Remove unused test-strategy
This commit is contained in:
parent
a0b9388757
commit
2595e40e47
@ -1402,7 +1402,6 @@ def test_api_strategies(botclient):
|
|||||||
'InformativeDecoratorTest',
|
'InformativeDecoratorTest',
|
||||||
'StrategyTestV2',
|
'StrategyTestV2',
|
||||||
'StrategyTestV3',
|
'StrategyTestV3',
|
||||||
'StrategyTestV3Analysis',
|
|
||||||
'StrategyTestV3Futures'
|
'StrategyTestV3Futures'
|
||||||
]}
|
]}
|
||||||
|
|
||||||
|
@ -1,175 +0,0 @@
|
|||||||
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
|
|
||||||
|
|
||||||
import talib.abstract as ta
|
|
||||||
from pandas import DataFrame
|
|
||||||
|
|
||||||
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
|
||||||
from freqtrade.strategy import (BooleanParameter, DecimalParameter, IntParameter, IStrategy,
|
|
||||||
RealParameter)
|
|
||||||
|
|
||||||
|
|
||||||
class StrategyTestV3Analysis(IStrategy):
|
|
||||||
"""
|
|
||||||
Strategy used by tests freqtrade bot.
|
|
||||||
Please do not modify this strategy, it's intended for internal use only.
|
|
||||||
Please look at the SampleStrategy in the user_data/strategy directory
|
|
||||||
or strategy repository https://github.com/freqtrade/freqtrade-strategies
|
|
||||||
for samples and inspiration.
|
|
||||||
"""
|
|
||||||
INTERFACE_VERSION = 3
|
|
||||||
|
|
||||||
# Minimal ROI designed for the strategy
|
|
||||||
minimal_roi = {
|
|
||||||
"40": 0.0,
|
|
||||||
"30": 0.01,
|
|
||||||
"20": 0.02,
|
|
||||||
"0": 0.04
|
|
||||||
}
|
|
||||||
|
|
||||||
# Optimal stoploss designed for the strategy
|
|
||||||
stoploss = -0.10
|
|
||||||
|
|
||||||
# Optimal timeframe for the strategy
|
|
||||||
timeframe = '5m'
|
|
||||||
|
|
||||||
# Optional order type mapping
|
|
||||||
order_types = {
|
|
||||||
'entry': 'limit',
|
|
||||||
'exit': 'limit',
|
|
||||||
'stoploss': 'limit',
|
|
||||||
'stoploss_on_exchange': False
|
|
||||||
}
|
|
||||||
|
|
||||||
# Number of candles the strategy requires before producing valid signals
|
|
||||||
startup_candle_count: int = 20
|
|
||||||
|
|
||||||
# Optional time in force for orders
|
|
||||||
order_time_in_force = {
|
|
||||||
'entry': 'gtc',
|
|
||||||
'exit': 'gtc',
|
|
||||||
}
|
|
||||||
|
|
||||||
buy_params = {
|
|
||||||
'buy_rsi': 35,
|
|
||||||
# Intentionally not specified, so "default" is tested
|
|
||||||
# 'buy_plusdi': 0.4
|
|
||||||
}
|
|
||||||
|
|
||||||
sell_params = {
|
|
||||||
'sell_rsi': 74,
|
|
||||||
'sell_minusdi': 0.4
|
|
||||||
}
|
|
||||||
|
|
||||||
buy_rsi = IntParameter([0, 50], default=30, space='buy')
|
|
||||||
buy_plusdi = RealParameter(low=0, high=1, default=0.5, space='buy')
|
|
||||||
sell_rsi = IntParameter(low=50, high=100, default=70, space='sell')
|
|
||||||
sell_minusdi = DecimalParameter(low=0, high=1, default=0.5001, decimals=3, space='sell',
|
|
||||||
load=False)
|
|
||||||
protection_enabled = BooleanParameter(default=True)
|
|
||||||
protection_cooldown_lookback = IntParameter([0, 50], default=30)
|
|
||||||
|
|
||||||
# TODO: Can this work with protection tests? (replace HyperoptableStrategy implicitly ... )
|
|
||||||
# @property
|
|
||||||
# def protections(self):
|
|
||||||
# prot = []
|
|
||||||
# if self.protection_enabled.value:
|
|
||||||
# prot.append({
|
|
||||||
# "method": "CooldownPeriod",
|
|
||||||
# "stop_duration_candles": self.protection_cooldown_lookback.value
|
|
||||||
# })
|
|
||||||
# return prot
|
|
||||||
|
|
||||||
bot_started = False
|
|
||||||
|
|
||||||
def bot_start(self):
|
|
||||||
self.bot_started = True
|
|
||||||
|
|
||||||
def informative_pairs(self):
|
|
||||||
|
|
||||||
return []
|
|
||||||
|
|
||||||
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
|
||||||
|
|
||||||
# Momentum Indicator
|
|
||||||
# ------------------------------------
|
|
||||||
|
|
||||||
# ADX
|
|
||||||
dataframe['adx'] = ta.ADX(dataframe)
|
|
||||||
|
|
||||||
# MACD
|
|
||||||
macd = ta.MACD(dataframe)
|
|
||||||
dataframe['macd'] = macd['macd']
|
|
||||||
dataframe['macdsignal'] = macd['macdsignal']
|
|
||||||
dataframe['macdhist'] = macd['macdhist']
|
|
||||||
|
|
||||||
# Minus Directional Indicator / Movement
|
|
||||||
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
|
|
||||||
|
|
||||||
# Plus Directional Indicator / Movement
|
|
||||||
dataframe['plus_di'] = ta.PLUS_DI(dataframe)
|
|
||||||
|
|
||||||
# RSI
|
|
||||||
dataframe['rsi'] = ta.RSI(dataframe)
|
|
||||||
|
|
||||||
# Stoch fast
|
|
||||||
stoch_fast = ta.STOCHF(dataframe)
|
|
||||||
dataframe['fastd'] = stoch_fast['fastd']
|
|
||||||
dataframe['fastk'] = stoch_fast['fastk']
|
|
||||||
|
|
||||||
# Bollinger bands
|
|
||||||
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
|
|
||||||
dataframe['bb_lowerband'] = bollinger['lower']
|
|
||||||
dataframe['bb_middleband'] = bollinger['mid']
|
|
||||||
dataframe['bb_upperband'] = bollinger['upper']
|
|
||||||
|
|
||||||
# EMA - Exponential Moving Average
|
|
||||||
dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
|
|
||||||
|
|
||||||
return dataframe
|
|
||||||
|
|
||||||
def populate_entry_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
|
||||||
|
|
||||||
dataframe.loc[
|
|
||||||
(
|
|
||||||
(dataframe['rsi'] < self.buy_rsi.value) &
|
|
||||||
(dataframe['fastd'] < 35) &
|
|
||||||
(dataframe['adx'] > 30) &
|
|
||||||
(dataframe['plus_di'] > self.buy_plusdi.value)
|
|
||||||
) |
|
|
||||||
(
|
|
||||||
(dataframe['adx'] > 65) &
|
|
||||||
(dataframe['plus_di'] > self.buy_plusdi.value)
|
|
||||||
),
|
|
||||||
['enter_long', 'enter_tag']] = 1, 'enter_tag_long'
|
|
||||||
|
|
||||||
dataframe.loc[
|
|
||||||
(
|
|
||||||
qtpylib.crossed_below(dataframe['rsi'], self.sell_rsi.value)
|
|
||||||
),
|
|
||||||
['enter_short', 'enter_tag']] = 1, 'enter_tag_short'
|
|
||||||
|
|
||||||
return dataframe
|
|
||||||
|
|
||||||
def populate_exit_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
|
||||||
dataframe.loc[
|
|
||||||
(
|
|
||||||
(
|
|
||||||
(qtpylib.crossed_above(dataframe['rsi'], self.sell_rsi.value)) |
|
|
||||||
(qtpylib.crossed_above(dataframe['fastd'], 70))
|
|
||||||
) &
|
|
||||||
(dataframe['adx'] > 10) &
|
|
||||||
(dataframe['minus_di'] > 0)
|
|
||||||
) |
|
|
||||||
(
|
|
||||||
(dataframe['adx'] > 70) &
|
|
||||||
(dataframe['minus_di'] > self.sell_minusdi.value)
|
|
||||||
),
|
|
||||||
['exit_long', 'exit_tag']] = 1, 'exit_tag_long'
|
|
||||||
|
|
||||||
dataframe.loc[
|
|
||||||
(
|
|
||||||
qtpylib.crossed_above(dataframe['rsi'], self.buy_rsi.value)
|
|
||||||
),
|
|
||||||
['exit_long', 'exit_tag']] = 1, 'exit_tag_short'
|
|
||||||
|
|
||||||
return dataframe
|
|
@ -34,7 +34,7 @@ def test_search_all_strategies_no_failed():
|
|||||||
directory = Path(__file__).parent / "strats"
|
directory = Path(__file__).parent / "strats"
|
||||||
strategies = StrategyResolver.search_all_objects(directory, enum_failed=False)
|
strategies = StrategyResolver.search_all_objects(directory, enum_failed=False)
|
||||||
assert isinstance(strategies, list)
|
assert isinstance(strategies, list)
|
||||||
assert len(strategies) == 7
|
assert len(strategies) == 6
|
||||||
assert isinstance(strategies[0], dict)
|
assert isinstance(strategies[0], dict)
|
||||||
|
|
||||||
|
|
||||||
@ -42,10 +42,10 @@ def test_search_all_strategies_with_failed():
|
|||||||
directory = Path(__file__).parent / "strats"
|
directory = Path(__file__).parent / "strats"
|
||||||
strategies = StrategyResolver.search_all_objects(directory, enum_failed=True)
|
strategies = StrategyResolver.search_all_objects(directory, enum_failed=True)
|
||||||
assert isinstance(strategies, list)
|
assert isinstance(strategies, list)
|
||||||
assert len(strategies) == 8
|
assert len(strategies) == 7
|
||||||
# with enum_failed=True search_all_objects() shall find 2 good strategies
|
# with enum_failed=True search_all_objects() shall find 2 good strategies
|
||||||
# and 1 which fails to load
|
# and 1 which fails to load
|
||||||
assert len([x for x in strategies if x['class'] is not None]) == 7
|
assert len([x for x in strategies if x['class'] is not None]) == 6
|
||||||
assert len([x for x in strategies if x['class'] is None]) == 1
|
assert len([x for x in strategies if x['class'] is None]) == 1
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user