use logger in favor of print
This commit is contained in:
@@ -1,6 +1,7 @@
|
||||
import gc
|
||||
import logging
|
||||
import shutil
|
||||
from abc import ABC
|
||||
from abc import ABC, abstractmethod
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, Tuple
|
||||
|
||||
@@ -12,6 +13,7 @@ from freqtrade.freqai.data_handler import DataHandler
|
||||
|
||||
|
||||
pd.options.mode.chained_assignment = None
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class IFreqaiModel(ABC):
|
||||
@@ -67,7 +69,7 @@ class IFreqaiModel(ABC):
|
||||
self.pair = metadata["pair"]
|
||||
self.dh = DataHandler(self.config, dataframe)
|
||||
|
||||
print(
|
||||
logger.info(
|
||||
"going to train",
|
||||
len(self.dh.training_timeranges),
|
||||
"timeranges:",
|
||||
@@ -88,7 +90,7 @@ class IFreqaiModel(ABC):
|
||||
self.freqai_info["training_timerange"] = tr_train
|
||||
dataframe_train = self.dh.slice_dataframe(tr_train, dataframe)
|
||||
dataframe_backtest = self.dh.slice_dataframe(tr_backtest, dataframe)
|
||||
print("training", self.pair, "for", tr_train)
|
||||
logger.info("training", self.pair, "for", tr_train)
|
||||
# self.dh.model_path = self.full_path + "/" + "sub-train" + "-" + str(tr_train) + "/"
|
||||
self.dh.model_path = Path(self.full_path / str("sub-train" + "-" + str(tr_train)))
|
||||
if not self.model_exists(self.pair, training_timerange=tr_train):
|
||||
@@ -114,6 +116,7 @@ class IFreqaiModel(ABC):
|
||||
|
||||
return dataframe
|
||||
|
||||
@abstractmethod
|
||||
def train(self, unfiltered_dataframe: DataFrame, metadata: dict) -> Any:
|
||||
"""
|
||||
Filter the training data and train a model to it. Train makes heavy use of the datahandler
|
||||
@@ -127,6 +130,7 @@ class IFreqaiModel(ABC):
|
||||
|
||||
return Any
|
||||
|
||||
@abstractmethod
|
||||
def fit(self) -> Any:
|
||||
"""
|
||||
Most regressors use the same function names and arguments e.g. user
|
||||
@@ -139,6 +143,7 @@ class IFreqaiModel(ABC):
|
||||
|
||||
return Any
|
||||
|
||||
@abstractmethod
|
||||
def predict(self, dataframe: DataFrame) -> Tuple[np.array, np.array]:
|
||||
"""
|
||||
Filter the prediction features data and predict with it.
|
||||
@@ -162,7 +167,7 @@ class IFreqaiModel(ABC):
|
||||
path_to_modelfile = Path(self.dh.model_path / str(self.dh.model_filename + "_model.joblib"))
|
||||
file_exists = path_to_modelfile.is_file()
|
||||
if file_exists:
|
||||
print("Found model at", self.dh.model_path / self.dh.model_filename)
|
||||
logger.info("Found model at", self.dh.model_path / self.dh.model_filename)
|
||||
else:
|
||||
print("Could not find model at", self.dh.model_path / self.dh.model_filename)
|
||||
logger.info("Could not find model at", self.dh.model_path / self.dh.model_filename)
|
||||
return file_exists
|
||||
|
||||
Reference in New Issue
Block a user