_loss.py
Normal file
37
freqtrade/optimize/hyperopt_loss.py
Normal file
@ -0,0 +1,37 @@
|
|||||||
|
from math import exp
|
||||||
|
from pandas import DataFrame
|
||||||
|
|
||||||
|
# Define some constants:
|
||||||
|
|
||||||
|
# set TARGET_TRADES to suit your number concurrent trades so its realistic
|
||||||
|
# to the number of days
|
||||||
|
TARGET_TRADES = 600
|
||||||
|
# This is assumed to be expected avg profit * expected trade count.
|
||||||
|
# For example, for 0.35% avg per trade (or 0.0035 as ratio) and 1100 trades,
|
||||||
|
# self.expected_max_profit = 3.85
|
||||||
|
# Check that the reported Σ% values do not exceed this!
|
||||||
|
# Note, this is ratio. 3.85 stated above means 385Σ%.
|
||||||
|
EXPECTED_MAX_PROFIT = 3.0
|
||||||
|
|
||||||
|
# max average trade duration in minutes
|
||||||
|
# if eval ends with higher value, we consider it a failed eval
|
||||||
|
MAX_ACCEPTED_TRADE_DURATION = 300
|
||||||
|
|
||||||
|
|
||||||
|
def hyperopt_loss_legacy(results: DataFrame, trade_count: int,
|
||||||
|
*args, **kwargs) -> float:
|
||||||
|
"""
|
||||||
|
Objective function, returns smaller number for better results
|
||||||
|
This is the legacy algorithm (used until now in freqtrade).
|
||||||
|
Weights are distributed as follows:
|
||||||
|
* 0.4 to trade duration
|
||||||
|
* 0.25: Avoiding trade loss
|
||||||
|
"""
|
||||||
|
total_profit = results.profit_percent.sum()
|
||||||
|
trade_duration = results.trade_duration.mean()
|
||||||
|
|
||||||
|
trade_loss = 1 - 0.25 * exp(-(trade_count - TARGET_TRADES) ** 2 / 10 ** 5.8)
|
||||||
|
profit_loss = max(0, 1 - total_profit / EXPECTED_MAX_PROFIT)
|
||||||
|
duration_loss = 0.4 * min(trade_duration / MAX_ACCEPTED_TRADE_DURATION, 1)
|
||||||
|
result = trade_loss + profit_loss + duration_loss
|
||||||
|
return result
|
@ -1,17 +1,31 @@
|
|||||||
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
|
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
|
||||||
|
|
||||||
|
from functools import reduce
|
||||||
|
from math import exp
|
||||||
|
from typing import Any, Callable, Dict, List
|
||||||
|
from datetime import datetime
|
||||||
|
|
||||||
|
import numpy as np# noqa F401
|
||||||
import talib.abstract as ta
|
import talib.abstract as ta
|
||||||
from pandas import DataFrame
|
from pandas import DataFrame
|
||||||
from typing import Dict, Any, Callable, List
|
|
||||||
from functools import reduce
|
|
||||||
|
|
||||||
import numpy
|
|
||||||
from skopt.space import Categorical, Dimension, Integer, Real
|
from skopt.space import Categorical, Dimension, Integer, Real
|
||||||
|
|
||||||
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
||||||
from freqtrade.optimize.hyperopt_interface import IHyperOpt
|
from freqtrade.optimize.hyperopt_interface import IHyperOpt
|
||||||
|
|
||||||
class_name = 'SampleHyperOpts'
|
# set TARGET_TRADES to suit your number concurrent trades so its realistic
|
||||||
|
# to the number of days
|
||||||
|
TARGET_TRADES = 600
|
||||||
|
# This is assumed to be expected avg profit * expected trade count.
|
||||||
|
# For example, for 0.35% avg per trade (or 0.0035 as ratio) and 1100 trades,
|
||||||
|
# self.expected_max_profit = 3.85
|
||||||
|
# Check that the reported Σ% values do not exceed this!
|
||||||
|
# Note, this is ratio. 3.85 stated above means 385Σ%.
|
||||||
|
EXPECTED_MAX_PROFIT = 3.0
|
||||||
|
|
||||||
|
# max average trade duration in minutes
|
||||||
|
# if eval ends with higher value, we consider it a failed eval
|
||||||
|
MAX_ACCEPTED_TRADE_DURATION = 300
|
||||||
|
|
||||||
|
|
||||||
# This class is a sample. Feel free to customize it.
|
# This class is a sample. Feel free to customize it.
|
||||||
@ -28,6 +42,21 @@ class SampleHyperOpts(IHyperOpt):
|
|||||||
roi_space, generate_roi_table, stoploss_space
|
roi_space, generate_roi_table, stoploss_space
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def hyperopt_loss_custom(results: DataFrame, trade_count: int,
|
||||||
|
min_date: datetime, max_date: datetime, *args, **kwargs) -> float:
|
||||||
|
"""
|
||||||
|
Objective function, returns smaller number for more optimal results
|
||||||
|
"""
|
||||||
|
total_profit = results.profit_percent.sum()
|
||||||
|
trade_duration = results.trade_duration.mean()
|
||||||
|
|
||||||
|
trade_loss = 1 - 0.25 * exp(-(trade_count - TARGET_TRADES) ** 2 / 10 ** 5.8)
|
||||||
|
profit_loss = max(0, 1 - total_profit / EXPECTED_MAX_PROFIT)
|
||||||
|
duration_loss = 0.4 * min(trade_duration / MAX_ACCEPTED_TRADE_DURATION, 1)
|
||||||
|
result = trade_loss + profit_loss + duration_loss
|
||||||
|
return result
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def populate_indicators(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
def populate_indicators(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||||
dataframe['adx'] = ta.ADX(dataframe)
|
dataframe['adx'] = ta.ADX(dataframe)
|
||||||
|
Loading…
Reference in New Issue
Block a user