use logger in favor of print
This commit is contained in:
parent
99f7e44c30
commit
29c2d1d189
@ -1,6 +1,7 @@
|
||||
import copy
|
||||
import datetime
|
||||
import json
|
||||
import logging
|
||||
import pickle as pk
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Tuple
|
||||
@ -17,6 +18,8 @@ from freqtrade.configuration import TimeRange
|
||||
|
||||
SECONDS_IN_DAY = 86400
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class DataHandler:
|
||||
"""
|
||||
@ -175,7 +178,7 @@ class DataHandler:
|
||||
labels = labels[
|
||||
(drop_index == 0) & (drop_index_labels == 0)
|
||||
] # assuming the labels depend entirely on the dataframe here.
|
||||
print(
|
||||
logger.info(
|
||||
"dropped",
|
||||
len(unfiltered_dataframe) - len(filtered_dataframe),
|
||||
"training data points due to NaNs, ensure you have downloaded",
|
||||
@ -193,7 +196,7 @@ class DataHandler:
|
||||
# that was based on a single NaN is ultimately protected from buys with do_predict
|
||||
drop_index = ~drop_index
|
||||
self.do_predict = np.array(drop_index.replace(True, 1).replace(False, 0))
|
||||
print(
|
||||
logger.info(
|
||||
"dropped",
|
||||
len(self.do_predict) - self.do_predict.sum(),
|
||||
"of",
|
||||
@ -350,8 +353,8 @@ class DataHandler:
|
||||
pca2 = PCA(n_components=n_keep_components)
|
||||
self.data["n_kept_components"] = n_keep_components
|
||||
pca2 = pca2.fit(self.data_dictionary["train_features"])
|
||||
print("reduced feature dimension by", n_components - n_keep_components)
|
||||
print("explained variance", np.sum(pca2.explained_variance_ratio_))
|
||||
logger.info("reduced feature dimension by", n_components - n_keep_components)
|
||||
logger.info("explained variance", np.sum(pca2.explained_variance_ratio_))
|
||||
train_components = pca2.transform(self.data_dictionary["train_features"])
|
||||
test_components = pca2.transform(self.data_dictionary["test_features"])
|
||||
|
||||
@ -377,10 +380,10 @@ class DataHandler:
|
||||
return None
|
||||
|
||||
def compute_distances(self) -> float:
|
||||
print("computing average mean distance for all training points")
|
||||
logger.info("computing average mean distance for all training points")
|
||||
pairwise = pairwise_distances(self.data_dictionary["train_features"], n_jobs=-1)
|
||||
avg_mean_dist = pairwise.mean(axis=1).mean()
|
||||
print("avg_mean_dist", avg_mean_dist)
|
||||
logger.info("avg_mean_dist", avg_mean_dist)
|
||||
|
||||
return avg_mean_dist
|
||||
|
||||
@ -407,7 +410,7 @@ class DataHandler:
|
||||
drop_index = ~drop_index
|
||||
do_predict = np.array(drop_index.replace(True, 1).replace(False, 0))
|
||||
|
||||
print(
|
||||
logger.info(
|
||||
"remove_outliers() tossed",
|
||||
len(do_predict) - do_predict.sum(),
|
||||
"predictions because they were beyond 3 std deviations from training data.",
|
||||
@ -472,7 +475,7 @@ class DataHandler:
|
||||
for p in config["freqai"]["corr_pairlist"]:
|
||||
features.append(p.split("/")[0] + "-" + ft + shift + "_" + tf)
|
||||
|
||||
print("number of features", len(features))
|
||||
logger.info("number of features", len(features))
|
||||
return features
|
||||
|
||||
def check_if_pred_in_training_spaces(self) -> None:
|
||||
@ -483,7 +486,7 @@ class DataHandler:
|
||||
from the training data set.
|
||||
"""
|
||||
|
||||
print("checking if prediction features are in AOA")
|
||||
logger.info("checking if prediction features are in AOA")
|
||||
distance = pairwise_distances(
|
||||
self.data_dictionary["train_features"],
|
||||
self.data_dictionary["prediction_features"],
|
||||
@ -497,7 +500,7 @@ class DataHandler:
|
||||
0,
|
||||
)
|
||||
|
||||
print(
|
||||
logger.info(
|
||||
"Distance checker tossed",
|
||||
len(do_predict) - do_predict.sum(),
|
||||
"predictions for being too far from training data",
|
||||
|
@ -1,6 +1,7 @@
|
||||
import gc
|
||||
import logging
|
||||
import shutil
|
||||
from abc import ABC
|
||||
from abc import ABC, abstractmethod
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, Tuple
|
||||
|
||||
@ -12,6 +13,7 @@ from freqtrade.freqai.data_handler import DataHandler
|
||||
|
||||
|
||||
pd.options.mode.chained_assignment = None
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class IFreqaiModel(ABC):
|
||||
@ -67,7 +69,7 @@ class IFreqaiModel(ABC):
|
||||
self.pair = metadata["pair"]
|
||||
self.dh = DataHandler(self.config, dataframe)
|
||||
|
||||
print(
|
||||
logger.info(
|
||||
"going to train",
|
||||
len(self.dh.training_timeranges),
|
||||
"timeranges:",
|
||||
@ -88,7 +90,7 @@ class IFreqaiModel(ABC):
|
||||
self.freqai_info["training_timerange"] = tr_train
|
||||
dataframe_train = self.dh.slice_dataframe(tr_train, dataframe)
|
||||
dataframe_backtest = self.dh.slice_dataframe(tr_backtest, dataframe)
|
||||
print("training", self.pair, "for", tr_train)
|
||||
logger.info("training", self.pair, "for", tr_train)
|
||||
# self.dh.model_path = self.full_path + "/" + "sub-train" + "-" + str(tr_train) + "/"
|
||||
self.dh.model_path = Path(self.full_path / str("sub-train" + "-" + str(tr_train)))
|
||||
if not self.model_exists(self.pair, training_timerange=tr_train):
|
||||
@ -114,6 +116,7 @@ class IFreqaiModel(ABC):
|
||||
|
||||
return dataframe
|
||||
|
||||
@abstractmethod
|
||||
def train(self, unfiltered_dataframe: DataFrame, metadata: dict) -> Any:
|
||||
"""
|
||||
Filter the training data and train a model to it. Train makes heavy use of the datahandler
|
||||
@ -127,6 +130,7 @@ class IFreqaiModel(ABC):
|
||||
|
||||
return Any
|
||||
|
||||
@abstractmethod
|
||||
def fit(self) -> Any:
|
||||
"""
|
||||
Most regressors use the same function names and arguments e.g. user
|
||||
@ -139,6 +143,7 @@ class IFreqaiModel(ABC):
|
||||
|
||||
return Any
|
||||
|
||||
@abstractmethod
|
||||
def predict(self, dataframe: DataFrame) -> Tuple[np.array, np.array]:
|
||||
"""
|
||||
Filter the prediction features data and predict with it.
|
||||
@ -162,7 +167,7 @@ class IFreqaiModel(ABC):
|
||||
path_to_modelfile = Path(self.dh.model_path / str(self.dh.model_filename + "_model.joblib"))
|
||||
file_exists = path_to_modelfile.is_file()
|
||||
if file_exists:
|
||||
print("Found model at", self.dh.model_path / self.dh.model_filename)
|
||||
logger.info("Found model at", self.dh.model_path / self.dh.model_filename)
|
||||
else:
|
||||
print("Could not find model at", self.dh.model_path / self.dh.model_filename)
|
||||
logger.info("Could not find model at", self.dh.model_path / self.dh.model_filename)
|
||||
return file_exists
|
||||
|
@ -1,3 +1,4 @@
|
||||
import logging
|
||||
from typing import Any, Dict, Tuple
|
||||
|
||||
import pandas as pd
|
||||
@ -7,6 +8,9 @@ from pandas import DataFrame
|
||||
from freqtrade.freqai.freqai_interface import IFreqaiModel
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class ExamplePredictionModel(IFreqaiModel):
|
||||
"""
|
||||
User created prediction model. The class needs to override three necessary
|
||||
@ -32,7 +36,7 @@ class ExamplePredictionModel(IFreqaiModel):
|
||||
self.dh.data["s_mean"] = dataframe["s"].mean()
|
||||
self.dh.data["s_std"] = dataframe["s"].std()
|
||||
|
||||
print("label mean", self.dh.data["s_mean"], "label std", self.dh.data["s_std"])
|
||||
logger.info("label mean", self.dh.data["s_mean"], "label std", self.dh.data["s_std"])
|
||||
|
||||
return dataframe["s"]
|
||||
|
||||
@ -46,7 +50,7 @@ class ExamplePredictionModel(IFreqaiModel):
|
||||
:returns:
|
||||
:model: Trained model which can be used to inference (self.predict)
|
||||
"""
|
||||
print("--------------------Starting training--------------------")
|
||||
logger.info("--------------------Starting training--------------------")
|
||||
|
||||
# create the full feature list based on user config info
|
||||
self.dh.training_features_list = self.dh.build_feature_list(self.config)
|
||||
@ -73,12 +77,12 @@ class ExamplePredictionModel(IFreqaiModel):
|
||||
if self.feature_parameters["DI_threshold"]:
|
||||
self.dh.data["avg_mean_dist"] = self.dh.compute_distances()
|
||||
|
||||
print("length of train data", len(data_dictionary["train_features"]))
|
||||
logger.info("length of train data", len(data_dictionary["train_features"]))
|
||||
|
||||
model = self.fit(data_dictionary)
|
||||
|
||||
print("Finished training")
|
||||
print(f'--------------------done training {metadata["pair"]}--------------------')
|
||||
logger.info("Finished training")
|
||||
logger.info(f'--------------------done training {metadata["pair"]}--------------------')
|
||||
|
||||
return model
|
||||
|
||||
@ -121,7 +125,7 @@ class ExamplePredictionModel(IFreqaiModel):
|
||||
data (NaNs) or felt uncertain about data (PCA and DI index)
|
||||
"""
|
||||
|
||||
print("--------------------Starting prediction--------------------")
|
||||
logger.info("--------------------Starting prediction--------------------")
|
||||
|
||||
original_feature_list = self.dh.build_feature_list(self.config)
|
||||
filtered_dataframe, _ = self.dh.filter_features(
|
||||
@ -150,6 +154,6 @@ class ExamplePredictionModel(IFreqaiModel):
|
||||
# compute the non-standardized predictions
|
||||
predictions = predictions * self.dh.data["labels_std"] + self.dh.data["labels_mean"]
|
||||
|
||||
print("--------------------Finished prediction--------------------")
|
||||
logger.info("--------------------Finished prediction--------------------")
|
||||
|
||||
return (predictions, self.dh.do_predict)
|
||||
|
Loading…
Reference in New Issue
Block a user