automatically handle model_save_type for user
This commit is contained in:
parent
cf882fa84e
commit
292d72d593
@ -53,7 +53,7 @@ Mandatory parameters are marked as **Required** and have to be set in one of the
|
||||
| `max_trade_duration_candles`| Guides the agent training to keep trades below desired length. Example usage shown in `prediction_models/ReinforcementLearner.py` within the user customizable `calculate_reward()` <br> **Datatype:** int.
|
||||
| `model_type` | Model string from stable_baselines3 or SBcontrib. Available strings include: `'TRPO', 'ARS', 'RecurrentPPO', 'MaskablePPO', 'PPO', 'A2C', 'DQN'`. User should ensure that `model_training_parameters` match those available to the corresponding stable_baselines3 model by visiting their documentaiton. [PPO doc](https://stable-baselines3.readthedocs.io/en/master/modules/ppo.html) (external website) <br> **Datatype:** string.
|
||||
| `policy_type` | One of the available policy types from stable_baselines3 <br> **Datatype:** string.
|
||||
| `continual_learning` | If true, the agent will start new trainings from the model selected during the previous training. If false, a new agent is trained from scratch for each training. <br> **Datatype:** Bool.
|
||||
| `max_training_drawdown_pct` | The maximum drawdown that the agent is allowed to experience during training. <br> **Datatype:** float. <br> Default: 0.8
|
||||
| `cpu_count` | Number of threads/cpus to dedicate to the Reinforcement Learning training process (depending on if `ReinforcementLearning_multiproc` is selected or not). <br> **Datatype:** int.
|
||||
| `model_reward_parameters` | Parameters used inside the user customizable `calculate_reward()` function in `ReinforcementLearner.py` <br> **Datatype:** int.
|
||||
| | **Extraneous parameters**
|
||||
|
@ -118,7 +118,6 @@ In order to configure the `Reinforcement Learner` the following dictionary to th
|
||||
"cpu_count": 8,
|
||||
"model_type": "PPO",
|
||||
"policy_type": "MlpPolicy",
|
||||
"continual_learning": false,
|
||||
"model_reward_parameters": {
|
||||
"rr": 1,
|
||||
"profit_aim": 0.025
|
||||
|
@ -92,6 +92,12 @@ class FreqaiDataDrawer:
|
||||
"model_filename": "", "trained_timestamp": 0,
|
||||
"data_path": "", "extras": {}}
|
||||
self.limit_ram_use = self.freqai_info.get('limit_ram_usage', False)
|
||||
if 'rl_config' in self.freqai_info:
|
||||
self.model_type = 'stable_baselines'
|
||||
logger.warning('User indicated rl_config, FreqAI will now use stable_baselines3'
|
||||
' to save models.')
|
||||
else:
|
||||
self.model_type = self.freqai_info.get('model_save_type', 'joblib')
|
||||
|
||||
def load_drawer_from_disk(self):
|
||||
"""
|
||||
@ -414,12 +420,11 @@ class FreqaiDataDrawer:
|
||||
save_path = Path(dk.data_path)
|
||||
|
||||
# Save the trained model
|
||||
model_type = self.freqai_info.get('model_save_type', 'joblib')
|
||||
if model_type == 'joblib':
|
||||
if self.model_type == 'joblib':
|
||||
dump(model, save_path / f"{dk.model_filename}_model.joblib")
|
||||
elif model_type == 'keras':
|
||||
elif self.model_type == 'keras':
|
||||
model.save(save_path / f"{dk.model_filename}_model.h5")
|
||||
elif 'stable_baselines' in model_type:
|
||||
elif 'stable_baselines' in self.model_type:
|
||||
model.save(save_path / f"{dk.model_filename}_model.zip")
|
||||
|
||||
if dk.svm_model is not None:
|
||||
@ -496,16 +501,15 @@ class FreqaiDataDrawer:
|
||||
dk.data_path / f"{dk.model_filename}_trained_df.pkl"
|
||||
)
|
||||
|
||||
model_type = self.freqai_info.get('model_save_type', 'joblib')
|
||||
# try to access model in memory instead of loading object from disk to save time
|
||||
if dk.live and coin in self.model_dictionary and not self.limit_ram_use:
|
||||
model = self.model_dictionary[coin]
|
||||
elif model_type == 'joblib':
|
||||
elif self.model_type == 'joblib':
|
||||
model = load(dk.data_path / f"{dk.model_filename}_model.joblib")
|
||||
elif model_type == 'keras':
|
||||
elif self.model_type == 'keras':
|
||||
from tensorflow import keras
|
||||
model = keras.models.load_model(dk.data_path / f"{dk.model_filename}_model.h5")
|
||||
elif model_type == 'stable_baselines':
|
||||
elif self.model_type == 'stable_baselines':
|
||||
mod = __import__('stable_baselines3', fromlist=[
|
||||
self.freqai_info['rl_config']['model_type']])
|
||||
MODELCLASS = getattr(mod, self.freqai_info['rl_config']['model_type'])
|
||||
|
Loading…
Reference in New Issue
Block a user