From 259dc75a3083b76980bf12d6575764eac96dd202 Mon Sep 17 00:00:00 2001 From: Yazeed Al Oyoun Date: Sat, 22 Feb 2020 23:10:46 +0100 Subject: [PATCH] some order and added weighted BB indicator to list --- .../templates/subtemplates/indicators_full.j2 | 103 +++++++++++------- 1 file changed, 65 insertions(+), 38 deletions(-) diff --git a/freqtrade/templates/subtemplates/indicators_full.j2 b/freqtrade/templates/subtemplates/indicators_full.j2 index 879a2daa0..87b385dd0 100644 --- a/freqtrade/templates/subtemplates/indicators_full.j2 +++ b/freqtrade/templates/subtemplates/indicators_full.j2 @@ -2,12 +2,17 @@ # Momentum Indicators # ------------------------------------ -# RSI -dataframe['rsi'] = ta.RSI(dataframe) - # ADX dataframe['adx'] = ta.ADX(dataframe) +# # Plus Directional Indicator / Movement +# dataframe['plus_dm'] = ta.PLUS_DM(dataframe) +# dataframe['plus_di'] = ta.PLUS_DI(dataframe) + +# # Minus Directional Indicator / Movement +# dataframe['minus_dm'] = ta.MINUS_DM(dataframe) +# dataframe['minus_di'] = ta.MINUS_DI(dataframe) + # # Aroon, Aroon Oscillator # aroon = ta.AROON(dataframe) # dataframe['aroonup'] = aroon['aroonup'] @@ -20,6 +25,31 @@ dataframe['adx'] = ta.ADX(dataframe) # # Commodity Channel Index: values Oversold:<-100, Overbought:>100 # dataframe['cci'] = ta.CCI(dataframe) +# RSI +dataframe['rsi'] = ta.RSI(dataframe) + +# # Inverse Fisher transform on RSI: values [-1.0, 1.0] (https://goo.gl/2JGGoy) +# rsi = 0.1 * (dataframe['rsi'] - 50) +# dataframe['fisher_rsi'] = (np.exp(2 * rsi) - 1) / (np.exp(2 * rsi) + 1) + +# # Inverse Fisher transform on RSI normalized: values [0.0, 100.0] (https://goo.gl/2JGGoy) +# dataframe['fisher_rsi_norma'] = 50 * (dataframe['fisher_rsi'] + 1) + +# # Stochastic Slow +# stoch = ta.STOCH(dataframe) +# dataframe['slowd'] = stoch['slowd'] +# dataframe['slowk'] = stoch['slowk'] + +# Stochastic Fast +stoch_fast = ta.STOCHF(dataframe) +dataframe['fastd'] = stoch_fast['fastd'] +dataframe['fastk'] = stoch_fast['fastk'] + +# # Stochastic RSI +# stoch_rsi = ta.STOCHRSI(dataframe) +# dataframe['fastd_rsi'] = stoch_rsi['fastd'] +# dataframe['fastk_rsi'] = stoch_rsi['fastk'] + # MACD macd = ta.MACD(dataframe) dataframe['macd'] = macd['macd'] @@ -29,60 +59,57 @@ dataframe['macdhist'] = macd['macdhist'] # MFI dataframe['mfi'] = ta.MFI(dataframe) -# # Minus Directional Indicator / Movement -# dataframe['minus_dm'] = ta.MINUS_DM(dataframe) -# dataframe['minus_di'] = ta.MINUS_DI(dataframe) - -# # Plus Directional Indicator / Movement -# dataframe['plus_dm'] = ta.PLUS_DM(dataframe) -# dataframe['plus_di'] = ta.PLUS_DI(dataframe) -# dataframe['minus_di'] = ta.MINUS_DI(dataframe) - # # ROC # dataframe['roc'] = ta.ROC(dataframe) -# # Inverse Fisher transform on RSI, values [-1.0, 1.0] (https://goo.gl/2JGGoy) -# rsi = 0.1 * (dataframe['rsi'] - 50) -# dataframe['fisher_rsi'] = (np.exp(2 * rsi) - 1) / (np.exp(2 * rsi) + 1) - -# # Inverse Fisher transform on RSI normalized, value [0.0, 100.0] (https://goo.gl/2JGGoy) -# dataframe['fisher_rsi_norma'] = 50 * (dataframe['fisher_rsi'] + 1) - -# # Stoch -# stoch = ta.STOCH(dataframe) -# dataframe['slowd'] = stoch['slowd'] -# dataframe['slowk'] = stoch['slowk'] - -# Stoch fast -stoch_fast = ta.STOCHF(dataframe) -dataframe['fastd'] = stoch_fast['fastd'] -dataframe['fastk'] = stoch_fast['fastk'] - -# # Stoch RSI -# stoch_rsi = ta.STOCHRSI(dataframe) -# dataframe['fastd_rsi'] = stoch_rsi['fastd'] -# dataframe['fastk_rsi'] = stoch_rsi['fastk'] - # Overlap Studies # ------------------------------------ -# Bollinger bands +# Bollinger Bands bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2) dataframe['bb_lowerband'] = bollinger['lower'] dataframe['bb_middleband'] = bollinger['mid'] dataframe['bb_upperband'] = bollinger['upper'] +dataframe["bb_percent"] = ( + (dataframe["close"] - dataframe["bb_lowerband"]) / + (dataframe["bb_upperband"] - dataframe["bb_lowerband"]) +) +dataframe["bb_width"] = ( + (dataframe["bb_upperband"] - dataframe["bb_lowerband"]) / dataframe["bb_middleband"] +) + +# Bollinger Bands - Weighted (EMA based instead of SMA) +# weighted_bollinger = qtpylib.weighted_bollinger_bands( +# qtpylib.typical_price(dataframe), window=20, stds=2 +# ) +# dataframe["wbb_upperband"] = weighted_bollinger["upper"] +# dataframe["wbb_lowerband"] = weighted_bollinger["lower"] +# dataframe["wbb_middleband"] = weighted_bollinger["mid"] +# dataframe["wbb_percent"] = ( +# (dataframe["close"] - dataframe["wbb_lowerband"]) / +# (dataframe["wbb_upperband"] - dataframe["wbb_lowerband"]) +# ) +# dataframe["wbb_width"] = ( +# (dataframe["wbb_upperband"] - dataframe["wbb_lowerband"]) / dataframe["wbb_middleband"] +# ) # # EMA - Exponential Moving Average # dataframe['ema3'] = ta.EMA(dataframe, timeperiod=3) # dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5) # dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10) +# dataframe['ema21'] = ta.EMA(dataframe, timeperiod=21) # dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50) # dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100) # # SMA - Simple Moving Average -# dataframe['sma'] = ta.SMA(dataframe, timeperiod=40) +# dataframe['sma3'] = ta.SMA(dataframe, timeperiod=3) +# dataframe['sma5'] = ta.SMA(dataframe, timeperiod=5) +# dataframe['sma10'] = ta.SMA(dataframe, timeperiod=10) +# dataframe['sma21'] = ta.SMA(dataframe, timeperiod=21) +# dataframe['sma50'] = ta.SMA(dataframe, timeperiod=50) +# dataframe['sma100'] = ta.SMA(dataframe, timeperiod=100) -# SAR Parabol +# Parabolic SAR dataframe['sar'] = ta.SAR(dataframe) # TEMA - Triple Exponential Moving Average @@ -142,7 +169,7 @@ dataframe['htleadsine'] = hilbert['leadsine'] # # Chart type # # ------------------------------------ -# # Heikinashi stategy +# # Heikin Ashi Strategy # heikinashi = qtpylib.heikinashi(dataframe) # dataframe['ha_open'] = heikinashi['open'] # dataframe['ha_close'] = heikinashi['close']