add DBSCAN outlier detection feature, add supporting documentation
This commit is contained in:
@@ -384,6 +384,9 @@ class IFreqaiModel(ABC):
|
||||
if self.freqai_info["feature_parameters"].get("DI_threshold", 0):
|
||||
dk.data["avg_mean_dist"] = dk.compute_distances()
|
||||
|
||||
if self.freqai_info["feature_parameters"].get("DBSCAN_outlier_pct", 0):
|
||||
dk.use_DBSCAN_to_remove_outliers(predict=False)
|
||||
|
||||
def data_cleaning_predict(self, dk: FreqaiDataKitchen, dataframe: DataFrame) -> None:
|
||||
"""
|
||||
Base data cleaning method for predict.
|
||||
@@ -406,6 +409,9 @@ class IFreqaiModel(ABC):
|
||||
if self.freqai_info["feature_parameters"].get("DI_threshold", 0):
|
||||
dk.check_if_pred_in_training_spaces()
|
||||
|
||||
if self.freqai_info["feature_parameters"].get("DBSCAN_outlier_pct", 0):
|
||||
dk.use_DBSCAN_to_remove_outliers(predict=True)
|
||||
|
||||
def model_exists(
|
||||
self,
|
||||
pair: str,
|
||||
|
||||
Reference in New Issue
Block a user