Merge branch 'feat/short' into funding-fee-dry-run

This commit is contained in:
Sam Germain 2021-11-06 22:46:00 -06:00
commit 252e45ebf2
73 changed files with 1653 additions and 394 deletions

View File

@ -9,7 +9,7 @@ assignees: ''
<!--
Have you searched for similar issues before posting it?
If you have discovered a bug in the bot, please [search our issue tracker](https://github.com/freqtrade/freqtrade/issues?q=is%3Aissue).
If you have discovered a bug in the bot, please [search the issue tracker](https://github.com/freqtrade/freqtrade/issues?q=is%3Aissue).
If it hasn't been reported, please create a new issue.
Please do not use bug reports to request new features.

View File

@ -22,4 +22,4 @@ Please do not use the question template to report bugs or to request new feature
## Your question
*Ask the question you have not been able to find an answer in our [Documentation](https://www.freqtrade.io/en/latest/)*
*Ask the question you have not been able to find an answer in the [Documentation](https://www.freqtrade.io/en/latest/)*

View File

@ -28,9 +28,10 @@ Please read the [exchange specific notes](docs/exchanges.md) to learn about even
- [X] [Binance](https://www.binance.com/) ([*Note for binance users](docs/exchanges.md#binance-blacklist))
- [X] [Bittrex](https://bittrex.com/)
- [X] [Kraken](https://kraken.com/)
- [X] [FTX](https://ftx.com)
- [X] [Gate.io](https://www.gate.io/ref/6266643)
- [X] [Kraken](https://kraken.com/)
- [X] [OKEX](https://www.okex.com/)
- [ ] [potentially many others](https://github.com/ccxt/ccxt/). _(We cannot guarantee they will work)_
### Community tested
@ -44,7 +45,7 @@ Exchanges confirmed working by the community:
We invite you to read the bot documentation to ensure you understand how the bot is working.
Please find the complete documentation on our [website](https://www.freqtrade.io).
Please find the complete documentation on the [freqtrade website](https://www.freqtrade.io).
## Features
@ -121,7 +122,7 @@ optional arguments:
### Telegram RPC commands
Telegram is not mandatory. However, this is a great way to control your bot. More details and the full command list on our [documentation](https://www.freqtrade.io/en/latest/telegram-usage/)
Telegram is not mandatory. However, this is a great way to control your bot. More details and the full command list on the [documentation](https://www.freqtrade.io/en/latest/telegram-usage/)
- `/start`: Starts the trader.
- `/stop`: Stops the trader.
@ -152,10 +153,10 @@ For any questions not covered by the documentation or for further information ab
### [Bugs / Issues](https://github.com/freqtrade/freqtrade/issues?q=is%3Aissue)
If you discover a bug in the bot, please
[search our issue tracker](https://github.com/freqtrade/freqtrade/issues?q=is%3Aissue)
[search the issue tracker](https://github.com/freqtrade/freqtrade/issues?q=is%3Aissue)
first. If it hasn't been reported, please
[create a new issue](https://github.com/freqtrade/freqtrade/issues/new/choose) and
ensure you follow the template guide so that our team can assist you as
ensure you follow the template guide so that the team can assist you as
quickly as possible.
### [Feature Requests](https://github.com/freqtrade/freqtrade/labels/enhancement)
@ -169,13 +170,13 @@ in the bug reports.
### [Pull Requests](https://github.com/freqtrade/freqtrade/pulls)
Feel like our bot is missing a feature? We welcome your pull requests!
Feel like the bot is missing a feature? We welcome your pull requests!
Please read our
Please read the
[Contributing document](https://github.com/freqtrade/freqtrade/blob/develop/CONTRIBUTING.md)
to understand the requirements before sending your pull-requests.
Coding is not a necessity to contribute - maybe start with improving our documentation?
Coding is not a necessity to contribute - maybe start with improving the documentation?
Issues labeled [good first issue](https://github.com/freqtrade/freqtrade/labels/good%20first%20issue) can be good first contributions, and will help get you familiar with the codebase.
**Note** before starting any major new feature work, *please open an issue describing what you are planning to do* or talk to us on [discord](https://discord.gg/p7nuUNVfP7) (please use the #dev channel for this). This will ensure that interested parties can give valuable feedback on the feature, and let others know that you are working on it.

BIN
docs/assets/frequi_url.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 11 KiB

View File

@ -459,7 +459,7 @@ The output will show a table containing the realized absolute Profit (in stake c
### Further backtest-result analysis
To further analyze your backtest results, you can [export the trades](#exporting-trades-to-file).
You can then load the trades to perform further analysis as shown in our [data analysis](data-analysis.md#backtesting) backtesting section.
You can then load the trades to perform further analysis as shown in the [data analysis](data-analysis.md#backtesting) backtesting section.
## Assumptions made by backtesting
@ -478,6 +478,7 @@ Since backtesting lacks some detailed information about what happens within a ca
- Low happens before high for stoploss, protecting capital first
- Trailing stoploss
- Trailing Stoploss is only adjusted if it's below the candle's low (otherwise it would be triggered)
- On trade entry candles that trigger trailing stoploss, the "minimum offset" (`stop_positive_offset`) is assumed (instead of high) - and the stop is calculated from this point
- High happens first - adjusting stoploss
- Low uses the adjusted stoploss (so sells with large high-low difference are backtested correctly)
- ROI applies before trailing-stop, ensuring profits are "top-capped" at ROI if both ROI and trailing stop applies

View File

@ -37,6 +37,15 @@ Using this scheme, all configuration settings will also be available as environm
Please note that Environment variables will overwrite corresponding settings in your configuration, but command line Arguments will always win.
Common example:
```
FREQTRADE__TELEGRAM__CHAT_ID=<telegramchatid>
FREQTRADE__TELEGRAM__TOKEN=<telegramToken>
FREQTRADE__EXCHANGE__KEY=<yourExchangeKey>
FREQTRADE__EXCHANGE__SECRET=<yourExchangeSecret>
```
!!! Note
Environment variables detected are logged at startup - so if you can't find why a value is not what you think it should be based on the configuration, make sure it's not loaded from an environment variable.
@ -90,6 +99,8 @@ Mandatory parameters are marked as **Required**, which means that they are requi
| `trailing_stop_positive_offset` | Offset on when to apply `trailing_stop_positive`. Percentage value which should be positive. More details in the [stoploss documentation](stoploss.md#trailing-stop-loss-only-once-the-trade-has-reached-a-certain-offset). [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `0.0` (no offset).* <br> **Datatype:** Float
| `trailing_only_offset_is_reached` | Only apply trailing stoploss when the offset is reached. [stoploss documentation](stoploss.md). [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `false`.* <br> **Datatype:** Boolean
| `fee` | Fee used during backtesting / dry-runs. Should normally not be configured, which has freqtrade fall back to the exchange default fee. Set as ratio (e.g. 0.001 = 0.1%). Fee is applied twice for each trade, once when buying, once when selling. <br> **Datatype:** Float (as ratio)
| `trading_mode` | Specifies if you want to trade regularly, trade with leverage, or trade contracts whose prices are derived from matching cryptocurrency prices. [leverage documentation](leverage.md). <br>*Defaults to `"spot"`.* <br> **Datatype:** String
| `collateral` | When trading with leverage, this determines if the collateral owned by the trader will be shared or isolated to each trading pair [leverage documentation](leverage.md). <br> **Datatype:** String
| `unfilledtimeout.buy` | **Required.** How long (in minutes or seconds) the bot will wait for an unfilled buy order to complete, after which the order will be cancelled and repeated at current (new) price, as long as there is a signal. [Strategy Override](#parameters-in-the-strategy).<br> **Datatype:** Integer
| `unfilledtimeout.sell` | **Required.** How long (in minutes or seconds) the bot will wait for an unfilled sell order to complete, after which the order will be cancelled and repeated at current (new) price, as long as there is a signal. [Strategy Override](#parameters-in-the-strategy).<br> **Datatype:** Integer
| `unfilledtimeout.unit` | Unit to use in unfilledtimeout setting. Note: If you set unfilledtimeout.unit to "seconds", "internals.process_throttle_secs" must be inferior or equal to timeout [Strategy Override](#parameters-in-the-strategy). <br> *Defaults to `minutes`.* <br> **Datatype:** String
@ -485,10 +496,10 @@ creating trades on the exchange.
```json
"exchange": {
"name": "bittrex",
"key": "key",
"secret": "secret",
...
"name": "bittrex",
"key": "key",
"secret": "secret",
...
}
```

View File

@ -11,7 +11,7 @@ Otherwise `--exchange` becomes mandatory.
You can use a relative timerange (`--days 20`) or an absolute starting point (`--timerange 20200101-`). For incremental downloads, the relative approach should be used.
!!! Tip "Tip: Updating existing data"
If you already have backtesting data available in your data-directory and would like to refresh this data up to today, do not use `--days` or `--timerange` parameters. Freqtrade will keep the available data and only download the missing data.
If you already have backtesting data available in your data-directory and would like to refresh this data up to today, freqtrade will automatically calculate the data missing for the existing pairs and the download will occur from the latest available point until "now", neither --days or --timerange parameters are required. Freqtrade will keep the available data and only download the missing data.
If you are updating existing data after inserting new pairs that you have no data for, use `--new-pairs-days xx` parameter. Specified number of days will be downloaded for new pairs while old pairs will be updated with missing data only.
If you use `--days xx` parameter alone - data for specified number of days will be downloaded for _all_ pairs. Be careful, if specified number of days is smaller than gap between now and last downloaded candle - freqtrade will delete all existing data to avoid gaps in candle data.

View File

@ -250,7 +250,23 @@ Most exchanges supported by CCXT should work out of the box.
To quickly test the public endpoints of an exchange, add a configuration for your exchange to `test_ccxt_compat.py` and run these tests with `pytest --longrun tests/exchange/test_ccxt_compat.py`.
Completing these tests successfully a good basis point (it's a requirement, actually), however these won't guarantee correct exchange functioning, as this only tests public endpoints, but no private endpoint (like generate order or similar).
Also try to use `freqtrade download-data` for an extended timerange and verify that the data downloaded correctly (no holes, the specified timerange was actually downloaded).
Also try to use `freqtrade download-data` for an extended timerange (multiple months) and verify that the data downloaded correctly (no holes, the specified timerange was actually downloaded).
These are prerequisites to have an exchange listed as either Supported or Community tested (listed on the homepage).
The below are "extras", which will make an exchange better (feature-complete) - but are not absolutely necessary for either of the 2 categories.
Additional tests / steps to complete:
* Verify data provided by `fetch_ohlcv()` - and eventually adjust `ohlcv_candle_limit` for this exchange
* Check L2 orderbook limit range (API documentation) - and eventually set as necessary
* Check if balance shows correctly (*)
* Create market order (*)
* Create limit order (*)
* Complete trade (buy + sell) (*)
* Compare result calculation between exchange and bot
* Ensure fees are applied correctly (check the database against the exchange)
(*) Requires API keys and Balance on the exchange.
### Stoploss On Exchange

View File

@ -1,6 +1,6 @@
# Exchange-specific Notes
This page combines common gotchas and informations which are exchange-specific and most likely don't apply to other exchanges.
This page combines common gotchas and Information which are exchange-specific and most likely don't apply to other exchanges.
## Exchange configuration
@ -46,7 +46,7 @@ In case of problems related to rate-limits (usually DDOS Exceptions in your logs
```
This configuration enables kraken, as well as rate-limiting to avoid bans from the exchange.
`"rateLimit": 3100` defines a wait-event of 0.2s between each call. This can also be completely disabled by setting `"enableRateLimit"` to false.
`"rateLimit": 3100` defines a wait-event of 3.1s between each call. This can also be completely disabled by setting `"enableRateLimit"` to false.
!!! Note
Optimal settings for rate-limiting depend on the exchange and the size of the whitelist, so an ideal parameter will vary on many other settings.
@ -182,6 +182,23 @@ Kucoin supports [time_in_force](configuration.md#understand-order_time_in_force)
For Kucoin, please add `"KCS/<STAKE>"` to your blacklist to avoid issues.
Accounts having KCS accounts use this to pay for fees - if your first trade happens to be on `KCS`, further trades will consume this position and make the initial KCS trade unsellable as the expected amount is not there anymore.
## OKEX
OKEX requires a passphrase for each api key, you will therefore need to add this key into the configuration so your exchange section looks as follows:
```json
"exchange": {
"name": "okex",
"key": "your_exchange_key",
"secret": "your_exchange_secret",
"password": "your_exchange_api_key_password",
// ...
}
```
!!! Warning
OKEX only provides 100 candles per api call. Therefore, the strategy will only have a pretty low amount of data available in backtesting mode.
## All exchanges
Should you experience constant errors with Nonce (like `InvalidNonce`), it is best to regenerate the API keys. Resetting Nonce is difficult and it's usually easier to regenerate the API keys.

View File

@ -42,7 +42,7 @@ position for a trade. Be patient!
### I have made 12 trades already, why is my total profit negative?
I understand your disappointment but unfortunately 12 trades is just
not enough to say anything. If you run backtesting, you can see that our
not enough to say anything. If you run backtesting, you can see that the
current algorithm does leave you on the plus side, but that is after
thousands of trades and even there, you will be left with losses on
specific coins that you have traded tens if not hundreds of times. We
@ -54,6 +54,21 @@ you can't say much from few trades.
Yes. You can edit your config and use the `/reload_config` command to reload the configuration. The bot will stop, reload the configuration and strategy and will restart with the new configuration and strategy.
### Why does my bot not sell everything it bought?
This is called "coin dust" and can happen on all exchanges.
It happens because many exchanges subtract fees from the "receiving currency" - so you buy 100 COIN - but you only get 99.9 COIN.
As COIN is trading in full lot sizes (1COIN steps), you cannot sell 0.9 COIN (or 99.9 COIN) - but you need to round down to 99 COIN.
This is not a bot-problem, but will also happen while manual trading.
While freqtrade can handle this (it'll sell 99 COIN), fees are often below the minimum tradable lot-size (you can only trade full COIN, not 0.9 COIN).
Leaving the dust (0.9 COIN) on the exchange makes usually sense, as the next time freqtrade buys COIN, it'll eat into the remaining small balance, this time selling everything it bought, and therefore slowly declining the dust balance (although it most likely will never reach exactly 0).
Where possible (e.g. on binance), the use of the exchange's dedicated fee currency will fix this.
On binance, it's sufficient to have BNB in your account, and have "Pay fees in BNB" enabled in your profile. Your BNB balance will slowly decline (as it's used to pay fees) - but you'll no longer encounter dust (Freqtrade will include the fees in the profit calculations).
Other exchanges don't offer such possibilities, where it's simply something you'll have to accept or move to a different exchange.
### I want to use incomplete candles
Freqtrade will not provide incomplete candles to strategies. Using incomplete candles will lead to repainting and consequently to strategies with "ghost" buys, which are impossible to both backtest, and verify after they happened.
@ -78,6 +93,18 @@ If this happens for all pairs in the pairlist, this might indicate a recent exch
Irrespectively of the reason, Freqtrade will fill up these candles with "empty" candles, where open, high, low and close are set to the previous candle close - and volume is empty. In a chart, this will look like a `_` - and is aligned with how exchanges usually represent 0 volume candles.
### I'm getting "Outdated history for pair xxx" in the log
The bot is trying to tell you that it got an outdated last candle (not the last complete candle).
As a consequence, Freqtrade will not enter a trade for this pair - as trading on old information is usually not what is desired.
This warning can point to one of the below problems:
* Exchange downtime -> Check your exchange status page / blog / twitter feed for details.
* Wrong system time -> Ensure your system-time is correct.
* Barely traded pair -> Check the pair on the exchange webpage, look at the timeframe your strategy uses. If the pair does not have any volume in some candles (usually visualized with a "volume 0" bar, and a "_" as candle), this pair did not have any trades in this timeframe. These pairs should ideally be avoided, as they can cause problems with order-filling.
* API problem -> API returns wrong data (this only here for completeness, and should not happen with supported exchanges).
### I'm getting the "RESTRICTED_MARKET" message in the log
Currently known to happen for US Bittrex users.

View File

@ -116,7 +116,7 @@ optional arguments:
ShortTradeDurHyperOptLoss, OnlyProfitHyperOptLoss,
SharpeHyperOptLoss, SharpeHyperOptLossDaily,
SortinoHyperOptLoss, SortinoHyperOptLossDaily,
MaxDrawDownHyperOptLoss
CalmarHyperOptLoss, MaxDrawDownHyperOptLoss
--disable-param-export
Disable automatic hyperopt parameter export.
--ignore-missing-spaces, --ignore-unparameterized-spaces
@ -524,6 +524,7 @@ Currently, the following loss functions are builtin:
* `SortinoHyperOptLoss` - optimizes Sortino Ratio calculated on trade returns relative to **downside** standard deviation.
* `SortinoHyperOptLossDaily` - optimizes Sortino Ratio calculated on **daily** trade returns relative to **downside** standard deviation.
* `MaxDrawDownHyperOptLoss` - Optimizes Maximum drawdown.
* `CalmarHyperOptLoss` - Optimizes Calmar Ratio calculated on trade returns relative to max drawdown.
Creation of a custom loss function is covered in the [Advanced Hyperopt](advanced-hyperopt.md) part of the documentation.

View File

@ -39,8 +39,9 @@ Please read the [exchange specific notes](exchanges.md) to learn about eventual,
- [X] [Binance](https://www.binance.com/) ([*Note for binance users](docs/exchanges.md#binance-blacklist))
- [X] [Bittrex](https://bittrex.com/)
- [X] [FTX](https://ftx.com)
- [X] [Kraken](https://kraken.com/)
- [X] [Gate.io](https://www.gate.io/ref/6266643)
- [X] [Kraken](https://kraken.com/)
- [X] [OKEX](https://www.okex.com/)
- [ ] [potentially many others through <img alt="ccxt" width="30px" src="assets/ccxt-logo.svg" />](https://github.com/ccxt/ccxt/). _(We cannot guarantee they will work)_
### Community tested
@ -80,4 +81,4 @@ For any questions not covered by the documentation or for further information ab
## Ready to try?
Begin by reading our installation guide [for docker](docker_quickstart.md) (recommended), or for [installation without docker](installation.md).
Begin by reading the installation guide [for docker](docker_quickstart.md) (recommended), or for [installation without docker](installation.md).

View File

@ -1,21 +1,85 @@
# Leverage
!!! Warning "Beta feature"
This feature is still in it's testing phase. Should you notice something you think is wrong please let us know via Discord or via Github Issue.
!!! Note "Multiple bots on one account"
You can't run 2 bots on the same account with leverage. For leveraged / margin trading, freqtrade assumes it's the only user of the account, and all liquidation levels are calculated based on this assumption.
!!! Danger "Trading with leverage is very risky"
Do not trade with a leverage > 1 using a strategy that hasn't shown positive results in a live run using the spot market. Check the stoploss of your strategy. With a leverage of 2, a stoploss of 0.5 would be too low, and these trades would be liquidated before reaching that stoploss.
We do not assume any responsibility for eventual losses that occur from using this software or this mode.
Please only use advanced trading modes when you know how freqtrade (and your strategy) works.
Also, never risk more than what you can afford to lose.
## Understand `trading_mode`
The possible values are: `spot` (default), `margin`(*coming soon*) or `futures`.
### Spot
Regular trading mode (low risk)
- Long trades only (No short trades).
- No leverage.
- No Liquidation.
- Profits gained/lost are equal to the change in value of the assets (minus trading fees).
### Leverage trading modes
# TODO-lev: include a resource to help calculate stoplosses that are above the liquidation price
With leverage, a trader borrows capital from the exchange. The capital must be repayed fully to the exchange(potentially with interest), and the trader keeps any profits, or pays any losses, from any trades made using the borrowed capital.
Because the capital must always be repayed, exchanges will **liquidate** a trade (forcefully sell the traders assets) made using borrowed capital when the total value of assets in a leverage account drops to a certain point(a point where the total value of losses is less than the value of the collateral that the trader actually owns in the leverage account), in order to ensure that the trader has enough capital to pay back the borrowed assets to the exchange. The exchange will also charge a **liquidation fee**, adding to the traders losses. For this reason, **DO NOT TRADE WITH LEVERAGE IF YOU DON'T KNOW EXACTLY WHAT YOUR DOING. LEVERAGE TRADING IS HIGH RISK, AND CAN RESULT IN THE VALUE OF YOUR ASSETS DROPPING TO 0 VERY QUICKLY, WITH NO CHANCE OF INCREASING IN VALUE AGAIN**
#### MARGIN
*Currently unavailable*
Trading occurs on the spot market, but the exchange lends currency to you in an amount equal to the chosen leverage. You pay the amount lent to you back to the exchange with interest, and your profits/losses are multiplied by the leverage specified
#### FUTURES
Perpetual swaps (also known as Perpetual Futures) are contracts traded at a price that is closely tied to the underlying asset they are based off of(ex. ). You are not trading the actual asset but instead are trading a derivative contract. Perpetual swap contracts can last indefinately, in contrast to futures or option contracts.
In addition to the gains/losses from the change in price of the contract, traders also exchange funding fees, which are gains/losses worth an amount that is derived from the difference in price between the contract and the underlying asset. The difference in price between a contract and the underlying asset varies between exchanges.
In addition to the gains/losses from the change in price of the futures contract, traders also exchange funding fees, which are gains/losses worth an amount that is derived from the difference in price between the futures contract and the underlying asset. The difference in price between a futures contract and the underlying asset varies between exchanges.
``` json
"trading_mode": "futures"
```
### Collateral
The possible values are: `isolated`, or `cross`(*currently unavailable*)
#### ISOLATED
Each market(trading pair), keeps collateral in a separate account
``` json
"collateral": "isolated"
```
#### CROSS
*currently unavailable*
One account is used to share collateral between markets (trading pairs). Margin is taken from total account balance to avoid liquidation when needed.
``` json
"collateral": "cross"
```
### Developer
#### Margin mode
For shorts, the currency which pays the interest fee for the `borrowed` currency is purchased at the same time of the closing trade (This means that the amount purchased in short closing trades is greater than the amount sold in short opening trades).
For longs, the currency which pays the interest fee for the `borrowed` will already be owned by the user and does not need to be purchased. The interest is subtracted from the close_value of the trade.
For longs, the currency which pays the interest fee for the `borrowed` will already be owned by the user and does not need to be purchased. The interest is subtracted from the `close_value` of the trade.
## Binance margin trading interest formula
All Fees are included in `current_profit` calculations during the trade.
I (interest) = P (borrowed money) * R (daily_interest/24) * ceiling(T) (in hours)
[source](https://www.binance.com/en/support/faq/360030157812)
#### FUTURES MODE
## Kraken margin trading interest formula
Opening fee = P (borrowed money) * R (quat_hourly_interest)
Rollover fee = P (borrowed money) * R (quat_hourly_interest) * ceiling(T/4) (in hours)
I (interest) = Opening fee + Rollover fee
[source](https://support.kraken.com/hc/en-us/articles/206161568-What-are-the-fees-for-margin-trading-)
# TODO-lev: Mention that says you can't run 2 bots on the same account with leverage,
#TODO-lev: Create a huge risk disclaimer
Funding fees are either added or subtracted from the total amount of a trade

View File

@ -1,4 +1,4 @@
mkdocs==1.2.3
mkdocs-material==7.3.4
mkdocs-material==7.3.6
mdx_truly_sane_lists==1.2
pymdown-extensions==9.0

View File

@ -330,12 +330,15 @@ Since the access token has a short timeout (15 min) - the `token/refresh` reques
### CORS
All web-based front-ends are subject to [CORS](https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS) - Cross-Origin Resource Sharing.
Since most of the requests to the Freqtrade API must be authenticated, a proper CORS policy is key to avoid security problems.
Also, the standard disallows `*` CORS policies for requests with credentials, so this setting must be set appropriately.
This whole section is only necessary in cross-origin cases (where you multiple bot API's running on `localhost:8081`, `localhost:8082`, ...), and want to combine them into one FreqUI instance.
Users can configure this themselves via the `CORS_origins` configuration setting.
It consists of a list of allowed sites that are allowed to consume resources from the bot's API.
??? info "Technical explanation"
All web-based front-ends are subject to [CORS](https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS) - Cross-Origin Resource Sharing.
Since most of the requests to the Freqtrade API must be authenticated, a proper CORS policy is key to avoid security problems.
Also, the standard disallows `*` CORS policies for requests with credentials, so this setting must be set appropriately.
Users can allow access from different origin URL's to the bot API via the `CORS_origins` configuration setting.
It consists of a list of allowed URL's that are allowed to consume resources from the bot's API.
Assuming your application is deployed as `https://frequi.freqtrade.io/home/` - this would mean that the following configuration becomes necessary:
@ -348,5 +351,19 @@ Assuming your application is deployed as `https://frequi.freqtrade.io/home/` - t
}
```
In the following (pretty common) case, FreqUI is accessible on `http://localhost:8080/trade` (this is what you see in your navbar when navigating to freqUI).
![freqUI url](assets/frequi_url.png)
The correct configuration for this case is `http://localhost:8080` - the main part of the URL including the port.
```jsonc
{
//...
"jwt_secret_key": "somethingrandom",
"CORS_origins": ["http://localhost:8080"],
//...
}
```
!!! Note
We strongly recommend to also set `jwt_secret_key` to something random and known only to yourself to avoid unauthorized access to your bot.

View File

@ -182,7 +182,7 @@ For example, simplified math:
* the bot buys an asset at a price of 100$
* the stop loss is defined at -10%
* the stop loss would get triggered once the asset drops below 90$
* stoploss will remain at 90$ unless asset increases to or above our configured offset
* stoploss will remain at 90$ unless asset increases to or above the configured offset
* assuming the asset now increases to 103$ (where we have the offset configured)
* the stop loss will now be -2% of 103$ = 100.94$
* now the asset drops in value to 101\$, the stop loss will still be 100.94$ and would trigger at 100.94$

View File

@ -436,7 +436,7 @@ class AwesomeStrategy(IStrategy):
# ... populate_* methods
# Set unfilledtimeout to 25 hours, since our maximum timeout from below is 24 hours.
# Set unfilledtimeout to 25 hours, since the maximum timeout from below is 24 hours.
unfilledtimeout = {
'buy': 60 * 25,
'sell': 60 * 25
@ -475,7 +475,7 @@ class AwesomeStrategy(IStrategy):
# ... populate_* methods
# Set unfilledtimeout to 25 hours, since our maximum timeout from below is 24 hours.
# Set unfilledtimeout to 25 hours, since the maximum timeout from below is 24 hours.
unfilledtimeout = {
'buy': 60 * 25,
'sell': 60 * 25

View File

@ -312,7 +312,7 @@ Currently this is `pair`, which can be accessed using `metadata['pair']` - and w
The Metadata-dict should not be modified and does not persist information across multiple calls.
Instead, have a look at the section [Storing information](strategy-advanced.md#Storing-information)
## Additional data (informative_pairs)
## Informative Pairs
### Get data for non-tradeable pairs
@ -341,6 +341,133 @@ A full sample can be found [in the DataProvider section](#complete-data-provider
***
### Informative pairs decorator (`@informative()`)
In most common case it is possible to easily define informative pairs by using a decorator. All decorated `populate_indicators_*` methods run in isolation,
not having access to data from other informative pairs, in the end all informative dataframes are merged and passed to main `populate_indicators()` method.
When hyperopting, use of hyperoptable parameter `.value` attribute is not supported. Please use `.range` attribute. See [optimizing an indicator parameter](hyperopt.md#optimizing-an-indicator-parameter)
for more information.
??? info "Full documentation"
``` python
def informative(timeframe: str, asset: str = '',
fmt: Optional[Union[str, Callable[[KwArg(str)], str]]] = None,
ffill: bool = True) -> Callable[[PopulateIndicators], PopulateIndicators]:
"""
A decorator for populate_indicators_Nn(self, dataframe, metadata), allowing these functions to
define informative indicators.
Example usage:
@informative('1h')
def populate_indicators_1h(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)
return dataframe
:param timeframe: Informative timeframe. Must always be equal or higher than strategy timeframe.
:param asset: Informative asset, for example BTC, BTC/USDT, ETH/BTC. Do not specify to use
current pair.
:param fmt: Column format (str) or column formatter (callable(name, asset, timeframe)). When not
specified, defaults to:
* {base}_{quote}_{column}_{timeframe} if asset is specified.
* {column}_{timeframe} if asset is not specified.
Format string supports these format variables:
* {asset} - full name of the asset, for example 'BTC/USDT'.
* {base} - base currency in lower case, for example 'eth'.
* {BASE} - same as {base}, except in upper case.
* {quote} - quote currency in lower case, for example 'usdt'.
* {QUOTE} - same as {quote}, except in upper case.
* {column} - name of dataframe column.
* {timeframe} - timeframe of informative dataframe.
:param ffill: ffill dataframe after merging informative pair.
"""
```
??? Example "Fast and easy way to define informative pairs"
Most of the time we do not need power and flexibility offered by `merge_informative_pair()`, therefore we can use a decorator to quickly define informative pairs.
``` python
from datetime import datetime
from freqtrade.persistence import Trade
from freqtrade.strategy import IStrategy, informative
class AwesomeStrategy(IStrategy):
# This method is not required.
# def informative_pairs(self): ...
# Define informative upper timeframe for each pair. Decorators can be stacked on same
# method. Available in populate_indicators as 'rsi_30m' and 'rsi_1h'.
@informative('30m')
@informative('1h')
def populate_indicators_1h(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)
return dataframe
# Define BTC/STAKE informative pair. Available in populate_indicators and other methods as
# 'btc_rsi_1h'. Current stake currency should be specified as {stake} format variable
# instead of hardcoding actual stake currency. Available in populate_indicators and other
# methods as 'btc_usdt_rsi_1h' (when stake currency is USDT).
@informative('1h', 'BTC/{stake}')
def populate_indicators_btc_1h(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)
return dataframe
# Define BTC/ETH informative pair. You must specify quote currency if it is different from
# stake currency. Available in populate_indicators and other methods as 'eth_btc_rsi_1h'.
@informative('1h', 'ETH/BTC')
def populate_indicators_eth_btc_1h(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)
return dataframe
# Define BTC/STAKE informative pair. A custom formatter may be specified for formatting
# column names. A callable `fmt(**kwargs) -> str` may be specified, to implement custom
# formatting. Available in populate_indicators and other methods as 'rsi_upper'.
@informative('1h', 'BTC/{stake}', '{column}')
def populate_indicators_btc_1h_2(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe['rsi_upper'] = ta.RSI(dataframe, timeperiod=14)
return dataframe
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
# Strategy timeframe indicators for current pair.
dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)
# Informative pairs are available in this method.
dataframe['rsi_less'] = dataframe['rsi'] < dataframe['rsi_1h']
return dataframe
```
!!! Note
Do not use `@informative` decorator if you need to use data of one informative pair when generating another informative pair. Instead, define informative pairs
manually as described [in the DataProvider section](#complete-data-provider-sample).
!!! Note
Use string formatting when accessing informative dataframes of other pairs. This will allow easily changing stake currency in config without having to adjust strategy code.
``` python
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
stake = self.config['stake_currency']
dataframe.loc[
(
(dataframe[f'btc_{stake}_rsi_1h'] < 35)
&
(dataframe['volume'] > 0)
),
['buy', 'buy_tag']] = (1, 'buy_signal_rsi')
return dataframe
```
Alternatively column renaming may be used to remove stake currency from column names: `@informative('1h', 'BTC/{stake}', fmt='{base}_{column}_{timeframe}')`.
!!! Warning "Duplicate method names"
Methods tagged with `@informative()` decorator must always have unique names! Re-using same name (for example when copy-pasting already defined informative method)
will overwrite previously defined method and not produce any errors due to limitations of Python programming language. In such cases you will find that indicators
created in earlier-defined methods are not available in the dataframe. Carefully review method names and make sure they are unique!
## Additional data (DataProvider)
The strategy provides access to the `DataProvider`. This allows you to get additional data to use in your strategy.
@ -384,9 +511,9 @@ The strategy might look something like this:
*Scan through the top 10 pairs by volume using the `VolumePairList` every 5 minutes and use a 14 day RSI to buy and sell.*
Due to the limited available data, it's very difficult to resample our `5m` candles into daily candles for use in a 14 day RSI. Most exchanges limit us to just 500 candles which effectively gives us around 1.74 daily candles. We need 14 days at least!
Due to the limited available data, it's very difficult to resample `5m` candles into daily candles for use in a 14 day RSI. Most exchanges limit us to just 500 candles which effectively gives us around 1.74 daily candles. We need 14 days at least!
Since we can't resample our data we will have to use an informative pair; and since our whitelist will be dynamic we don't know which pair(s) to use.
Since we can't resample the data we will have to use an informative pair; and since the whitelist will be dynamic we don't know which pair(s) to use.
This is where calling `self.dp.current_whitelist()` comes in handy.
@ -686,131 +813,6 @@ In some situations it may be confusing to deal with stops relative to current ra
```
### *@informative()*
``` python
def informative(timeframe: str, asset: str = '',
fmt: Optional[Union[str, Callable[[KwArg(str)], str]]] = None,
ffill: bool = True) -> Callable[[PopulateIndicators], PopulateIndicators]:
"""
A decorator for populate_indicators_Nn(self, dataframe, metadata), allowing these functions to
define informative indicators.
Example usage:
@informative('1h')
def populate_indicators_1h(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)
return dataframe
:param timeframe: Informative timeframe. Must always be equal or higher than strategy timeframe.
:param asset: Informative asset, for example BTC, BTC/USDT, ETH/BTC. Do not specify to use
current pair.
:param fmt: Column format (str) or column formatter (callable(name, asset, timeframe)). When not
specified, defaults to:
* {base}_{quote}_{column}_{timeframe} if asset is specified.
* {column}_{timeframe} if asset is not specified.
Format string supports these format variables:
* {asset} - full name of the asset, for example 'BTC/USDT'.
* {base} - base currency in lower case, for example 'eth'.
* {BASE} - same as {base}, except in upper case.
* {quote} - quote currency in lower case, for example 'usdt'.
* {QUOTE} - same as {quote}, except in upper case.
* {column} - name of dataframe column.
* {timeframe} - timeframe of informative dataframe.
:param ffill: ffill dataframe after merging informative pair.
"""
```
In most common case it is possible to easily define informative pairs by using a decorator. All decorated `populate_indicators_*` methods run in isolation,
not having access to data from other informative pairs, in the end all informative dataframes are merged and passed to main `populate_indicators()` method.
When hyperopting, use of hyperoptable parameter `.value` attribute is not supported. Please use `.range` attribute. See [optimizing an indicator parameter](hyperopt.md#optimizing-an-indicator-parameter)
for more information.
??? Example "Fast and easy way to define informative pairs"
Most of the time we do not need power and flexibility offered by `merge_informative_pair()`, therefore we can use a decorator to quickly define informative pairs.
``` python
from datetime import datetime
from freqtrade.persistence import Trade
from freqtrade.strategy import IStrategy, informative
class AwesomeStrategy(IStrategy):
# This method is not required.
# def informative_pairs(self): ...
# Define informative upper timeframe for each pair. Decorators can be stacked on same
# method. Available in populate_indicators as 'rsi_30m' and 'rsi_1h'.
@informative('30m')
@informative('1h')
def populate_indicators_1h(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)
return dataframe
# Define BTC/STAKE informative pair. Available in populate_indicators and other methods as
# 'btc_rsi_1h'. Current stake currency should be specified as {stake} format variable
# instead of hardcoding actual stake currency. Available in populate_indicators and other
# methods as 'btc_usdt_rsi_1h' (when stake currency is USDT).
@informative('1h', 'BTC/{stake}')
def populate_indicators_btc_1h(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)
return dataframe
# Define BTC/ETH informative pair. You must specify quote currency if it is different from
# stake currency. Available in populate_indicators and other methods as 'eth_btc_rsi_1h'.
@informative('1h', 'ETH/BTC')
def populate_indicators_eth_btc_1h(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)
return dataframe
# Define BTC/STAKE informative pair. A custom formatter may be specified for formatting
# column names. A callable `fmt(**kwargs) -> str` may be specified, to implement custom
# formatting. Available in populate_indicators and other methods as 'rsi_upper'.
@informative('1h', 'BTC/{stake}', '{column}')
def populate_indicators_btc_1h_2(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe['rsi_upper'] = ta.RSI(dataframe, timeperiod=14)
return dataframe
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
# Strategy timeframe indicators for current pair.
dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)
# Informative pairs are available in this method.
dataframe['rsi_less'] = dataframe['rsi'] < dataframe['rsi_1h']
return dataframe
```
!!! Note
Do not use `@informative` decorator if you need to use data of one informative pair when generating another informative pair. Instead, define informative pairs
manually as described [in the DataProvider section](#complete-data-provider-sample).
!!! Note
Use string formatting when accessing informative dataframes of other pairs. This will allow easily changing stake currency in config without having to adjust strategy code.
``` python
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
stake = self.config['stake_currency']
dataframe.loc[
(
(dataframe[f'btc_{stake}_rsi_1h'] < 35)
&
(dataframe['volume'] > 0)
),
['buy', 'buy_tag']] = (1, 'buy_signal_rsi')
return dataframe
```
Alternatively column renaming may be used to remove stake currency from column names: `@informative('1h', 'BTC/{stake}', fmt='{base}_{column}_{timeframe}')`.
!!! Warning "Duplicate method names"
Methods tagged with `@informative()` decorator must always have unique names! Re-using same name (for example when copy-pasting already defined informative method)
will overwrite previously defined method and not produce any errors due to limitations of Python programming language. In such cases you will find that indicators
created in earlier-defined methods are not available in the dataframe. Carefully review method names and make sure they are unique!
## Additional data (Wallets)
The strategy provides access to the `Wallets` object. This contains the current balances on the exchange.
@ -894,7 +896,8 @@ Sometimes it may be desired to lock a pair after certain events happen (e.g. mul
Freqtrade has an easy method to do this from within the strategy, by calling `self.lock_pair(pair, until, [reason])`.
`until` must be a datetime object in the future, after which trading will be re-enabled for that pair, while `reason` is an optional string detailing why the pair was locked.
Locks can also be lifted manually, by calling `self.unlock_pair(pair)`.
Locks can also be lifted manually, by calling `self.unlock_pair(pair)` or `self.unlock_reason(<reason>)` - providing reason the pair was locked with.
`self.unlock_reason(<reason>)` will unlock all pairs currently locked with the provided reason.
To verify if a pair is currently locked, use `self.is_pair_locked(pair)`.
@ -966,7 +969,7 @@ The following lists some common patterns which should be avoided to prevent frus
## Further strategy ideas
To get additional Ideas for strategies, head over to our [strategy repository](https://github.com/freqtrade/freqtrade-strategies). Feel free to use them as they are - but results will depend on the current market situation, pairs used etc. - therefore please backtest the strategy for your exchange/desired pairs first, evaluate carefully, use at your own risk.
To get additional Ideas for strategies, head over to the [strategy repository](https://github.com/freqtrade/freqtrade-strategies). Feel free to use them as they are - but results will depend on the current market situation, pairs used etc. - therefore please backtest the strategy for your exchange/desired pairs first, evaluate carefully, use at your own risk.
Feel free to use any of them as inspiration for your own strategies.
We're happy to accept Pull Requests containing new Strategies to that repo.

View File

@ -171,7 +171,7 @@ official commands. You can ask at any moment for help with `/help`.
| `/profit [<n>]` | Display a summary of your profit/loss from close trades and some stats about your performance, over the last n days (all trades by default)
| `/forcesell <trade_id>` | Instantly sells the given trade (Ignoring `minimum_roi`).
| `/forcesell all` | Instantly sells all open trades (Ignoring `minimum_roi`).
| `/forcebuy <pair> [rate]` | Instantly buys the given pair. Rate is optional. (`forcebuy_enable` must be set to True)
| `/forcebuy <pair> [rate]` | Instantly buys the given pair. Rate is optional and only applies to limit orders. (`forcebuy_enable` must be set to True)
| `/performance` | Show performance of each finished trade grouped by pair
| `/balance` | Show account balance per currency
| `/daily <n>` | Shows profit or loss per day, over the last n days (n defaults to 7)

View File

@ -577,6 +577,46 @@ Common arguments:
```
## Show previous Backtest results
Allows you to show previous backtest results.
Adding `--show-pair-list` outputs a sorted pair list you can easily copy/paste into your configuration (omitting bad pairs).
??? Warning "Strategy overfitting"
Only using winning pairs can lead to an overfitted strategy, which will not work well on future data. Make sure to extensively test your strategy in dry-run before risking real money.
```
usage: freqtrade backtesting-show [-h] [-v] [--logfile FILE] [-V] [-c PATH]
[-d PATH] [--userdir PATH]
[--export-filename PATH] [--show-pair-list]
optional arguments:
-h, --help show this help message and exit
--export-filename PATH
Save backtest results to the file with this filename.
Requires `--export` to be set as well. Example:
`--export-filename=user_data/backtest_results/backtest
_today.json`
--show-pair-list Show backtesting pairlist sorted by profit.
Common arguments:
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
--logfile FILE Log to the file specified. Special values are:
'syslog', 'journald'. See the documentation for more
details.
-V, --version show program's version number and exit
-c PATH, --config PATH
Specify configuration file (default:
`userdir/config.json` or `config.json` whichever
exists). Multiple --config options may be used. Can be
set to `-` to read config from stdin.
-d PATH, --datadir PATH
Path to directory with historical backtesting data.
--userdir PATH, --user-data-dir PATH
Path to userdata directory.
```
## List Hyperopt results
You can list the hyperoptimization epochs the Hyperopt module evaluated previously with the `hyperopt-list` sub-command.

View File

@ -48,7 +48,7 @@ Sample configuration (tested using IFTTT).
},
```
The url in `webhook.url` should point to the correct url for your webhook. If you're using [IFTTT](https://ifttt.com) (as shown in the sample above) please insert our event and key to the url.
The url in `webhook.url` should point to the correct url for your webhook. If you're using [IFTTT](https://ifttt.com) (as shown in the sample above) please insert your event and key to the url.
You can set the POST body format to Form-Encoded (default) or JSON-Encoded. Use `"format": "form"` or `"format": "json"` respectively. Example configuration for Mattermost Cloud integration:

View File

@ -16,7 +16,8 @@ from freqtrade.commands.hyperopt_commands import start_hyperopt_list, start_hype
from freqtrade.commands.list_commands import (start_list_exchanges, start_list_markets,
start_list_strategies, start_list_timeframes,
start_show_trades)
from freqtrade.commands.optimize_commands import start_backtesting, start_edge, start_hyperopt
from freqtrade.commands.optimize_commands import (start_backtesting, start_backtesting_show,
start_edge, start_hyperopt)
from freqtrade.commands.pairlist_commands import start_test_pairlist
from freqtrade.commands.plot_commands import start_plot_dataframe, start_plot_profit
from freqtrade.commands.trade_commands import start_trading

View File

@ -41,6 +41,8 @@ ARGS_LIST_STRATEGIES = ["strategy_path", "print_one_column", "print_colorized"]
ARGS_LIST_HYPEROPTS = ["hyperopt_path", "print_one_column", "print_colorized"]
ARGS_BACKTEST_SHOW = ["exportfilename", "backtest_show_pair_list"]
ARGS_LIST_EXCHANGES = ["print_one_column", "list_exchanges_all"]
ARGS_LIST_TIMEFRAMES = ["exchange", "print_one_column"]
@ -94,7 +96,7 @@ ARGS_HYPEROPT_SHOW = ["hyperopt_list_best", "hyperopt_list_profitable", "hyperop
NO_CONF_REQURIED = ["convert-data", "convert-trade-data", "download-data", "list-timeframes",
"list-markets", "list-pairs", "list-strategies", "list-data",
"hyperopt-list", "hyperopt-show",
"hyperopt-list", "hyperopt-show", "backtest-filter",
"plot-dataframe", "plot-profit", "show-trades", "trades-to-ohlcv"]
NO_CONF_ALLOWED = ["create-userdir", "list-exchanges", "new-strategy"]
@ -173,7 +175,8 @@ class Arguments:
self.parser = argparse.ArgumentParser(description='Free, open source crypto trading bot')
self._build_args(optionlist=['version'], parser=self.parser)
from freqtrade.commands import (start_backtesting, start_convert_data, start_convert_trades,
from freqtrade.commands import (start_backtesting, start_backtesting_show,
start_convert_data, start_convert_trades,
start_create_userdir, start_download_data, start_edge,
start_hyperopt, start_hyperopt_list, start_hyperopt_show,
start_install_ui, start_list_data, start_list_exchanges,
@ -264,6 +267,15 @@ class Arguments:
backtesting_cmd.set_defaults(func=start_backtesting)
self._build_args(optionlist=ARGS_BACKTEST, parser=backtesting_cmd)
# Add backtesting-show subcommand
backtesting_show_cmd = subparsers.add_parser(
'backtesting-show',
help='Show past Backtest results',
parents=[_common_parser],
)
backtesting_show_cmd.set_defaults(func=start_backtesting_show)
self._build_args(optionlist=ARGS_BACKTEST_SHOW, parser=backtesting_show_cmd)
# Add edge subcommand
edge_cmd = subparsers.add_parser('edge', help='Edge module.',
parents=[_common_parser, _strategy_parser])

View File

@ -83,11 +83,19 @@ def ask_user_config() -> Dict[str, Any]:
if val == UNLIMITED_STAKE_AMOUNT
else val
},
{
"type": "select",
"name": "timeframe_in_config",
"message": "Tim",
"choices": ["Have the strategy define timeframe.", "Override in configuration."]
},
{
"type": "text",
"name": "timeframe",
"message": "Please insert your desired timeframe (e.g. 5m):",
"default": "5m",
"when": lambda x: x["timeframe_in_config"] == 'Override in configuration.'
},
{
"type": "text",
@ -107,6 +115,7 @@ def ask_user_config() -> Dict[str, Any]:
"ftx",
"kucoin",
"gateio",
"okex",
Separator(),
"other",
],
@ -134,7 +143,7 @@ def ask_user_config() -> Dict[str, Any]:
"type": "password",
"name": "exchange_key_password",
"message": "Insert Exchange API Key password",
"when": lambda x: not x['dry_run'] and x['exchange_name'] == 'kucoin'
"when": lambda x: not x['dry_run'] and x['exchange_name'] in ('kucoin', 'okex')
},
{
"type": "confirm",

View File

@ -152,6 +152,12 @@ AVAILABLE_CLI_OPTIONS = {
action='store_false',
default=True,
),
"backtest_show_pair_list": Arg(
'--show-pair-list',
help='Show backtesting pairlist sorted by profit.',
action='store_true',
default=False,
),
"enable_protections": Arg(
'--enable-protections', '--enableprotections',
help='Enable protections for backtesting.'

View File

@ -54,6 +54,22 @@ def start_backtesting(args: Dict[str, Any]) -> None:
backtesting.start()
def start_backtesting_show(args: Dict[str, Any]) -> None:
"""
Show previous backtest result
"""
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
from freqtrade.data.btanalysis import load_backtest_stats
from freqtrade.optimize.optimize_reports import show_backtest_results, show_sorted_pairlist
results = load_backtest_stats(config['exportfilename'])
show_backtest_results(config, results)
show_sorted_pairlist(config, results)
def start_hyperopt(args: Dict[str, Any]) -> None:
"""
Start hyperopt script

View File

@ -245,6 +245,10 @@ class Configuration:
self._args_to_config(config, argname='timeframe_detail',
logstring='Parameter --timeframe-detail detected, '
'using {} for intra-candle backtesting ...')
self._args_to_config(config, argname='backtest_show_pair_list',
logstring='Parameter --show-pair-list detected.')
self._args_to_config(config, argname='stake_amount',
logstring='Parameter --stake-amount detected, '
'overriding stake_amount to: {} ...')

View File

@ -32,6 +32,7 @@ def flat_vars_to_nested_dict(env_dict: Dict[str, Any], prefix: str) -> Dict[str,
:param prefix: Prefix to consider (usually FREQTRADE__)
:return: Nested dict based on available and relevant variables.
"""
no_convert = ['CHAT_ID']
relevant_vars: Dict[str, Any] = {}
for env_var, val in sorted(env_dict.items()):
@ -39,9 +40,9 @@ def flat_vars_to_nested_dict(env_dict: Dict[str, Any], prefix: str) -> Dict[str,
logger.info(f"Loading variable '{env_var}'")
key = env_var.replace(prefix, '')
for k in reversed(key.split('__')):
val = {k.lower(): get_var_typed(val) if type(val) != dict else val}
val = {k.lower(): get_var_typed(val)
if type(val) != dict and k not in no_convert else val}
relevant_vars = deep_merge_dicts(val, relevant_vars)
return relevant_vars

View File

@ -25,6 +25,7 @@ ORDERTIF_POSSIBILITIES = ['gtc', 'fok', 'ioc']
HYPEROPT_LOSS_BUILTIN = ['ShortTradeDurHyperOptLoss', 'OnlyProfitHyperOptLoss',
'SharpeHyperOptLoss', 'SharpeHyperOptLossDaily',
'SortinoHyperOptLoss', 'SortinoHyperOptLossDaily',
'CalmarHyperOptLoss',
'MaxDrawDownHyperOptLoss']
AVAILABLE_PAIRLISTS = ['StaticPairList', 'VolumePairList',
'AgeFilter', 'OffsetFilter', 'PerformanceFilter',
@ -55,7 +56,6 @@ ENV_VAR_PREFIX = 'FREQTRADE__'
NON_OPEN_EXCHANGE_STATES = ('cancelled', 'canceled', 'closed', 'expired')
# Define decimals per coin for outputs
# Only used for outputs.
DECIMAL_PER_COIN_FALLBACK = 3 # Should be low to avoid listing all possible FIAT's
@ -69,7 +69,6 @@ DUST_PER_COIN = {
'ETH': 0.01
}
# Source files with destination directories within user-directory
USER_DATA_FILES = {
'sample_strategy.py': USERPATH_STRATEGIES,
@ -355,13 +354,13 @@ CONF_SCHEMA = {
},
'dataformat_ohlcv': {
'type': 'string',
'enum': AVAILABLE_DATAHANDLERS,
'default': 'json'
'enum': AVAILABLE_DATAHANDLERS,
'default': 'json'
},
'dataformat_trades': {
'type': 'string',
'enum': AVAILABLE_DATAHANDLERS,
'default': 'jsongz'
'enum': AVAILABLE_DATAHANDLERS,
'default': 'jsongz'
}
},
'definitions': {

View File

@ -16,6 +16,7 @@ class SignalTagType(Enum):
Enum for signal columns
"""
ENTER_TAG = "enter_tag"
EXIT_TAG = "exit_tag"
class SignalDirection(Enum):

View File

@ -19,3 +19,4 @@ from freqtrade.exchange.gateio import Gateio
from freqtrade.exchange.hitbtc import Hitbtc
from freqtrade.exchange.kraken import Kraken
from freqtrade.exchange.kucoin import Kucoin
from freqtrade.exchange.okex import Okex

View File

@ -1887,7 +1887,7 @@ def is_exchange_known_ccxt(exchange_name: str, ccxt_module: CcxtModuleType = Non
def is_exchange_officially_supported(exchange_name: str) -> bool:
return exchange_name in ['bittrex', 'binance', 'kraken']
return exchange_name in ['bittrex', 'binance', 'kraken', 'ftx', 'gateio', 'okex']
def ccxt_exchanges(ccxt_module: CcxtModuleType = None) -> List[str]:

View File

@ -0,0 +1,18 @@
import logging
from typing import Dict
from freqtrade.exchange import Exchange
logger = logging.getLogger(__name__)
class Okex(Exchange):
"""
Okex exchange class. Contains adjustments needed for Freqtrade to work
with this exchange.
"""
_ft_has: Dict = {
"ohlcv_candle_limit": 100,
}

View File

@ -230,11 +230,11 @@ class FreqtradeBot(LoggingMixin):
if len(open_trades) != 0:
msg = {
'type': RPCMessageType.WARNING,
'status': f"{len(open_trades)} open trades active.\n\n"
f"Handle these trades manually on {self.exchange.name}, "
f"or '/start' the bot again and use '/stopbuy' "
f"to handle open trades gracefully. \n"
f"{'Trades are simulated.' if self.config['dry_run'] else ''}",
'status': f"{len(open_trades)} open trades active.\n\n"
f"Handle these trades manually on {self.exchange.name}, "
f"or '/start' the bot again and use '/stopbuy' "
f"to handle open trades gracefully. \n"
f"{'Trades are simulated.' if self.config['dry_run'] else ''}",
}
self.rpc.send_msg(msg)
@ -863,6 +863,7 @@ class FreqtradeBot(LoggingMixin):
logger.debug('Handling %s ...', trade)
(enter, exit_) = (False, False)
exit_tag = None
exit_signal_type = "exit_short" if trade.is_short else "exit_long"
# TODO-lev: change to use_exit_signal, ignore_roi_if_enter_signal
@ -871,7 +872,7 @@ class FreqtradeBot(LoggingMixin):
analyzed_df, _ = self.dataprovider.get_analyzed_dataframe(trade.pair,
self.strategy.timeframe)
(enter, exit_) = self.strategy.get_exit_signal(
(enter, exit_, exit_tag) = self.strategy.get_exit_signal(
trade.pair,
self.strategy.timeframe,
analyzed_df,
@ -880,7 +881,7 @@ class FreqtradeBot(LoggingMixin):
logger.debug('checking exit')
exit_rate = self.exchange.get_rate(trade.pair, refresh=True, side=trade.exit_side)
if self._check_and_execute_exit(trade, exit_rate, enter, exit_):
if self._check_and_execute_exit(trade, exit_rate, enter, exit_, exit_tag):
return True
logger.debug(f'Found no {exit_signal_type} signal for %s.', trade)
@ -1029,7 +1030,7 @@ class FreqtradeBot(LoggingMixin):
f"for pair {trade.pair}.")
def _check_and_execute_exit(self, trade: Trade, exit_rate: float,
enter: bool, exit_: bool) -> bool:
enter: bool, exit_: bool, exit_tag: Optional[str]) -> bool:
"""
Check and execute trade exit
"""
@ -1043,8 +1044,9 @@ class FreqtradeBot(LoggingMixin):
)
if should_exit.sell_flag:
logger.info(f'Exit for {trade.pair} detected. Reason: {should_exit.sell_type}')
self.execute_trade_exit(trade, exit_rate, should_exit)
logger.info(f'Exit for {trade.pair} detected. Reason: {should_exit.sell_type}'
f'Tag: {exit_tag if exit_tag is not None else "None"}')
self.execute_trade_exit(trade, exit_rate, should_exit, exit_tag)
return True
return False
@ -1258,6 +1260,7 @@ class FreqtradeBot(LoggingMixin):
trade: Trade,
limit: float,
sell_reason: SellCheckTuple, # TODO-lev update to exit_reason
exit_tag: Optional[str] = None
) -> bool:
"""
Executes a trade exit for the given trade and limit
@ -1337,7 +1340,7 @@ class FreqtradeBot(LoggingMixin):
trade.open_order_id = order['id']
trade.sell_order_status = ''
trade.close_rate_requested = limit
trade.sell_reason = sell_reason.sell_reason
trade.sell_reason = exit_tag or sell_reason.sell_reason
# In case of market sell orders the order can be closed immediately
if order.get('status', 'unknown') in ('closed', 'expired'):
self.update_trade_state(trade, trade.open_order_id, order)
@ -1378,6 +1381,7 @@ class FreqtradeBot(LoggingMixin):
'current_rate': current_rate,
'profit_amount': profit_trade,
'profit_ratio': profit_ratio,
'buy_tag': trade.buy_tag,
'sell_reason': trade.sell_reason,
'open_date': trade.open_date,
'close_date': trade.close_date or datetime.utcnow(),
@ -1421,6 +1425,7 @@ class FreqtradeBot(LoggingMixin):
'current_rate': current_rate,
'profit_amount': profit_trade,
'profit_ratio': profit_ratio,
'buy_tag': trade.buy_tag,
'sell_reason': trade.sell_reason,
'open_date': trade.open_date,
'close_date': trade.close_date or datetime.now(timezone.utc),
@ -1467,6 +1472,11 @@ class FreqtradeBot(LoggingMixin):
trade.update_order(order)
if self.exchange.check_order_canceled_empty(order):
# Trade has been cancelled on exchange
# Handling of this will happen in check_handle_timeout.
return True
# Try update amount (binance-fix)
try:
new_amount = self.get_real_amount(trade, order)
@ -1478,10 +1488,6 @@ class FreqtradeBot(LoggingMixin):
except DependencyException as exception:
logger.warning("Could not update trade amount: %s", exception)
if self.exchange.check_order_canceled_empty(order):
# Trade has been cancelled on exchange
# Handling of this will happen in check_handle_timeout.
return True
trade.update(order)
Trade.commit()

View File

@ -46,6 +46,7 @@ ELONG_IDX = 6 # Exit long
SHORT_IDX = 7
ESHORT_IDX = 8 # Exit short
ENTER_TAG_IDX = 9
EXIT_TAG_IDX = 10
class Backtesting:
@ -257,7 +258,7 @@ class Backtesting:
# Every change to this headers list must evaluate further usages of the resulting tuple
# and eventually change the constants for indexes at the top
headers = ['date', 'open', 'high', 'low', 'close', 'enter_long', 'exit_long',
'enter_short', 'exit_short', 'enter_tag']
'enter_short', 'exit_short', 'enter_tag', 'exit_tag']
data: Dict = {}
self.progress.init_step(BacktestState.CONVERT, len(processed))
@ -283,7 +284,7 @@ class Backtesting:
if col in df_analyzed.columns:
df_analyzed.loc[:, col] = df_analyzed.loc[:, col].shift(1)
else:
df_analyzed.loc[:, col] = 0 if col != 'enter_tag' else None
df_analyzed.loc[:, col] = 0 if col not in ('enter_tag', 'exit_tag') else None
# Update dataprovider cache
self.dataprovider._set_cached_df(pair, self.timeframe, df_analyzed)
@ -326,7 +327,9 @@ class Backtesting:
# Worst case: price ticks tiny bit above open and dives down.
stop_rate = sell_row[OPEN_IDX] * (1 - abs(trade.stop_loss_pct))
assert stop_rate < sell_row[HIGH_IDX]
return stop_rate
# Limit lower-end to candle low to avoid sells below the low.
# This still remains "worst case" - but "worst realistic case".
return max(sell_row[LOW_IDX], stop_rate)
# Set close_rate to stoploss
return trade.stop_loss
@ -375,6 +378,16 @@ class Backtesting:
if sell.sell_flag:
trade.close_date = sell_candle_time
trade.sell_reason = sell.sell_reason
# Checks and adds an exit tag, after checking that the length of the
# sell_row has the length for an exit tag column
if(
len(sell_row) > EXIT_TAG_IDX
and sell_row[EXIT_TAG_IDX] is not None
and len(sell_row[EXIT_TAG_IDX]) > 0
):
trade.sell_reason = sell_row[EXIT_TAG_IDX]
trade_dur = int((trade.close_date_utc - trade.open_date_utc).total_seconds() // 60)
closerate = self._get_close_rate(sell_row, trade, sell, trade_dur)

View File

@ -0,0 +1,64 @@
"""
CalmarHyperOptLoss
This module defines the alternative HyperOptLoss class which can be used for
Hyperoptimization.
"""
from datetime import datetime
from math import sqrt as msqrt
from typing import Any, Dict
from pandas import DataFrame
from freqtrade.data.btanalysis import calculate_max_drawdown
from freqtrade.optimize.hyperopt import IHyperOptLoss
class CalmarHyperOptLoss(IHyperOptLoss):
"""
Defines the loss function for hyperopt.
This implementation uses the Calmar Ratio calculation.
"""
@staticmethod
def hyperopt_loss_function(
results: DataFrame,
trade_count: int,
min_date: datetime,
max_date: datetime,
config: Dict,
processed: Dict[str, DataFrame],
backtest_stats: Dict[str, Any],
*args,
**kwargs
) -> float:
"""
Objective function, returns smaller number for more optimal results.
Uses Calmar Ratio calculation.
"""
total_profit = backtest_stats["profit_total"]
days_period = (max_date - min_date).days
# adding slippage of 0.1% per trade
total_profit = total_profit - 0.0005
expected_returns_mean = total_profit.sum() / days_period * 100
# calculate max drawdown
try:
_, _, _, high_val, low_val = calculate_max_drawdown(
results, value_col="profit_abs"
)
max_drawdown = (high_val - low_val) / high_val
except ValueError:
max_drawdown = 0
if max_drawdown != 0:
calmar_ratio = expected_returns_mean / max_drawdown * msqrt(365)
else:
# Define high (negative) calmar ratio to be clear that this is NOT optimal.
calmar_ratio = -20.0
# print(expected_returns_mean, max_drawdown, calmar_ratio)
return -calmar_ratio

View File

@ -1,4 +1,3 @@
import io
import logging
from copy import deepcopy
@ -64,10 +63,11 @@ class HyperoptTools():
'export_time': datetime.now(timezone.utc),
}
logger.info(f"Dumping parameters to {filename}")
rapidjson.dump(final_params, filename.open('w'), indent=2,
default=hyperopt_serializer,
number_mode=rapidjson.NM_NATIVE | rapidjson.NM_NAN
)
with filename.open('w') as f:
rapidjson.dump(final_params, f, indent=2,
default=hyperopt_serializer,
number_mode=rapidjson.NM_NATIVE | rapidjson.NM_NAN
)
@staticmethod
def try_export_params(config: Dict[str, Any], strategy_name: str, params: Dict):

View File

@ -55,6 +55,15 @@ def _get_line_header(first_column: str, stake_currency: str) -> List[str]:
'Win Draw Loss Win%']
def _get_line_header_sell(first_column: str, stake_currency: str) -> List[str]:
"""
Generate header lines (goes in line with _generate_result_line())
"""
return [first_column, 'Sells', 'Avg Profit %', 'Cum Profit %',
f'Tot Profit {stake_currency}', 'Tot Profit %', 'Avg Duration',
'Win Draw Loss Win%']
def _generate_wins_draws_losses(wins, draws, losses):
if wins > 0 and losses == 0:
wl_ratio = '100'
@ -127,6 +136,71 @@ def generate_pair_metrics(data: Dict[str, Dict], stake_currency: str, starting_b
return tabular_data
def generate_tag_metrics(tag_type: str,
starting_balance: int,
results: DataFrame,
skip_nan: bool = False) -> List[Dict]:
"""
Generates and returns a list of metrics for the given tag trades and the results dataframe
:param starting_balance: Starting balance
:param results: Dataframe containing the backtest results
:param skip_nan: Print "left open" open trades
:return: List of Dicts containing the metrics per pair
"""
tabular_data = []
if tag_type in results.columns:
for tag, count in results[tag_type].value_counts().iteritems():
result = results[results[tag_type] == tag]
if skip_nan and result['profit_abs'].isnull().all():
continue
tabular_data.append(_generate_tag_result_line(result, starting_balance, tag))
# Sort by total profit %:
tabular_data = sorted(tabular_data, key=lambda k: k['profit_total_abs'], reverse=True)
# Append Total
tabular_data.append(_generate_result_line(results, starting_balance, 'TOTAL'))
return tabular_data
else:
return []
def _generate_tag_result_line(result: DataFrame, starting_balance: int, first_column: str) -> Dict:
"""
Generate one result dict, with "first_column" as key.
"""
profit_sum = result['profit_ratio'].sum()
# (end-capital - starting capital) / starting capital
profit_total = result['profit_abs'].sum() / starting_balance
return {
'key': first_column,
'trades': len(result),
'profit_mean': result['profit_ratio'].mean() if len(result) > 0 else 0.0,
'profit_mean_pct': result['profit_ratio'].mean() * 100.0 if len(result) > 0 else 0.0,
'profit_sum': profit_sum,
'profit_sum_pct': round(profit_sum * 100.0, 2),
'profit_total_abs': result['profit_abs'].sum(),
'profit_total': profit_total,
'profit_total_pct': round(profit_total * 100.0, 2),
'duration_avg': str(timedelta(
minutes=round(result['trade_duration'].mean()))
) if not result.empty else '0:00',
# 'duration_max': str(timedelta(
# minutes=round(result['trade_duration'].max()))
# ) if not result.empty else '0:00',
# 'duration_min': str(timedelta(
# minutes=round(result['trade_duration'].min()))
# ) if not result.empty else '0:00',
'wins': len(result[result['profit_abs'] > 0]),
'draws': len(result[result['profit_abs'] == 0]),
'losses': len(result[result['profit_abs'] < 0]),
}
def generate_sell_reason_stats(max_open_trades: int, results: DataFrame) -> List[Dict]:
"""
Generate small table outlining Backtest results
@ -347,6 +421,10 @@ def generate_strategy_stats(btdata: Dict[str, DataFrame],
pair_results = generate_pair_metrics(btdata, stake_currency=stake_currency,
starting_balance=starting_balance,
results=results, skip_nan=False)
buy_tag_results = generate_tag_metrics("buy_tag", starting_balance=starting_balance,
results=results, skip_nan=False)
sell_reason_stats = generate_sell_reason_stats(max_open_trades=max_open_trades,
results=results)
left_open_results = generate_pair_metrics(btdata, stake_currency=stake_currency,
@ -370,6 +448,7 @@ def generate_strategy_stats(btdata: Dict[str, DataFrame],
'best_pair': best_pair,
'worst_pair': worst_pair,
'results_per_pair': pair_results,
'results_per_buy_tag': buy_tag_results,
'sell_reason_summary': sell_reason_stats,
'left_open_trades': left_open_results,
# 'days_breakdown_stats': days_breakdown_stats,
@ -542,6 +621,37 @@ def text_table_sell_reason(sell_reason_stats: List[Dict[str, Any]], stake_curren
return tabulate(output, headers=headers, tablefmt="orgtbl", stralign="right")
def text_table_tags(tag_type: str, tag_results: List[Dict[str, Any]], stake_currency: str) -> str:
"""
Generates and returns a text table for the given backtest data and the results dataframe
:param pair_results: List of Dictionaries - one entry per pair + final TOTAL row
:param stake_currency: stake-currency - used to correctly name headers
:return: pretty printed table with tabulate as string
"""
if(tag_type == "buy_tag"):
headers = _get_line_header("TAG", stake_currency)
else:
headers = _get_line_header_sell("TAG", stake_currency)
floatfmt = _get_line_floatfmt(stake_currency)
output = [
[
t['key'] if t['key'] is not None and len(
t['key']) > 0 else "OTHER",
t['trades'],
t['profit_mean_pct'],
t['profit_sum_pct'],
t['profit_total_abs'],
t['profit_total_pct'],
t['duration_avg'],
_generate_wins_draws_losses(
t['wins'],
t['draws'],
t['losses'])] for t in tag_results]
# Ignore type as floatfmt does allow tuples but mypy does not know that
return tabulate(output, headers=headers,
floatfmt=floatfmt, tablefmt="orgtbl", stralign="right")
def text_table_periodic_breakdown(days_breakdown_stats: List[Dict[str, Any]],
stake_currency: str, period: str) -> str:
"""
@ -687,6 +797,16 @@ def show_backtest_result(strategy: str, results: Dict[str, Any], stake_currency:
print(' BACKTESTING REPORT '.center(len(table.splitlines()[0]), '='))
print(table)
if results.get('results_per_buy_tag') is not None:
table = text_table_tags(
"buy_tag",
results['results_per_buy_tag'],
stake_currency=stake_currency)
if isinstance(table, str) and len(table) > 0:
print(' BUY TAG STATS '.center(len(table.splitlines()[0]), '='))
print(table)
table = text_table_sell_reason(sell_reason_stats=results['sell_reason_summary'],
stake_currency=stake_currency)
if isinstance(table, str) and len(table) > 0:
@ -714,6 +834,7 @@ def show_backtest_result(strategy: str, results: Dict[str, Any], stake_currency:
if isinstance(table, str) and len(table) > 0:
print('=' * len(table.splitlines()[0]))
print()
@ -735,3 +856,13 @@ def show_backtest_results(config: Dict, backtest_stats: Dict):
print(table)
print('=' * len(table.splitlines()[0]))
print('\nFor more details, please look at the detail tables above')
def show_sorted_pairlist(config: Dict, backtest_stats: Dict):
if config.get('backtest_show_pair_list', False):
for strategy, results in backtest_stats['strategy'].items():
print(f"Pairs for Strategy {strategy}: \n[")
for result in results['results_per_pair']:
if result["key"] != 'TOTAL':
print(f'"{result["key"]}", // {round(result["profit_mean_pct"], 2)}%')
print("]")

View File

@ -7,11 +7,15 @@ class SKDecimal(Integer):
def __init__(self, low, high, decimals=3, prior="uniform", base=10, transform=None,
name=None, dtype=np.int64):
self.decimals = decimals
_low = int(low * pow(10, self.decimals))
_high = int(high * pow(10, self.decimals))
self.pow_dot_one = pow(0.1, self.decimals)
self.pow_ten = pow(10, self.decimals)
_low = int(low * self.pow_ten)
_high = int(high * self.pow_ten)
# trunc to precision to avoid points out of space
self.low_orig = round(_low * pow(0.1, self.decimals), self.decimals)
self.high_orig = round(_high * pow(0.1, self.decimals), self.decimals)
self.low_orig = round(_low * self.pow_dot_one, self.decimals)
self.high_orig = round(_high * self.pow_dot_one, self.decimals)
super().__init__(_low, _high, prior, base, transform, name, dtype)
@ -25,9 +29,9 @@ class SKDecimal(Integer):
return self.low_orig <= point <= self.high_orig
def transform(self, Xt):
aa = [int(x * pow(10, self.decimals)) for x in Xt]
return super().transform(aa)
return super().transform([int(v * self.pow_ten) for v in Xt])
def inverse_transform(self, Xt):
res = super().inverse_transform(Xt)
return [round(x * pow(0.1, self.decimals), self.decimals) for x in res]
# equivalent to [round(x * pow(0.1, self.decimals), self.decimals) for x in res]
return [int(v) / self.pow_ten for v in res]

View File

@ -1080,13 +1080,131 @@ class Trade(_DECL_BASE, LocalTrade):
return [
{
'pair': pair,
'profit': profit,
'profit_ratio': profit,
'profit': round(profit * 100, 2), # Compatibility mode
'profit_pct': round(profit * 100, 2),
'profit_abs': profit_abs,
'count': count
}
for pair, profit, profit_abs, count in pair_rates
]
@staticmethod
def get_buy_tag_performance(pair: Optional[str]) -> List[Dict[str, Any]]:
"""
Returns List of dicts containing all Trades, based on buy tag performance
Can either be average for all pairs or a specific pair provided
NOTE: Not supported in Backtesting.
"""
filters = [Trade.is_open.is_(False)]
if(pair is not None):
filters.append(Trade.pair == pair)
buy_tag_perf = Trade.query.with_entities(
Trade.buy_tag,
func.sum(Trade.close_profit).label('profit_sum'),
func.sum(Trade.close_profit_abs).label('profit_sum_abs'),
func.count(Trade.pair).label('count')
).filter(*filters)\
.group_by(Trade.buy_tag) \
.order_by(desc('profit_sum_abs')) \
.all()
return [
{
'buy_tag': buy_tag if buy_tag is not None else "Other",
'profit_ratio': profit,
'profit_pct': round(profit * 100, 2),
'profit_abs': profit_abs,
'count': count
}
for buy_tag, profit, profit_abs, count in buy_tag_perf
]
@staticmethod
def get_sell_reason_performance(pair: Optional[str]) -> List[Dict[str, Any]]:
"""
Returns List of dicts containing all Trades, based on sell reason performance
Can either be average for all pairs or a specific pair provided
NOTE: Not supported in Backtesting.
"""
filters = [Trade.is_open.is_(False)]
if(pair is not None):
filters.append(Trade.pair == pair)
sell_tag_perf = Trade.query.with_entities(
Trade.sell_reason,
func.sum(Trade.close_profit).label('profit_sum'),
func.sum(Trade.close_profit_abs).label('profit_sum_abs'),
func.count(Trade.pair).label('count')
).filter(*filters)\
.group_by(Trade.sell_reason) \
.order_by(desc('profit_sum_abs')) \
.all()
return [
{
'sell_reason': sell_reason if sell_reason is not None else "Other",
'profit_ratio': profit,
'profit_pct': round(profit * 100, 2),
'profit_abs': profit_abs,
'count': count
}
for sell_reason, profit, profit_abs, count in sell_tag_perf
]
@staticmethod
def get_mix_tag_performance(pair: Optional[str]) -> List[Dict[str, Any]]:
"""
Returns List of dicts containing all Trades, based on buy_tag + sell_reason performance
Can either be average for all pairs or a specific pair provided
NOTE: Not supported in Backtesting.
"""
filters = [Trade.is_open.is_(False)]
if(pair is not None):
filters.append(Trade.pair == pair)
mix_tag_perf = Trade.query.with_entities(
Trade.id,
Trade.buy_tag,
Trade.sell_reason,
func.sum(Trade.close_profit).label('profit_sum'),
func.sum(Trade.close_profit_abs).label('profit_sum_abs'),
func.count(Trade.pair).label('count')
).filter(*filters)\
.group_by(Trade.id) \
.order_by(desc('profit_sum_abs')) \
.all()
return_list: List[Dict] = []
for id, buy_tag, sell_reason, profit, profit_abs, count in mix_tag_perf:
buy_tag = buy_tag if buy_tag is not None else "Other"
sell_reason = sell_reason if sell_reason is not None else "Other"
if(sell_reason is not None and buy_tag is not None):
mix_tag = buy_tag + " " + sell_reason
i = 0
if not any(item["mix_tag"] == mix_tag for item in return_list):
return_list.append({'mix_tag': mix_tag,
'profit': profit,
'profit_abs': profit_abs,
'count': count})
else:
while i < len(return_list):
if return_list[i]["mix_tag"] == mix_tag:
return_list[i] = {
'mix_tag': mix_tag,
'profit': profit + return_list[i]["profit"],
'profit_abs': profit_abs + return_list[i]["profit_abs"],
'count': 1 + return_list[i]["count"]}
i += 1
[x.update({'profit': round(x['profit'] * 100, 2)}) for x in return_list]
return return_list
@staticmethod
def get_best_pair(start_date: datetime = datetime.fromtimestamp(0)):
"""
@ -1123,7 +1241,7 @@ class PairLock(_DECL_BASE):
lock_time = self.lock_time.strftime(DATETIME_PRINT_FORMAT)
lock_end_time = self.lock_end_time.strftime(DATETIME_PRINT_FORMAT)
return (f'PairLock(id={self.id}, pair={self.pair}, lock_time={lock_time}, '
f'lock_end_time={lock_end_time})')
f'lock_end_time={lock_end_time}, reason={self.reason}, active={self.active})')
@staticmethod
def query_pair_locks(pair: Optional[str], now: datetime) -> Query:
@ -1132,7 +1250,6 @@ class PairLock(_DECL_BASE):
:param pair: Pair to check for. Returns all current locks if pair is empty
:param now: Datetime object (generated via datetime.now(timezone.utc)).
"""
filters = [PairLock.lock_end_time > now,
# Only active locks
PairLock.active.is_(True), ]

View File

@ -103,6 +103,36 @@ class PairLocks():
if PairLocks.use_db:
PairLock.query.session.commit()
@staticmethod
def unlock_reason(reason: str, now: Optional[datetime] = None) -> None:
"""
Release all locks for this reason.
:param reason: Which reason to unlock
:param now: Datetime object (generated via datetime.now(timezone.utc)).
defaults to datetime.now(timezone.utc)
"""
if not now:
now = datetime.now(timezone.utc)
if PairLocks.use_db:
# used in live modes
logger.info(f"Releasing all locks with reason '{reason}':")
filters = [PairLock.lock_end_time > now,
PairLock.active.is_(True),
PairLock.reason == reason
]
locks = PairLock.query.filter(*filters)
for lock in locks:
logger.info(f"Releasing lock for {lock.pair} with reason '{reason}'.")
lock.active = False
PairLock.query.session.commit()
else:
# used in backtesting mode; don't show log messages for speed
locks = PairLocks.get_pair_locks(None)
for lock in locks:
if lock.reason == reason:
lock.active = False
@staticmethod
def is_global_lock(now: Optional[datetime] = None) -> bool:
"""
@ -128,7 +158,9 @@ class PairLocks():
@staticmethod
def get_all_locks() -> List[PairLock]:
"""
Return all locks, also locks with expired end date
"""
if PairLocks.use_db:
return PairLock.query.all()
else:

View File

@ -91,7 +91,7 @@ class IResolver:
logger.debug(f"Searching for {cls.object_type.__name__} {object_name} in '{directory}'")
for entry in directory.iterdir():
# Only consider python files
if not str(entry).endswith('.py'):
if entry.suffix != '.py':
logger.debug('Ignoring %s', entry)
continue
if entry.is_symlink() and not entry.is_file():
@ -169,7 +169,7 @@ class IResolver:
objects = []
for entry in directory.iterdir():
# Only consider python files
if not str(entry).endswith('.py'):
if entry.suffix != '.py':
logger.debug('Ignoring %s', entry)
continue
module_path = entry.resolve()

View File

@ -56,17 +56,21 @@ class StrategyResolver(IResolver):
if strategy._ft_params_from_file:
# Set parameters from Hyperopt results file
params = strategy._ft_params_from_file
strategy.minimal_roi = params.get('roi', strategy.minimal_roi)
strategy.minimal_roi = params.get('roi', getattr(strategy, 'minimal_roi', {}))
strategy.stoploss = params.get('stoploss', {}).get('stoploss', strategy.stoploss)
strategy.stoploss = params.get('stoploss', {}).get(
'stoploss', getattr(strategy, 'stoploss', -0.1))
trailing = params.get('trailing', {})
strategy.trailing_stop = trailing.get('trailing_stop', strategy.trailing_stop)
strategy.trailing_stop_positive = trailing.get('trailing_stop_positive',
strategy.trailing_stop_positive)
strategy.trailing_stop = trailing.get(
'trailing_stop', getattr(strategy, 'trailing_stop', False))
strategy.trailing_stop_positive = trailing.get(
'trailing_stop_positive', getattr(strategy, 'trailing_stop_positive', None))
strategy.trailing_stop_positive_offset = trailing.get(
'trailing_stop_positive_offset', strategy.trailing_stop_positive_offset)
'trailing_stop_positive_offset',
getattr(strategy, 'trailing_stop_positive_offset', 0))
strategy.trailing_only_offset_is_reached = trailing.get(
'trailing_only_offset_is_reached', strategy.trailing_only_offset_is_reached)
'trailing_only_offset_is_reached',
getattr(strategy, 'trailing_only_offset_is_reached', 0.0))
# Set attributes
# Check if we need to override configuration

View File

@ -63,6 +63,8 @@ class Count(BaseModel):
class PerformanceEntry(BaseModel):
pair: str
profit: float
profit_ratio: float
profit_pct: float
profit_abs: float
count: int

View File

@ -106,7 +106,7 @@ class RPC:
val = {
'dry_run': config['dry_run'],
'stake_currency': config['stake_currency'],
'stake_currency_decimals': decimals_per_coin(config['stake_currency']),
'stake_currency_decimals': decimals_per_coin(config['stake_currency']),
'stake_amount': config['stake_amount'],
'available_capital': config.get('available_capital'),
'max_open_trades': (config['max_open_trades']
@ -683,10 +683,36 @@ class RPC:
Shows a performance statistic from finished trades
"""
pair_rates = Trade.get_overall_performance()
# Round and convert to %
[x.update({'profit': round(x['profit'] * 100, 2)}) for x in pair_rates]
return pair_rates
def _rpc_buy_tag_performance(self, pair: Optional[str]) -> List[Dict[str, Any]]:
"""
Handler for buy tag performance.
Shows a performance statistic from finished trades
"""
buy_tags = Trade.get_buy_tag_performance(pair)
return buy_tags
def _rpc_sell_reason_performance(self, pair: Optional[str]) -> List[Dict[str, Any]]:
"""
Handler for sell reason performance.
Shows a performance statistic from finished trades
"""
sell_reasons = Trade.get_sell_reason_performance(pair)
return sell_reasons
def _rpc_mix_tag_performance(self, pair: Optional[str]) -> List[Dict[str, Any]]:
"""
Handler for mix tag (buy_tag + sell_reason) performance.
Shows a performance statistic from finished trades
"""
mix_tags = Trade.get_mix_tag_performance(pair)
return mix_tags
def _rpc_count(self) -> Dict[str, float]:
""" Returns the number of trades running """
if self._freqtrade.state != State.RUNNING:

View File

@ -107,8 +107,8 @@ class Telegram(RPCHandler):
# this needs refactoring of the whole telegram module (same
# problem in _help()).
valid_keys: List[str] = [r'/start$', r'/stop$', r'/status$', r'/status table$',
r'/trades$', r'/performance$', r'/daily$', r'/daily \d+$',
r'/profit$', r'/profit \d+',
r'/trades$', r'/performance$', r'/buys', r'/sells', r'/mix_tags',
r'/daily$', r'/daily \d+$', r'/profit$', r'/profit \d+',
r'/stats$', r'/count$', r'/locks$', r'/balance$',
r'/stopbuy$', r'/reload_config$', r'/show_config$',
r'/logs$', r'/whitelist$', r'/blacklist$', r'/edge$',
@ -154,6 +154,9 @@ class Telegram(RPCHandler):
CommandHandler('trades', self._trades),
CommandHandler('delete', self._delete_trade),
CommandHandler('performance', self._performance),
CommandHandler('buys', self._buy_tag_performance),
CommandHandler('sells', self._sell_reason_performance),
CommandHandler('mix_tags', self._mix_tag_performance),
CommandHandler('stats', self._stats),
CommandHandler('daily', self._daily),
CommandHandler('count', self._count),
@ -175,6 +178,10 @@ class Telegram(RPCHandler):
CallbackQueryHandler(self._profit, pattern='update_profit'),
CallbackQueryHandler(self._balance, pattern='update_balance'),
CallbackQueryHandler(self._performance, pattern='update_performance'),
CallbackQueryHandler(self._buy_tag_performance, pattern='update_buy_tag_performance'),
CallbackQueryHandler(self._sell_reason_performance,
pattern='update_sell_reason_performance'),
CallbackQueryHandler(self._mix_tag_performance, pattern='update_mix_tag_performance'),
CallbackQueryHandler(self._count, pattern='update_count'),
CallbackQueryHandler(self._forcebuy_inline),
]
@ -238,6 +245,7 @@ class Telegram(RPCHandler):
microsecond=0) - msg['open_date'].replace(microsecond=0)
msg['duration_min'] = msg['duration'].total_seconds() / 60
msg['buy_tag'] = msg['buy_tag'] if "buy_tag" in msg.keys() else None
msg['emoji'] = self._get_sell_emoji(msg)
# Check if all sell properties are available.
@ -253,6 +261,7 @@ class Telegram(RPCHandler):
message = ("{emoji} *{exchange}:* Selling {pair} (#{trade_id})\n"
"*Profit:* `{profit_percent:.2f}%{profit_extra}`\n"
"*Buy Tag:* `{buy_tag}`\n"
"*Sell Reason:* `{sell_reason}`\n"
"*Duration:* `{duration} ({duration_min:.1f} min)`\n"
"*Amount:* `{amount:.8f}`\n"
@ -852,7 +861,7 @@ class Telegram(RPCHandler):
stat_line = (
f"{i+1}.\t <code>{trade['pair']}\t"
f"{round_coin_value(trade['profit_abs'], self._config['stake_currency'])} "
f"({trade['profit']:.2f}%) "
f"({trade['profit_pct']:.2f}%) "
f"({trade['count']})</code>\n")
if len(output + stat_line) >= MAX_TELEGRAM_MESSAGE_LENGTH:
@ -867,6 +876,111 @@ class Telegram(RPCHandler):
except RPCException as e:
self._send_msg(str(e))
@authorized_only
def _buy_tag_performance(self, update: Update, context: CallbackContext) -> None:
"""
Handler for /buys PAIR .
Shows a performance statistic from finished trades
:param bot: telegram bot
:param update: message update
:return: None
"""
try:
pair = None
if context.args and isinstance(context.args[0], str):
pair = context.args[0]
trades = self._rpc._rpc_buy_tag_performance(pair)
output = "<b>Buy Tag Performance:</b>\n"
for i, trade in enumerate(trades):
stat_line = (
f"{i+1}.\t <code>{trade['buy_tag']}\t"
f"{round_coin_value(trade['profit_abs'], self._config['stake_currency'])} "
f"({trade['profit_pct']:.2f}%) "
f"({trade['count']})</code>\n")
if len(output + stat_line) >= MAX_TELEGRAM_MESSAGE_LENGTH:
self._send_msg(output, parse_mode=ParseMode.HTML)
output = stat_line
else:
output += stat_line
self._send_msg(output, parse_mode=ParseMode.HTML,
reload_able=True, callback_path="update_buy_tag_performance",
query=update.callback_query)
except RPCException as e:
self._send_msg(str(e))
@authorized_only
def _sell_reason_performance(self, update: Update, context: CallbackContext) -> None:
"""
Handler for /sells.
Shows a performance statistic from finished trades
:param bot: telegram bot
:param update: message update
:return: None
"""
try:
pair = None
if context.args and isinstance(context.args[0], str):
pair = context.args[0]
trades = self._rpc._rpc_sell_reason_performance(pair)
output = "<b>Sell Reason Performance:</b>\n"
for i, trade in enumerate(trades):
stat_line = (
f"{i+1}.\t <code>{trade['sell_reason']}\t"
f"{round_coin_value(trade['profit_abs'], self._config['stake_currency'])} "
f"({trade['profit_pct']:.2f}%) "
f"({trade['count']})</code>\n")
if len(output + stat_line) >= MAX_TELEGRAM_MESSAGE_LENGTH:
self._send_msg(output, parse_mode=ParseMode.HTML)
output = stat_line
else:
output += stat_line
self._send_msg(output, parse_mode=ParseMode.HTML,
reload_able=True, callback_path="update_sell_reason_performance",
query=update.callback_query)
except RPCException as e:
self._send_msg(str(e))
@authorized_only
def _mix_tag_performance(self, update: Update, context: CallbackContext) -> None:
"""
Handler for /mix_tags.
Shows a performance statistic from finished trades
:param bot: telegram bot
:param update: message update
:return: None
"""
try:
pair = None
if context.args and isinstance(context.args[0], str):
pair = context.args[0]
trades = self._rpc._rpc_mix_tag_performance(pair)
output = "<b>Mix Tag Performance:</b>\n"
for i, trade in enumerate(trades):
stat_line = (
f"{i+1}.\t <code>{trade['mix_tag']}\t"
f"{round_coin_value(trade['profit_abs'], self._config['stake_currency'])} "
f"({trade['profit']:.2f}%) "
f"({trade['count']})</code>\n")
if len(output + stat_line) >= MAX_TELEGRAM_MESSAGE_LENGTH:
self._send_msg(output, parse_mode=ParseMode.HTML)
output = stat_line
else:
output += stat_line
self._send_msg(output, parse_mode=ParseMode.HTML,
reload_able=True, callback_path="update_mix_tag_performance",
query=update.callback_query)
except RPCException as e:
self._send_msg(str(e))
@authorized_only
def _count(self, update: Update, context: CallbackContext) -> None:
"""
@ -1033,7 +1147,8 @@ class Telegram(RPCHandler):
:return: None
"""
forcebuy_text = ("*/forcebuy <pair> [<rate>]:* `Instantly buys the given pair. "
"Optionally takes a rate at which to buy.` \n")
"Optionally takes a rate at which to buy "
"(only applies to limit orders).` \n")
message = ("*/start:* `Starts the trader`\n"
"*/stop:* `Stops the trader`\n"
"*/status <trade_id>|[table]:* `Lists all open trades`\n"
@ -1042,6 +1157,9 @@ class Telegram(RPCHandler):
" *table :* `will display trades in a table`\n"
" `pending buy orders are marked with an asterisk (*)`\n"
" `pending sell orders are marked with a double asterisk (**)`\n"
"*/buys <pair|none>:* `Shows the buy_tag performance`\n"
"*/sells <pair|none>:* `Shows the sell reason performance`\n"
"*/mix_tags <pair|none>:* `Shows combined buy tag + sell reason performance`\n"
"*/trades [limit]:* `Lists last closed trades (limited to 10 by default)`\n"
"*/profit [<n>]:* `Lists cumulative profit from all finished trades, "
"over the last n days`\n"

View File

@ -381,7 +381,8 @@ class HyperStrategyMixin(object):
if filename.is_file():
logger.info(f"Loading parameters from file {filename}")
try:
params = json_load(filename.open('r'))
with filename.open('r') as f:
params = json_load(f)
if params.get('strategy_name') != self.__class__.__name__:
raise OperationalException('Invalid parameter file provided.')
return params

View File

@ -65,9 +65,9 @@ class IStrategy(ABC, HyperStrategyMixin):
_populate_fun_len: int = 0
_buy_fun_len: int = 0
_sell_fun_len: int = 0
_ft_params_from_file: Dict = {}
_ft_params_from_file: Dict
# associated minimal roi
minimal_roi: Dict
minimal_roi: Dict = {}
# associated stoploss
stoploss: float
@ -462,6 +462,15 @@ class IStrategy(ABC, HyperStrategyMixin):
"""
PairLocks.unlock_pair(pair, datetime.now(timezone.utc))
def unlock_reason(self, reason: str) -> None:
"""
Unlocks all pairs previously locked using lock_pair with specified reason.
Not used by freqtrade itself, but intended to be used if users lock pairs
manually from within the strategy, to allow an easy way to unlock pairs.
:param reason: Unlock pairs to allow trading again
"""
PairLocks.unlock_reason(reason, datetime.now(timezone.utc))
def is_pair_locked(self, pair: str, candle_date: datetime = None) -> bool:
"""
Checks if a pair is currently locked
@ -521,6 +530,7 @@ class IStrategy(ABC, HyperStrategyMixin):
dataframe[SignalType.ENTER_SHORT.value] = 0
dataframe[SignalType.EXIT_SHORT.value] = 0
dataframe[SignalTagType.ENTER_TAG.value] = None
dataframe[SignalTagType.EXIT_TAG.value] = None
# Other Defs in strategy that want to be called every loop here
# twitter_sell = self.watch_twitter_feed(dataframe, metadata)
@ -634,7 +644,7 @@ class IStrategy(ABC, HyperStrategyMixin):
timeframe: str,
dataframe: DataFrame,
is_short: bool = None
) -> Tuple[bool, bool]:
) -> Tuple[bool, bool, Optional[str]]:
"""
Calculates current exit signal based based on the buy/short or sell/exit_short
columns of the dataframe.
@ -648,19 +658,21 @@ class IStrategy(ABC, HyperStrategyMixin):
"""
latest, latest_date = self.get_latest_candle(pair, timeframe, dataframe)
if latest is None:
return False, False
return False, False, None
if is_short:
enter = latest.get(SignalType.ENTER_SHORT.value, 0) == 1
exit_ = latest.get(SignalType.EXIT_SHORT.value, 0) == 1
else:
enter = latest[SignalType.ENTER_LONG.value] == 1
exit_ = latest.get(SignalType.EXIT_LONG.value, 0) == 1
exit_tag = latest.get(SignalTagType.EXIT_TAG.value, None)
logger.debug(f"exit-trigger: {latest['date']} (pair={pair}) "
f"enter={enter} exit={exit_}")
return enter, exit_
return enter, exit_, exit_tag
def get_entry_signal(
self,

View File

@ -10,8 +10,7 @@
"stake_currency": "{{ stake_currency }}",
"stake_amount": {{ stake_amount }},
"tradable_balance_ratio": 0.99,
"fiat_display_currency": "{{ fiat_display_currency }}",
"timeframe": "{{ timeframe }}",
"fiat_display_currency": "{{ fiat_display_currency }}",{{ ('\n "timeframe": "' + timeframe + '",') if timeframe else '' }}
"dry_run": {{ dry_run | lower }},
"cancel_open_orders_on_exit": false,
"unfilledtimeout": {

View File

@ -0,0 +1,12 @@
"exchange": {
"name": "{{ exchange_name | lower }}",
"key": "{{ exchange_key }}",
"secret": "{{ exchange_secret }}",
"password": "{{ exchange_key_password }}",
"ccxt_config": {},
"ccxt_async_config": {},
"pair_whitelist": [
],
"pair_blacklist": [
]
}

View File

@ -3,9 +3,9 @@
# Required for hyperopt
scipy==1.7.1
scikit-learn==1.0
scikit-learn==1.0.1
scikit-optimize==0.9.0
filelock==3.3.1
filelock==3.3.2
joblib==1.1.0
psutil==5.8.0
progressbar2==3.55.0

View File

@ -1,18 +1,18 @@
numpy==1.21.2
numpy==1.21.3
pandas==1.3.4
pandas-ta==0.3.14b
ccxt==1.58.47
ccxt==1.60.11
# Pin cryptography for now due to rust build errors with piwheels
cryptography==35.0.0
aiohttp==3.7.4.post0
SQLAlchemy==1.4.25
SQLAlchemy==1.4.26
python-telegram-bot==13.7
arrow==1.2.0
arrow==1.2.1
cachetools==4.2.2
requests==2.26.0
urllib3==1.26.7
jsonschema==4.1.0
jsonschema==4.1.2
TA-Lib==0.4.21
technical==1.3.0
tabulate==0.8.9
@ -41,7 +41,7 @@ psutil==5.8.0
colorama==0.4.4
# Building config files interactively
questionary==1.10.0
prompt-toolkit==3.0.20
prompt-toolkit==3.0.21
#Futures
schedule==1.1.0

View File

@ -43,7 +43,7 @@ setup(
],
install_requires=[
# from requirements.txt
'ccxt>=1.50.48',
'ccxt>=1.60.11',
'SQLAlchemy',
'python-telegram-bot>=13.4',
'arrow>=0.17.0',

View File

@ -1,12 +1,16 @@
#!/usr/bin/env bash
#encoding=utf8
function echo_block() {
echo "----------------------------"
echo $1
echo "----------------------------"
}
function check_installed_pip() {
${PYTHON} -m pip > /dev/null
if [ $? -ne 0 ]; then
echo "-----------------------------"
echo "Installing Pip for ${PYTHON}"
echo "-----------------------------"
echo_block "Installing Pip for ${PYTHON}"
curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
${PYTHON} get-pip.py
rm get-pip.py
@ -37,9 +41,7 @@ function check_installed_python() {
}
function updateenv() {
echo "-------------------------"
echo "Updating your virtual env"
echo "-------------------------"
echo_block "Updating your virtual env"
if [ ! -f .env/bin/activate ]; then
echo "Something went wrong, no virtual environment found."
exit 1
@ -110,18 +112,14 @@ function install_mac_newer_python_dependencies() {
if [ ! $(brew --prefix --installed hdf5 2>/dev/null) ]
then
echo "-------------------------"
echo "Installing hdf5"
echo "-------------------------"
echo_block "Installing hdf5"
brew install hdf5
fi
export HDF5_DIR=$(brew --prefix)
if [ ! $(brew --prefix --installed c-blosc 2>/dev/null) ]
then
echo "-------------------------"
echo "Installing c-blosc"
echo "-------------------------"
echo_block "Installing c-blosc"
brew install c-blosc
fi
export CBLOSC_DIR=$(brew --prefix)
@ -131,9 +129,7 @@ function install_mac_newer_python_dependencies() {
function install_macos() {
if [ ! -x "$(command -v brew)" ]
then
echo "-------------------------"
echo "Installing Brew"
echo "-------------------------"
echo_block "Installing Brew"
/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"
fi
#Gets number after decimal in python version
@ -148,7 +144,14 @@ function install_macos() {
# Install bot Debian_ubuntu
function install_debian() {
sudo apt-get update
sudo apt-get install -y build-essential autoconf libtool pkg-config make wget git $(echo lib${PYTHON}-dev ${PYTHON}-venv)
sudo apt-get install -y gcc build-essential autoconf libtool pkg-config make wget git $(echo lib${PYTHON}-dev ${PYTHON}-venv)
install_talib
}
# Install bot RedHat_CentOS
function install_redhat() {
sudo yum update
sudo yum install -y gcc gcc-c++ make autoconf libtool pkg-config wget git $(echo ${PYTHON}-devel | sed 's/\.//g')
install_talib
}
@ -160,9 +163,7 @@ function update() {
# Reset Develop or Stable branch
function reset() {
echo "----------------------------"
echo "Resetting branch and virtual env"
echo "----------------------------"
echo_block "Resetting branch and virtual env"
if [ "1" == $(git branch -vv |grep -cE "\* develop|\* stable") ]
then
@ -200,48 +201,39 @@ function reset() {
}
function config() {
echo "-------------------------"
echo "Please use 'freqtrade new-config -c config.json' to generate a new configuration file."
echo "-------------------------"
echo_block "Please use 'freqtrade new-config -c config.json' to generate a new configuration file."
}
function install() {
echo "-------------------------"
echo "Installing mandatory dependencies"
echo "-------------------------"
if [ "$(uname -s)" == "Darwin" ]
then
echo_block "Installing mandatory dependencies"
if [ "$(uname -s)" == "Darwin" ]; then
echo "macOS detected. Setup for this system in-progress"
install_macos
elif [ -x "$(command -v apt-get)" ]
then
elif [ -x "$(command -v apt-get)" ]; then
echo "Debian/Ubuntu detected. Setup for this system in-progress"
install_debian
elif [ -x "$(command -v yum)" ]; then
echo "Red Hat/CentOS detected. Setup for this system in-progress"
install_redhat
else
echo "This script does not support your OS."
echo "If you have Python3.6 or Python3.7, pip, virtualenv, ta-lib you can continue."
echo "If you have Python version 3.7 - 3.9, pip, virtualenv, ta-lib you can continue."
echo "Wait 10 seconds to continue the next install steps or use ctrl+c to interrupt this shell."
sleep 10
fi
echo
reset
config
echo "-------------------------"
echo "Run the bot !"
echo "-------------------------"
echo_block "Run the bot !"
echo "You can now use the bot by executing 'source .env/bin/activate; freqtrade <subcommand>'."
echo "You can see the list of available bot sub-commands by executing 'source .env/bin/activate; freqtrade --help'."
echo "You verify that freqtrade is installed successfully by running 'source .env/bin/activate; freqtrade --version'."
}
function plot() {
echo "
-----------------------------------------
Installing dependencies for Plotting scripts
-----------------------------------------
"
echo_block "Installing dependencies for Plotting scripts"
${PYTHON} -m pip install plotly --upgrade
}

View File

@ -8,12 +8,12 @@ from zipfile import ZipFile
import arrow
import pytest
from freqtrade.commands import (start_convert_data, start_convert_trades, start_create_userdir,
start_download_data, start_hyperopt_list, start_hyperopt_show,
start_install_ui, start_list_data, start_list_exchanges,
start_list_markets, start_list_strategies, start_list_timeframes,
start_new_strategy, start_show_trades, start_test_pairlist,
start_trading, start_webserver)
from freqtrade.commands import (start_backtesting_show, start_convert_data, start_convert_trades,
start_create_userdir, start_download_data, start_hyperopt_list,
start_hyperopt_show, start_install_ui, start_list_data,
start_list_exchanges, start_list_markets, start_list_strategies,
start_list_timeframes, start_new_strategy, start_show_trades,
start_test_pairlist, start_trading, start_webserver)
from freqtrade.commands.deploy_commands import (clean_ui_subdir, download_and_install_ui,
get_ui_download_url, read_ui_version)
from freqtrade.configuration import setup_utils_configuration
@ -1390,3 +1390,19 @@ def test_show_trades(mocker, fee, capsys, caplog):
with pytest.raises(OperationalException, match=r"--db-url is required for this command."):
start_show_trades(pargs)
def test_backtesting_show(mocker, testdatadir, capsys):
sbr = mocker.patch('freqtrade.optimize.optimize_reports.show_backtest_results')
args = [
"backtesting-show",
"--export-filename",
f"{testdatadir / 'backtest-result_new.json'}",
"--show-pair-list"
]
pargs = get_args(args)
pargs['config'] = None
start_backtesting_show(pargs)
assert sbr.call_count == 1
out, err = capsys.readouterr()
assert "Pairs for Strategy" in out

View File

@ -215,7 +215,8 @@ def patch_get_signal(
exit_long=False,
enter_short=False,
exit_short=False,
enter_tag: Optional[str] = None
enter_tag: Optional[str] = None,
exit_tag: Optional[str] = None,
) -> None:
"""
:param mocker: mocker to patch IStrategy class
@ -237,9 +238,9 @@ def patch_get_signal(
def patched_get_exit_signal(pair, timeframe, dataframe, is_short):
if is_short:
return enter_short, exit_short
return enter_short, exit_short, exit_tag
else:
return enter_long, exit_long
return enter_long, exit_long, exit_tag
# returns (enter, exit)
freqtrade.strategy.get_exit_signal = patched_get_exit_signal
@ -247,7 +248,7 @@ def patch_get_signal(
freqtrade.exchange.refresh_latest_ohlcv = lambda p: None
def create_mock_trades(fee, is_short: bool, use_db: bool = True):
def create_mock_trades(fee, is_short: bool = False, use_db: bool = True):
"""
Create some fake trades ...
"""

View File

@ -102,6 +102,7 @@ def mock_trade_2(fee, is_short: bool):
open_order_id=f'dry_run_sell_{direc(is_short)}_12345',
strategy='StrategyTestV3',
timeframe=5,
buy_tag='TEST1',
sell_reason='sell_signal',
open_date=datetime.now(tz=timezone.utc) - timedelta(minutes=20),
close_date=datetime.now(tz=timezone.utc) - timedelta(minutes=2),
@ -257,6 +258,7 @@ def mock_trade_5(fee, is_short: bool):
open_rate=0.123,
exchange='binance',
strategy='SampleStrategy',
buy_tag='TEST1',
stoploss_order_id=f'prod_stoploss_{direc(is_short)}_3455',
timeframe=5,
is_short=is_short
@ -312,6 +314,7 @@ def mock_trade_6(fee, is_short: bool):
open_rate=0.15,
exchange='binance',
strategy='SampleStrategy',
buy_tag='TEST2',
open_order_id=f"prod_sell_{direc(is_short)}_6",
timeframe=5,
)

View File

@ -47,6 +47,11 @@ EXCHANGES = {
'hasQuoteVolume': True,
'timeframe': '5m',
},
'okex': {
'pair': 'BTC/USDT',
'hasQuoteVolume': True,
'timeframe': '5m',
},
}

View File

@ -58,4 +58,12 @@ def _build_backtest_dataframe(data):
frame[column] = frame[column].astype('float64')
if 'enter_tag' not in columns:
frame['enter_tag'] = None
if 'exit_tag' not in columns:
frame['exit_tag'] = None
# Ensure all candles make kindof sense
assert all(frame['low'] <= frame['close'])
assert all(frame['low'] <= frame['open'])
assert all(frame['high'] >= frame['close'])
assert all(frame['high'] >= frame['open'])
return frame

View File

@ -17,10 +17,10 @@ tc0 = BTContainer(data=[
# D O H L C V B S
[0, 5000, 5025, 4975, 4987, 6172, 1, 0],
[1, 5000, 5025, 4975, 4987, 6172, 0, 0], # enter trade (signal on last candle)
[2, 4987, 5012, 4986, 4600, 6172, 0, 0], # exit with stoploss hit
[3, 5010, 5000, 4980, 5010, 6172, 0, 1],
[4, 5010, 4987, 4977, 4995, 6172, 0, 0],
[5, 4995, 4995, 4995, 4950, 6172, 0, 0]],
[2, 4987, 5012, 4986, 4986, 6172, 0, 0], # exit with stoploss hit
[3, 5010, 5010, 4980, 5010, 6172, 0, 1],
[4, 5010, 5011, 4977, 4995, 6172, 0, 0],
[5, 4995, 4995, 4950, 4950, 6172, 0, 0]],
stop_loss=-0.01, roi={"0": 1}, profit_perc=0.002, use_sell_signal=True,
trades=[BTrade(sell_reason=SellType.SELL_SIGNAL, open_tick=1, close_tick=4)]
)
@ -32,9 +32,9 @@ tc1 = BTContainer(data=[
[0, 5000, 5025, 4975, 4987, 6172, 1, 0],
[1, 5000, 5025, 4975, 4987, 6172, 0, 0], # enter trade (signal on last candle)
[2, 4987, 5012, 4600, 4600, 6172, 0, 0], # exit with stoploss hit
[3, 4975, 5000, 4980, 4977, 6172, 0, 0],
[4, 4977, 4987, 4977, 4995, 6172, 0, 0],
[5, 4995, 4995, 4995, 4950, 6172, 0, 0]],
[3, 4975, 5000, 4975, 4977, 6172, 0, 0],
[4, 4977, 4995, 4977, 4995, 6172, 0, 0],
[5, 4995, 4995, 4950, 4950, 6172, 0, 0]],
stop_loss=-0.01, roi={"0": 1}, profit_perc=-0.01,
trades=[BTrade(sell_reason=SellType.STOP_LOSS, open_tick=1, close_tick=2)]
)
@ -69,7 +69,7 @@ tc3 = BTContainer(data=[
[3, 4975, 5000, 4950, 4962, 6172, 1, 0],
[4, 4975, 5000, 4950, 4962, 6172, 0, 0], # enter trade 2 (signal on last candle)
[5, 4962, 4987, 4000, 4000, 6172, 0, 0], # exit with stoploss hit
[6, 4950, 4975, 4975, 4950, 6172, 0, 0]],
[6, 4950, 4975, 4950, 4950, 6172, 0, 0]],
stop_loss=-0.02, roi={"0": 1}, profit_perc=-0.04,
trades=[BTrade(sell_reason=SellType.STOP_LOSS, open_tick=1, close_tick=2),
BTrade(sell_reason=SellType.STOP_LOSS, open_tick=4, close_tick=5)]
@ -99,7 +99,7 @@ tc5 = BTContainer(data=[
[1, 5000, 5025, 4980, 4987, 6172, 0, 0], # enter trade (signal on last candle)
[2, 4987, 5025, 4975, 4987, 6172, 0, 0],
[3, 4975, 6000, 4975, 6000, 6172, 0, 0], # ROI
[4, 4962, 4987, 4972, 4950, 6172, 0, 0],
[4, 4962, 4987, 4962, 4972, 6172, 0, 0],
[5, 4950, 4975, 4925, 4950, 6172, 0, 0]],
stop_loss=-0.01, roi={"0": 0.03}, profit_perc=0.03,
trades=[BTrade(sell_reason=SellType.ROI, open_tick=1, close_tick=3)]
@ -113,7 +113,7 @@ tc6 = BTContainer(data=[
[1, 5000, 5025, 4975, 4987, 6172, 0, 0], # enter trade (signal on last candle)
[2, 4987, 5300, 4850, 5050, 6172, 0, 0], # Exit with stoploss
[3, 4975, 5000, 4950, 4962, 6172, 0, 0],
[4, 4962, 4987, 4972, 4950, 6172, 0, 0],
[4, 4962, 4987, 4950, 4950, 6172, 0, 0],
[5, 4950, 4975, 4925, 4950, 6172, 0, 0]],
stop_loss=-0.02, roi={"0": 0.05}, profit_perc=-0.02,
trades=[BTrade(sell_reason=SellType.STOP_LOSS, open_tick=1, close_tick=2)]
@ -127,7 +127,7 @@ tc7 = BTContainer(data=[
[1, 5000, 5025, 4975, 4987, 6172, 0, 0],
[2, 4987, 5300, 4950, 5050, 6172, 0, 0],
[3, 4975, 5000, 4950, 4962, 6172, 0, 0],
[4, 4962, 4987, 4972, 4950, 6172, 0, 0],
[4, 4962, 4987, 4950, 4950, 6172, 0, 0],
[5, 4950, 4975, 4925, 4950, 6172, 0, 0]],
stop_loss=-0.02, roi={"0": 0.03}, profit_perc=0.03,
trades=[BTrade(sell_reason=SellType.ROI, open_tick=1, close_tick=2)]
@ -167,7 +167,7 @@ tc9 = BTContainer(data=[
tc10 = BTContainer(data=[
# D O H L C V B S
[0, 5000, 5050, 4950, 5000, 6172, 1, 0],
[1, 5000, 5050, 4950, 5100, 6172, 0, 0],
[1, 5000, 5100, 4950, 5100, 6172, 0, 0],
[2, 5100, 5251, 5100, 5100, 6172, 0, 0],
[3, 4850, 5050, 4650, 4750, 6172, 0, 0],
[4, 4750, 4950, 4350, 4750, 6172, 0, 0]],
@ -183,7 +183,7 @@ tc10 = BTContainer(data=[
tc11 = BTContainer(data=[
# D O H L C V B S
[0, 5000, 5050, 4950, 5000, 6172, 1, 0],
[1, 5000, 5050, 4950, 5100, 6172, 0, 0],
[1, 5000, 5100, 4950, 5100, 6172, 0, 0],
[2, 5100, 5251, 5100, 5100, 6172, 0, 0],
[3, 5000, 5150, 4650, 4750, 6172, 0, 0],
[4, 4750, 4950, 4350, 4750, 6172, 0, 0]],
@ -199,7 +199,7 @@ tc11 = BTContainer(data=[
tc12 = BTContainer(data=[
# D O H L C V B S
[0, 5000, 5050, 4950, 5000, 6172, 1, 0],
[1, 5000, 5050, 4950, 5100, 6172, 0, 0],
[1, 5000, 5100, 4950, 5100, 6172, 0, 0],
[2, 5100, 5251, 4650, 5100, 6172, 0, 0],
[3, 4850, 5050, 4650, 4750, 6172, 0, 0],
[4, 4750, 4950, 4350, 4750, 6172, 0, 0]],
@ -216,8 +216,8 @@ tc13 = BTContainer(data=[
[0, 5000, 5050, 4950, 5000, 6172, 1, 0],
[1, 5000, 5100, 4950, 5100, 6172, 0, 0],
[2, 5100, 5251, 4850, 5100, 6172, 0, 0],
[3, 4850, 5050, 4850, 4750, 6172, 0, 0],
[4, 4750, 4950, 4850, 4750, 6172, 0, 0]],
[3, 4850, 5050, 4750, 4750, 6172, 0, 0],
[4, 4750, 4950, 4750, 4750, 6172, 0, 0]],
stop_loss=-0.10, roi={"0": 0.01}, profit_perc=0.01,
trades=[BTrade(sell_reason=SellType.ROI, open_tick=1, close_tick=1)]
)
@ -229,7 +229,7 @@ tc14 = BTContainer(data=[
[0, 5000, 5050, 4950, 5000, 6172, 1, 0],
[1, 5000, 5100, 4600, 5100, 6172, 0, 0],
[2, 5100, 5251, 4850, 5100, 6172, 0, 0],
[3, 4850, 5050, 4850, 4750, 6172, 0, 0],
[3, 4850, 5050, 4750, 4750, 6172, 0, 0],
[4, 4750, 4950, 4350, 4750, 6172, 0, 0]],
stop_loss=-0.05, roi={"0": 0.10}, profit_perc=-0.05,
trades=[BTrade(sell_reason=SellType.STOP_LOSS, open_tick=1, close_tick=1)]
@ -243,7 +243,7 @@ tc15 = BTContainer(data=[
[0, 5000, 5050, 4950, 5000, 6172, 1, 0],
[1, 5000, 5100, 4900, 5100, 6172, 1, 0],
[2, 5100, 5251, 4650, 5100, 6172, 0, 0],
[3, 4850, 5050, 4850, 4750, 6172, 0, 0],
[3, 4850, 5050, 4750, 4750, 6172, 0, 0],
[4, 4750, 4950, 4350, 4750, 6172, 0, 0]],
stop_loss=-0.05, roi={"0": 0.01}, profit_perc=-0.04,
trades=[BTrade(sell_reason=SellType.ROI, open_tick=1, close_tick=1),
@ -259,7 +259,7 @@ tc16 = BTContainer(data=[
[1, 5000, 5025, 4975, 4987, 6172, 0, 0],
[2, 4987, 5300, 4950, 5050, 6172, 0, 0],
[3, 4975, 5000, 4940, 4962, 6172, 0, 0], # ForceSell on ROI (roi=-1)
[4, 4962, 4987, 4972, 4950, 6172, 0, 0],
[4, 4962, 4987, 4950, 4950, 6172, 0, 0],
[5, 4950, 4975, 4925, 4950, 6172, 0, 0]],
stop_loss=-0.10, roi={"0": 0.10, "65": -1}, profit_perc=-0.012,
trades=[BTrade(sell_reason=SellType.ROI, open_tick=1, close_tick=3)]
@ -275,7 +275,7 @@ tc17 = BTContainer(data=[
[1, 5000, 5025, 4975, 4987, 6172, 0, 0],
[2, 4987, 5300, 4950, 5050, 6172, 0, 0],
[3, 4980, 5000, 4940, 4962, 6172, 0, 0], # ForceSell on ROI (roi=-1)
[4, 4962, 4987, 4972, 4950, 6172, 0, 0],
[4, 4962, 4987, 4950, 4950, 6172, 0, 0],
[5, 4950, 4975, 4925, 4950, 6172, 0, 0]],
stop_loss=-0.10, roi={"0": 0.10, "120": -1}, profit_perc=-0.004,
trades=[BTrade(sell_reason=SellType.ROI, open_tick=1, close_tick=3)]
@ -291,7 +291,7 @@ tc18 = BTContainer(data=[
[1, 5000, 5025, 4975, 4987, 6172, 0, 0],
[2, 4987, 5300, 4950, 5200, 6172, 0, 0],
[3, 5200, 5220, 4940, 4962, 6172, 0, 0], # Sell on ROI (sells on open)
[4, 4962, 4987, 4972, 4950, 6172, 0, 0],
[4, 4962, 4987, 4950, 4950, 6172, 0, 0],
[5, 4950, 4975, 4925, 4950, 6172, 0, 0]],
stop_loss=-0.10, roi={"0": 0.10, "120": 0.01}, profit_perc=0.04,
trades=[BTrade(sell_reason=SellType.ROI, open_tick=1, close_tick=3)]
@ -306,8 +306,8 @@ tc19 = BTContainer(data=[
[1, 5000, 5025, 4975, 4987, 6172, 0, 0],
[2, 4987, 5300, 4950, 5200, 6172, 0, 0],
[3, 5000, 5300, 4940, 4962, 6172, 0, 0], # Sell on ROI
[4, 4962, 4987, 4972, 4950, 6172, 0, 0],
[5, 4550, 4975, 4925, 4950, 6172, 0, 0]],
[4, 4962, 4987, 4950, 4950, 6172, 0, 0],
[5, 4550, 4975, 4550, 4950, 6172, 0, 0]],
stop_loss=-0.10, roi={"0": 0.10, "120": 0.01}, profit_perc=0.01,
trades=[BTrade(sell_reason=SellType.ROI, open_tick=1, close_tick=3)]
)
@ -321,8 +321,8 @@ tc20 = BTContainer(data=[
[1, 5000, 5025, 4975, 4987, 6172, 0, 0],
[2, 4987, 5300, 4950, 5200, 6172, 0, 0],
[3, 5200, 5300, 4940, 4962, 6172, 0, 0], # Sell on ROI
[4, 4962, 4987, 4972, 4950, 6172, 0, 0],
[5, 4550, 4975, 4925, 4950, 6172, 0, 0]],
[4, 4962, 4987, 4950, 4950, 6172, 0, 0],
[5, 4925, 4975, 4925, 4950, 6172, 0, 0]],
stop_loss=-0.10, roi={"0": 0.10, "119": 0.01}, profit_perc=0.01,
trades=[BTrade(sell_reason=SellType.ROI, open_tick=1, close_tick=3)]
)
@ -334,7 +334,7 @@ tc20 = BTContainer(data=[
tc21 = BTContainer(data=[
# D O H L C V B S
[0, 5000, 5050, 4950, 5000, 6172, 1, 0],
[1, 5000, 5050, 4950, 5100, 6172, 0, 0],
[1, 5000, 5100, 4950, 5100, 6172, 0, 0],
[2, 5100, 5251, 4650, 5100, 6172, 0, 0],
[3, 4850, 5050, 4650, 4750, 6172, 0, 0],
[4, 4750, 4950, 4350, 4750, 6172, 0, 0]],
@ -350,7 +350,7 @@ tc21 = BTContainer(data=[
tc22 = BTContainer(data=[
# D O H L C V B S
[0, 5000, 5050, 4950, 5000, 6172, 1, 0],
[1, 5000, 5050, 4950, 5100, 6172, 0, 0],
[1, 5000, 5100, 4950, 5100, 6172, 0, 0],
[2, 5100, 5251, 5100, 5100, 6172, 0, 0],
[3, 4850, 5050, 4650, 4750, 6172, 0, 0],
[4, 4750, 4950, 4350, 4750, 6172, 0, 0]],
@ -369,7 +369,7 @@ tc22 = BTContainer(data=[
tc23 = BTContainer(data=[
# D O H L C V B S
[0, 5000, 5050, 4950, 5000, 6172, 1, 0],
[1, 5000, 5050, 4950, 5100, 6172, 0, 0],
[1, 5000, 5100, 4950, 5100, 6172, 0, 0],
[2, 5100, 5251, 5100, 5100, 6172, 0, 0],
[3, 4850, 5251, 4650, 4750, 6172, 0, 0],
[4, 4750, 4950, 4350, 4750, 6172, 0, 0]],
@ -386,10 +386,10 @@ tc24 = BTContainer(data=[
# D O H L C V B S
[0, 5000, 5025, 4975, 4987, 6172, 1, 0],
[1, 5000, 5025, 4975, 4987, 6172, 0, 0], # enter trade (signal on last candle)
[2, 4987, 5012, 4986, 4600, 6172, 0, 0],
[3, 5010, 5000, 4855, 5010, 6172, 0, 1], # Triggers stoploss + sellsignal
[4, 5010, 4987, 4977, 4995, 6172, 0, 0],
[5, 4995, 4995, 4995, 4950, 6172, 0, 0]],
[2, 4987, 5012, 4986, 4986, 6172, 0, 0],
[3, 5010, 5010, 4855, 5010, 6172, 0, 1], # Triggers stoploss + sellsignal
[4, 5010, 5010, 4977, 4995, 6172, 0, 0],
[5, 4995, 4995, 4950, 4950, 6172, 0, 0]],
stop_loss=-0.01, roi={"0": 1}, profit_perc=-0.01, use_sell_signal=True,
trades=[BTrade(sell_reason=SellType.STOP_LOSS, open_tick=1, close_tick=3)]
)
@ -401,10 +401,10 @@ tc25 = BTContainer(data=[
# D O H L C V B S
[0, 5000, 5025, 4975, 4987, 6172, 1, 0],
[1, 5000, 5025, 4975, 4987, 6172, 0, 0], # enter trade (signal on last candle)
[2, 4987, 5012, 4986, 4600, 6172, 0, 0],
[3, 5010, 5000, 4986, 5010, 6172, 0, 1],
[4, 5010, 4987, 4855, 4995, 6172, 0, 0], # Triggers stoploss + sellsignal acted on
[5, 4995, 4995, 4995, 4950, 6172, 0, 0]],
[2, 4987, 5012, 4986, 4986, 6172, 0, 0],
[3, 5010, 5010, 4986, 5010, 6172, 0, 1],
[4, 5010, 5010, 4855, 4995, 6172, 0, 0], # Triggers stoploss + sellsignal acted on
[5, 4995, 4995, 4950, 4950, 6172, 0, 0]],
stop_loss=-0.01, roi={"0": 1}, profit_perc=0.002, use_sell_signal=True,
trades=[BTrade(sell_reason=SellType.SELL_SIGNAL, open_tick=1, close_tick=4)]
)
@ -416,10 +416,10 @@ tc26 = BTContainer(data=[
# D O H L C V B S
[0, 5000, 5025, 4975, 4987, 6172, 1, 0],
[1, 5000, 5025, 4975, 4987, 6172, 0, 0], # enter trade (signal on last candle)
[2, 4987, 5012, 4986, 4600, 6172, 0, 0],
[2, 4987, 5012, 4986, 4986, 6172, 0, 0],
[3, 5010, 5251, 4986, 5010, 6172, 0, 1], # Triggers ROI, sell-signal
[4, 5010, 4987, 4855, 4995, 6172, 0, 0],
[5, 4995, 4995, 4995, 4950, 6172, 0, 0]],
[4, 5010, 5010, 4855, 4995, 6172, 0, 0],
[5, 4995, 4995, 4950, 4950, 6172, 0, 0]],
stop_loss=-0.10, roi={"0": 0.05}, profit_perc=0.05, use_sell_signal=True,
trades=[BTrade(sell_reason=SellType.ROI, open_tick=1, close_tick=3)]
)
@ -432,10 +432,10 @@ tc27 = BTContainer(data=[
# D O H L C V B S
[0, 5000, 5025, 4975, 4987, 6172, 1, 0],
[1, 5000, 5025, 4975, 4987, 6172, 0, 0], # enter trade (signal on last candle)
[2, 4987, 5012, 4986, 4600, 6172, 0, 0],
[2, 4987, 5012, 4986, 4986, 6172, 0, 0],
[3, 5010, 5012, 4986, 5010, 6172, 0, 1], # sell-signal
[4, 5010, 5251, 4855, 4995, 6172, 0, 0], # Triggers ROI, sell-signal acted on
[5, 4995, 4995, 4995, 4950, 6172, 0, 0]],
[5, 4995, 4995, 4950, 4950, 6172, 0, 0]],
stop_loss=-0.10, roi={"0": 0.05}, profit_perc=0.05, use_sell_signal=True,
trades=[BTrade(sell_reason=SellType.ROI, open_tick=1, close_tick=4)]
)
@ -447,7 +447,7 @@ tc27 = BTContainer(data=[
tc28 = BTContainer(data=[
# D O H L C V B S
[0, 5000, 5050, 4950, 5000, 6172, 1, 0],
[1, 5000, 5050, 4950, 5100, 6172, 0, 0],
[1, 5000, 5100, 4950, 5100, 6172, 0, 0],
[2, 5100, 5251, 5100, 5100, 6172, 0, 0],
[3, 4850, 5050, 4650, 4750, 6172, 0, 0],
[4, 4750, 4950, 4350, 4750, 6172, 0, 0]],
@ -463,7 +463,7 @@ tc28 = BTContainer(data=[
tc29 = BTContainer(data=[
# D O H L C V B S
[0, 5000, 5050, 4950, 5000, 6172, 1, 0],
[1, 5000, 5050, 5000, 4900, 6172, 0, 0], # enter trade (signal on last candle)
[1, 5000, 5050, 5000, 5000, 6172, 0, 0], # enter trade (signal on last candle)
[2, 4900, 5250, 4500, 5100, 6172, 0, 0], # Triggers trailing-stoploss
[3, 5100, 5100, 4650, 4750, 6172, 0, 0],
[4, 4750, 4950, 4350, 4750, 6172, 0, 0]],
@ -477,7 +477,7 @@ tc29 = BTContainer(data=[
tc30 = BTContainer(data=[
# D O H L C V B S
[0, 5000, 5050, 4950, 5000, 6172, 1, 0],
[1, 5000, 5500, 5000, 4900, 6172, 0, 0], # enter trade (signal on last candle) and stop
[1, 5000, 5500, 4900, 4900, 6172, 0, 0], # enter trade (signal on last candle) and stop
[2, 4900, 5250, 4500, 5100, 6172, 0, 0],
[3, 5100, 5100, 4650, 4750, 6172, 0, 0],
[4, 4750, 4950, 4350, 4750, 6172, 0, 0]],
@ -491,7 +491,7 @@ tc30 = BTContainer(data=[
tc31 = BTContainer(data=[
# D O H L C V B S
[0, 5000, 5050, 4950, 5000, 6172, 1, 0],
[1, 5000, 5500, 5000, 4900, 6172, 0, 0], # enter trade (signal on last candle) and stop
[1, 5000, 5500, 4900, 4900, 6172, 0, 0], # enter trade (signal on last candle) and stop
[2, 4900, 5250, 4500, 5100, 6172, 0, 0],
[3, 5100, 5100, 4650, 4750, 6172, 0, 0],
[4, 4750, 4950, 4350, 4750, 6172, 0, 0]],
@ -506,7 +506,7 @@ tc31 = BTContainer(data=[
tc32 = BTContainer(data=[
# D O H L C V B S
[0, 5000, 5050, 4950, 5000, 6172, 1, 0],
[1, 5000, 5500, 5000, 4900, 6172, 0, 0], # enter trade (signal on last candle) and stop
[1, 5000, 5500, 4951, 5000, 6172, 0, 0], # enter trade and stop
[2, 4900, 5250, 4500, 5100, 6172, 0, 0],
[3, 5100, 5100, 4650, 4750, 6172, 0, 0],
[4, 4750, 4950, 4350, 4750, 6172, 0, 0]],
@ -521,7 +521,7 @@ tc32 = BTContainer(data=[
tc33 = BTContainer(data=[
# D O H L C V EL XL ES Xs BT
[0, 5000, 5050, 4950, 5000, 6172, 1, 0, 0, 0, 'buy_signal_01'],
[1, 5000, 5500, 5000, 4900, 6172, 0, 0, 0, 0, None], # enter trade and stop
[1, 5000, 5500, 4951, 5000, 6172, 0, 0, 0, 0, None], # enter trade and stop
[2, 4900, 5250, 4500, 5100, 6172, 0, 0, 0, 0, None],
[3, 5100, 5100, 4650, 4750, 6172, 0, 0, 0, 0, None],
[4, 4750, 4950, 4350, 4750, 6172, 0, 0, 0, 0, None]],

View File

@ -579,6 +579,7 @@ def test_backtest__get_sell_trade_entry(default_conf, fee, mocker) -> None:
0, # exit_hsort
'', # Long Signal Name
'', # Short Signal Name
'', # Exit Signal Name
]
trade = backtesting._enter_trade(pair, row=row, direction='long')
@ -596,27 +597,29 @@ def test_backtest__get_sell_trade_entry(default_conf, fee, mocker) -> None:
0, # exit_short
'', # long Signal Name
'', # Short Signal Name
'', # Exit Signal Name
]
row_detail = pd.DataFrame(
[
[
pd.Timestamp(year=2020, month=1, day=1, hour=5, minute=0, tzinfo=timezone.utc),
200, 200.1, 197, 199, 1, 0, 0, 0, '', '',
200, 200.1, 197, 199, 1, 0, 0, 0, '', '', '',
], [
pd.Timestamp(year=2020, month=1, day=1, hour=5, minute=1, tzinfo=timezone.utc),
199, 199.7, 199, 199.5, 0, 0, 0, 0, '', ''
199, 199.7, 199, 199.5, 0, 0, 0, 0, '', '', '',
], [
pd.Timestamp(year=2020, month=1, day=1, hour=5, minute=2, tzinfo=timezone.utc),
199.5, 200.8, 199, 200.9, 0, 0, 0, 0, '', ''
199.5, 200.8, 199, 200.9, 0, 0, 0, 0, '', '', '',
], [
pd.Timestamp(year=2020, month=1, day=1, hour=5, minute=3, tzinfo=timezone.utc),
200.5, 210.5, 193, 210.5, 0, 0, 0, 0, '', '' # ROI sell (?)
200.5, 210.5, 193, 210.5, 0, 0, 0, 0, '', '', '', # ROI sell (?)
], [
pd.Timestamp(year=2020, month=1, day=1, hour=5, minute=4, tzinfo=timezone.utc),
200, 200.1, 193, 199, 0, 0, 0, 0, '', ''
200, 200.1, 193, 199, 0, 0, 0, 0, '', '', '',
],
], columns=['date', 'open', 'high', 'low', 'close', 'enter_long', 'exit_long',
'enter_short', 'exit_short', 'long_tag', 'short_tag']
'enter_short', 'exit_short', 'long_tag', 'short_tag', 'exit_tag']
)
# No data available.
@ -631,7 +634,7 @@ def test_backtest__get_sell_trade_entry(default_conf, fee, mocker) -> None:
# Assign empty ... no result.
backtesting.detail_data[pair] = pd.DataFrame(
[], columns=['date', 'open', 'high', 'low', 'close', 'enter_long', 'exit_long',
'enter_short', 'exit_short', 'long_tag', 'short_tag'])
'enter_short', 'exit_short', 'long_tag', 'short_tag', 'exit_tag'])
res = backtesting._get_sell_trade_entry(trade, row)
assert res is None
@ -695,7 +698,7 @@ def test_backtest_one(default_conf, fee, mocker, testdatadir) -> None:
'min_rate': [0.10370188, 0.10300000000000001],
'max_rate': [0.10501, 0.1038888],
'is_open': [False, False],
'buy_tag': [None, None],
'buy_tag': [None, None]
})
pd.testing.assert_frame_equal(results, expected)
data_pair = processed[pair]

View File

@ -209,7 +209,8 @@ def test_export_params(tmpdir):
assert filename.is_file()
content = rapidjson.load(filename.open('r'))
with filename.open('r') as f:
content = rapidjson.load(f)
assert content['strategy_name'] == CURRENT_TEST_STRATEGY
assert 'params' in content
assert "buy" in content["params"]

View File

@ -85,6 +85,8 @@ def test_loss_calculation_has_limited_profit(hyperopt_conf, hyperopt_results) ->
"SharpeHyperOptLoss",
"SharpeHyperOptLossDaily",
"MaxDrawDownHyperOptLoss",
"CalmarHyperOptLoss",
])
def test_loss_functions_better_profits(default_conf, hyperopt_results, lossfunction) -> None:
results_over = hyperopt_results.copy()
@ -96,11 +98,32 @@ def test_loss_functions_better_profits(default_conf, hyperopt_results, lossfunct
default_conf.update({'hyperopt_loss': lossfunction})
hl = HyperOptLossResolver.load_hyperoptloss(default_conf)
correct = hl.hyperopt_loss_function(hyperopt_results, len(hyperopt_results),
datetime(2019, 1, 1), datetime(2019, 5, 1))
over = hl.hyperopt_loss_function(results_over, len(results_over),
datetime(2019, 1, 1), datetime(2019, 5, 1))
under = hl.hyperopt_loss_function(results_under, len(results_under),
datetime(2019, 1, 1), datetime(2019, 5, 1))
correct = hl.hyperopt_loss_function(
hyperopt_results,
trade_count=len(hyperopt_results),
min_date=datetime(2019, 1, 1),
max_date=datetime(2019, 5, 1),
config=default_conf,
processed=None,
backtest_stats={'profit_total': hyperopt_results['profit_abs'].sum()}
)
over = hl.hyperopt_loss_function(
results_over,
trade_count=len(results_over),
min_date=datetime(2019, 1, 1),
max_date=datetime(2019, 5, 1),
config=default_conf,
processed=None,
backtest_stats={'profit_total': results_over['profit_abs'].sum()}
)
under = hl.hyperopt_loss_function(
results_under,
trade_count=len(results_under),
min_date=datetime(2019, 1, 1),
max_date=datetime(2019, 5, 1),
config=default_conf,
processed=None,
backtest_stats={'profit_total': results_under['profit_abs'].sum()}
)
assert over < correct
assert under > correct

View File

@ -10,7 +10,8 @@ from arrow import Arrow
from freqtrade.configuration import TimeRange
from freqtrade.constants import DATETIME_PRINT_FORMAT, LAST_BT_RESULT_FN
from freqtrade.data import history
from freqtrade.data.btanalysis import get_latest_backtest_filename, load_backtest_data
from freqtrade.data.btanalysis import (get_latest_backtest_filename, load_backtest_data,
load_backtest_stats)
from freqtrade.edge import PairInfo
from freqtrade.enums import SellType
from freqtrade.optimize.optimize_reports import (_get_resample_from_period, generate_backtest_stats,
@ -19,9 +20,9 @@ from freqtrade.optimize.optimize_reports import (_get_resample_from_period, gene
generate_periodic_breakdown_stats,
generate_sell_reason_stats,
generate_strategy_comparison,
generate_trading_stats, store_backtest_stats,
text_table_bt_results, text_table_sell_reason,
text_table_strategy)
generate_trading_stats, show_sorted_pairlist,
store_backtest_stats, text_table_bt_results,
text_table_sell_reason, text_table_strategy)
from freqtrade.resolvers.strategy_resolver import StrategyResolver
from tests.conftest import CURRENT_TEST_STRATEGY
from tests.data.test_history import _backup_file, _clean_test_file
@ -408,3 +409,16 @@ def test__get_resample_from_period():
assert _get_resample_from_period('month') == '1M'
with pytest.raises(ValueError, match=r"Period noooo is not supported."):
_get_resample_from_period('noooo')
def test_show_sorted_pairlist(testdatadir, default_conf, capsys):
filename = testdatadir / "backtest-result_new.json"
bt_data = load_backtest_stats(filename)
default_conf['backtest_show_pair_list'] = True
show_sorted_pairlist(default_conf, bt_data)
out, err = capsys.readouterr()
assert 'Pairs for Strategy StrategyTestV2: \n[' in out
assert 'TOTAL' not in out
assert '"ETH/BTC", // ' in out

View File

@ -116,3 +116,28 @@ def test_PairLocks_getlongestlock(use_db):
PairLocks.reset_locks()
PairLocks.use_db = True
@pytest.mark.parametrize('use_db', (False, True))
@pytest.mark.usefixtures("init_persistence")
def test_PairLocks_reason(use_db):
PairLocks.timeframe = '5m'
PairLocks.use_db = use_db
# No lock should be present
if use_db:
assert len(PairLock.query.all()) == 0
assert PairLocks.use_db == use_db
PairLocks.lock_pair('XRP/USDT', arrow.utcnow().shift(minutes=4).datetime, 'TestLock1')
PairLocks.lock_pair('ETH/USDT', arrow.utcnow().shift(minutes=4).datetime, 'TestLock2')
assert PairLocks.is_pair_locked('XRP/USDT')
assert PairLocks.is_pair_locked('ETH/USDT')
PairLocks.unlock_reason('TestLock1')
assert not PairLocks.is_pair_locked('XRP/USDT')
assert PairLocks.is_pair_locked('ETH/USDT')
PairLocks.reset_locks()
PairLocks.use_db = True

View File

@ -839,8 +839,226 @@ def test_performance_handle(default_conf, ticker, limit_buy_order, fee,
assert len(res) == 1
assert res[0]['pair'] == 'ETH/BTC'
assert res[0]['count'] == 1
assert prec_satoshi(res[0]['profit_pct'], 6.2)
def test_buy_tag_performance_handle(default_conf, ticker, limit_buy_order, fee,
limit_sell_order, mocker) -> None:
mocker.patch('freqtrade.rpc.telegram.Telegram', MagicMock())
mocker.patch.multiple(
'freqtrade.exchange.Exchange',
get_balances=MagicMock(return_value=ticker),
fetch_ticker=ticker,
get_fee=fee,
)
freqtradebot = get_patched_freqtradebot(mocker, default_conf)
patch_get_signal(freqtradebot)
rpc = RPC(freqtradebot)
# Create some test data
freqtradebot.enter_positions()
trade = Trade.query.first()
assert trade
# Simulate fulfilled LIMIT_BUY order for trade
trade.update(limit_buy_order)
# Simulate fulfilled LIMIT_SELL order for trade
trade.update(limit_sell_order)
trade.close_date = datetime.utcnow()
trade.is_open = False
res = rpc._rpc_buy_tag_performance(None)
assert len(res) == 1
assert res[0]['buy_tag'] == 'Other'
assert res[0]['count'] == 1
assert prec_satoshi(res[0]['profit_pct'], 6.2)
trade.buy_tag = "TEST_TAG"
res = rpc._rpc_buy_tag_performance(None)
assert len(res) == 1
assert res[0]['buy_tag'] == 'TEST_TAG'
assert res[0]['count'] == 1
assert prec_satoshi(res[0]['profit_pct'], 6.2)
def test_buy_tag_performance_handle_2(mocker, default_conf, markets, fee):
mocker.patch('freqtrade.rpc.telegram.Telegram', MagicMock())
mocker.patch.multiple(
'freqtrade.exchange.Exchange',
markets=PropertyMock(return_value=markets)
)
freqtradebot = get_patched_freqtradebot(mocker, default_conf)
create_mock_trades(fee)
rpc = RPC(freqtradebot)
res = rpc._rpc_buy_tag_performance(None)
assert len(res) == 2
assert res[0]['buy_tag'] == 'TEST1'
assert res[0]['count'] == 1
assert prec_satoshi(res[0]['profit_pct'], 0.5)
assert res[1]['buy_tag'] == 'Other'
assert res[1]['count'] == 1
assert prec_satoshi(res[1]['profit_pct'], 1.0)
# Test for a specific pair
res = rpc._rpc_buy_tag_performance('ETC/BTC')
assert len(res) == 1
assert res[0]['count'] == 1
assert res[0]['buy_tag'] == 'TEST1'
assert prec_satoshi(res[0]['profit_pct'], 0.5)
def test_sell_reason_performance_handle(default_conf, ticker, limit_buy_order, fee,
limit_sell_order, mocker) -> None:
mocker.patch('freqtrade.rpc.telegram.Telegram', MagicMock())
mocker.patch.multiple(
'freqtrade.exchange.Exchange',
get_balances=MagicMock(return_value=ticker),
fetch_ticker=ticker,
get_fee=fee,
)
freqtradebot = get_patched_freqtradebot(mocker, default_conf)
patch_get_signal(freqtradebot)
rpc = RPC(freqtradebot)
# Create some test data
freqtradebot.enter_positions()
trade = Trade.query.first()
assert trade
# Simulate fulfilled LIMIT_BUY order for trade
trade.update(limit_buy_order)
# Simulate fulfilled LIMIT_SELL order for trade
trade.update(limit_sell_order)
trade.close_date = datetime.utcnow()
trade.is_open = False
res = rpc._rpc_sell_reason_performance(None)
assert len(res) == 1
assert res[0]['sell_reason'] == 'Other'
assert res[0]['count'] == 1
assert prec_satoshi(res[0]['profit_pct'], 6.2)
trade.sell_reason = "TEST1"
res = rpc._rpc_sell_reason_performance(None)
assert len(res) == 1
assert res[0]['sell_reason'] == 'TEST1'
assert res[0]['count'] == 1
assert prec_satoshi(res[0]['profit_pct'], 6.2)
def test_sell_reason_performance_handle_2(mocker, default_conf, markets, fee):
mocker.patch('freqtrade.rpc.telegram.Telegram', MagicMock())
mocker.patch.multiple(
'freqtrade.exchange.Exchange',
markets=PropertyMock(return_value=markets)
)
freqtradebot = get_patched_freqtradebot(mocker, default_conf)
create_mock_trades(fee)
rpc = RPC(freqtradebot)
res = rpc._rpc_sell_reason_performance(None)
assert len(res) == 2
assert res[0]['sell_reason'] == 'sell_signal'
assert res[0]['count'] == 1
assert prec_satoshi(res[0]['profit_pct'], 0.5)
assert res[1]['sell_reason'] == 'roi'
assert res[1]['count'] == 1
assert prec_satoshi(res[1]['profit_pct'], 1.0)
# Test for a specific pair
res = rpc._rpc_sell_reason_performance('ETC/BTC')
assert len(res) == 1
assert res[0]['count'] == 1
assert res[0]['sell_reason'] == 'sell_signal'
assert prec_satoshi(res[0]['profit_pct'], 0.5)
def test_mix_tag_performance_handle(default_conf, ticker, limit_buy_order, fee,
limit_sell_order, mocker) -> None:
mocker.patch('freqtrade.rpc.telegram.Telegram', MagicMock())
mocker.patch.multiple(
'freqtrade.exchange.Exchange',
get_balances=MagicMock(return_value=ticker),
fetch_ticker=ticker,
get_fee=fee,
)
freqtradebot = get_patched_freqtradebot(mocker, default_conf)
patch_get_signal(freqtradebot)
rpc = RPC(freqtradebot)
# Create some test data
freqtradebot.enter_positions()
trade = Trade.query.first()
assert trade
# Simulate fulfilled LIMIT_BUY order for trade
trade.update(limit_buy_order)
# Simulate fulfilled LIMIT_SELL order for trade
trade.update(limit_sell_order)
trade.close_date = datetime.utcnow()
trade.is_open = False
res = rpc._rpc_mix_tag_performance(None)
assert len(res) == 1
assert res[0]['mix_tag'] == 'Other Other'
assert res[0]['count'] == 1
assert prec_satoshi(res[0]['profit'], 6.2)
trade.buy_tag = "TESTBUY"
trade.sell_reason = "TESTSELL"
res = rpc._rpc_mix_tag_performance(None)
assert len(res) == 1
assert res[0]['mix_tag'] == 'TESTBUY TESTSELL'
assert res[0]['count'] == 1
assert prec_satoshi(res[0]['profit'], 6.2)
def test_mix_tag_performance_handle_2(mocker, default_conf, markets, fee):
mocker.patch('freqtrade.rpc.telegram.Telegram', MagicMock())
mocker.patch.multiple(
'freqtrade.exchange.Exchange',
markets=PropertyMock(return_value=markets)
)
freqtradebot = get_patched_freqtradebot(mocker, default_conf)
create_mock_trades(fee)
rpc = RPC(freqtradebot)
res = rpc._rpc_mix_tag_performance(None)
assert len(res) == 2
assert res[0]['mix_tag'] == 'TEST1 sell_signal'
assert res[0]['count'] == 1
assert prec_satoshi(res[0]['profit'], 0.5)
assert res[1]['mix_tag'] == 'Other roi'
assert res[1]['count'] == 1
assert prec_satoshi(res[1]['profit'], 1.0)
# Test for a specific pair
res = rpc._rpc_mix_tag_performance('ETC/BTC')
assert len(res) == 1
assert res[0]['count'] == 1
assert res[0]['mix_tag'] == 'TEST1 sell_signal'
assert prec_satoshi(res[0]['profit'], 0.5)
def test_rpc_count(mocker, default_conf, ticker, fee) -> None:
mocker.patch('freqtrade.rpc.telegram.Telegram', MagicMock())

View File

@ -820,8 +820,10 @@ def test_api_performance(botclient, fee):
rc = client_get(client, f"{BASE_URI}/performance")
assert_response(rc)
assert len(rc.json()) == 2
assert rc.json() == [{'count': 1, 'pair': 'LTC/ETH', 'profit': 7.61, 'profit_abs': 0.01872279},
{'count': 1, 'pair': 'XRP/ETH', 'profit': -5.57, 'profit_abs': -0.1150375}]
assert rc.json() == [{'count': 1, 'pair': 'LTC/ETH', 'profit': 7.61, 'profit_pct': 7.61,
'profit_ratio': 0.07609203, 'profit_abs': 0.01872279},
{'count': 1, 'pair': 'XRP/ETH', 'profit': -5.57, 'profit_pct': -5.57,
'profit_ratio': -0.05570419, 'profit_abs': -0.1150375}]
# TODO-lev: @pytest.mark.parametrize('is_short,side', [

View File

@ -93,7 +93,8 @@ def test_telegram_init(default_conf, mocker, caplog) -> None:
message_str = ("rpc.telegram is listening for following commands: [['status'], ['profit'], "
"['balance'], ['start'], ['stop'], ['forcesell'], ['forcebuy'], ['trades'], "
"['delete'], ['performance'], ['stats'], ['daily'], ['count'], ['locks'], "
"['delete'], ['performance'], ['buys'], ['sells'], ['mix_tags'], "
"['stats'], ['daily'], ['count'], ['locks'], "
"['unlock', 'delete_locks'], ['reload_config', 'reload_conf'], "
"['show_config', 'show_conf'], ['stopbuy'], "
"['whitelist'], ['blacklist'], ['logs'], ['edge'], ['help'], ['version']"
@ -715,6 +716,7 @@ def test_telegram_forcesell_handle(default_conf, update, ticker, fee,
'profit_ratio': 0.0629778,
'stake_currency': 'BTC',
'fiat_currency': 'USD',
'buy_tag': ANY,
'sell_reason': SellType.FORCE_SELL.value,
'open_date': ANY,
'close_date': ANY,
@ -778,6 +780,7 @@ def test_telegram_forcesell_down_handle(default_conf, update, ticker, fee,
'profit_ratio': -0.05482878,
'stake_currency': 'BTC',
'fiat_currency': 'USD',
'buy_tag': ANY,
'sell_reason': SellType.FORCE_SELL.value,
'open_date': ANY,
'close_date': ANY,
@ -831,6 +834,7 @@ def test_forcesell_all_handle(default_conf, update, ticker, fee, mocker) -> None
'profit_ratio': -0.00408133,
'stake_currency': 'BTC',
'fiat_currency': 'USD',
'buy_tag': ANY,
'sell_reason': SellType.FORCE_SELL.value,
'open_date': ANY,
'close_date': ANY,
@ -976,6 +980,102 @@ def test_performance_handle(default_conf, update, ticker, fee,
assert '<code>ETH/BTC\t0.00006217 BTC (6.20%) (1)</code>' in msg_mock.call_args_list[0][0][0]
def test_buy_tag_performance_handle(default_conf, update, ticker, fee,
limit_buy_order, limit_sell_order, mocker) -> None:
mocker.patch.multiple(
'freqtrade.exchange.Exchange',
fetch_ticker=ticker,
get_fee=fee,
)
telegram, freqtradebot, msg_mock = get_telegram_testobject(mocker, default_conf)
patch_get_signal(freqtradebot)
# Create some test data
freqtradebot.enter_positions()
trade = Trade.query.first()
assert trade
# Simulate fulfilled LIMIT_BUY order for trade
trade.update(limit_buy_order)
trade.buy_tag = "TESTBUY"
# Simulate fulfilled LIMIT_SELL order for trade
trade.update(limit_sell_order)
trade.close_date = datetime.utcnow()
trade.is_open = False
telegram._buy_tag_performance(update=update, context=MagicMock())
assert msg_mock.call_count == 1
assert 'Buy Tag Performance' in msg_mock.call_args_list[0][0][0]
assert '<code>TESTBUY\t0.00006217 BTC (6.20%) (1)</code>' in msg_mock.call_args_list[0][0][0]
def test_sell_reason_performance_handle(default_conf, update, ticker, fee,
limit_buy_order, limit_sell_order, mocker) -> None:
mocker.patch.multiple(
'freqtrade.exchange.Exchange',
fetch_ticker=ticker,
get_fee=fee,
)
telegram, freqtradebot, msg_mock = get_telegram_testobject(mocker, default_conf)
patch_get_signal(freqtradebot)
# Create some test data
freqtradebot.enter_positions()
trade = Trade.query.first()
assert trade
# Simulate fulfilled LIMIT_BUY order for trade
trade.update(limit_buy_order)
trade.sell_reason = 'TESTSELL'
# Simulate fulfilled LIMIT_SELL order for trade
trade.update(limit_sell_order)
trade.close_date = datetime.utcnow()
trade.is_open = False
telegram._sell_reason_performance(update=update, context=MagicMock())
assert msg_mock.call_count == 1
assert 'Sell Reason Performance' in msg_mock.call_args_list[0][0][0]
assert '<code>TESTSELL\t0.00006217 BTC (6.20%) (1)</code>' in msg_mock.call_args_list[0][0][0]
def test_mix_tag_performance_handle(default_conf, update, ticker, fee,
limit_buy_order, limit_sell_order, mocker) -> None:
mocker.patch.multiple(
'freqtrade.exchange.Exchange',
fetch_ticker=ticker,
get_fee=fee,
)
telegram, freqtradebot, msg_mock = get_telegram_testobject(mocker, default_conf)
patch_get_signal(freqtradebot)
# Create some test data
freqtradebot.enter_positions()
trade = Trade.query.first()
assert trade
# Simulate fulfilled LIMIT_BUY order for trade
trade.update(limit_buy_order)
trade.buy_tag = "TESTBUY"
trade.sell_reason = "TESTSELL"
# Simulate fulfilled LIMIT_SELL order for trade
trade.update(limit_sell_order)
trade.close_date = datetime.utcnow()
trade.is_open = False
telegram._mix_tag_performance(update=update, context=MagicMock())
assert msg_mock.call_count == 1
assert 'Mix Tag Performance' in msg_mock.call_args_list[0][0][0]
assert ('<code>TESTBUY TESTSELL\t0.00006217 BTC (6.20%) (1)</code>'
in msg_mock.call_args_list[0][0][0])
def test_count_handle(default_conf, update, ticker, fee, mocker) -> None:
mocker.patch.multiple(
'freqtrade.exchange.Exchange',
@ -1386,6 +1486,7 @@ def test_send_msg_sell_notification(default_conf, mocker) -> None:
'profit_ratio': -0.57405275,
'stake_currency': 'ETH',
'fiat_currency': 'USD',
'buy_tag': 'buy_signal1',
'sell_reason': SellType.STOP_LOSS.value,
'open_date': arrow.utcnow().shift(hours=-1),
'close_date': arrow.utcnow(),
@ -1393,6 +1494,7 @@ def test_send_msg_sell_notification(default_conf, mocker) -> None:
assert msg_mock.call_args[0][0] \
== ('\N{WARNING SIGN} *Binance:* Selling KEY/ETH (#1)\n'
'*Profit:* `-57.41% (loss: -0.05746268 ETH / -24.812 USD)`\n'
'*Buy Tag:* `buy_signal1`\n'
'*Sell Reason:* `stop_loss`\n'
'*Duration:* `1:00:00 (60.0 min)`\n'
'*Amount:* `1333.33333333`\n'
@ -1416,6 +1518,7 @@ def test_send_msg_sell_notification(default_conf, mocker) -> None:
'profit_amount': -0.05746268,
'profit_ratio': -0.57405275,
'stake_currency': 'ETH',
'buy_tag': 'buy_signal1',
'sell_reason': SellType.STOP_LOSS.value,
'open_date': arrow.utcnow().shift(days=-1, hours=-2, minutes=-30),
'close_date': arrow.utcnow(),
@ -1423,6 +1526,7 @@ def test_send_msg_sell_notification(default_conf, mocker) -> None:
assert msg_mock.call_args[0][0] \
== ('\N{WARNING SIGN} *Binance:* Selling KEY/ETH (#1)\n'
'*Profit:* `-57.41%`\n'
'*Buy Tag:* `buy_signal1`\n'
'*Sell Reason:* `stop_loss`\n'
'*Duration:* `1 day, 2:30:00 (1590.0 min)`\n'
'*Amount:* `1333.33333333`\n'
@ -1487,6 +1591,7 @@ def test_send_msg_sell_fill_notification(default_conf, mocker) -> None:
'profit_ratio': -0.57405275,
'stake_currency': 'ETH',
'fiat_currency': 'USD',
'buy_tag': 'buy_signal1',
'sell_reason': SellType.STOP_LOSS.value,
'open_date': arrow.utcnow().shift(hours=-1),
'close_date': arrow.utcnow(),
@ -1578,12 +1683,14 @@ def test_send_msg_sell_notification_no_fiat(default_conf, mocker) -> None:
'profit_ratio': -0.57405275,
'stake_currency': 'ETH',
'fiat_currency': 'USD',
'buy_tag': 'buy_signal1',
'sell_reason': SellType.STOP_LOSS.value,
'open_date': arrow.utcnow().shift(hours=-2, minutes=-35, seconds=-3),
'close_date': arrow.utcnow(),
})
assert msg_mock.call_args[0][0] == ('\N{WARNING SIGN} *Binance:* Selling KEY/ETH (#1)\n'
'*Profit:* `-57.41%`\n'
'*Buy Tag:* `buy_signal1`\n'
'*Sell Reason:* `stop_loss`\n'
'*Duration:* `2:35:03 (155.1 min)`\n'
'*Amount:* `1333.33333333`\n'

View File

@ -42,29 +42,29 @@ def test_returns_latest_signal(ohlcv_history):
mocked_history.loc[1, 'exit_long'] = 1
assert _STRATEGY.get_entry_signal('ETH/BTC', '5m', mocked_history) == (None, None)
assert _STRATEGY.get_exit_signal('ETH/BTC', '5m', mocked_history) == (False, True)
assert _STRATEGY.get_exit_signal('ETH/BTC', '5m', mocked_history, True) == (False, False)
assert _STRATEGY.get_exit_signal('ETH/BTC', '5m', mocked_history) == (False, True, None)
assert _STRATEGY.get_exit_signal('ETH/BTC', '5m', mocked_history, True) == (False, False, None)
mocked_history.loc[1, 'exit_long'] = 0
mocked_history.loc[1, 'enter_long'] = 1
assert _STRATEGY.get_entry_signal(
'ETH/BTC', '5m', mocked_history) == (SignalDirection.LONG, None)
assert _STRATEGY.get_exit_signal('ETH/BTC', '5m', mocked_history) == (True, False)
assert _STRATEGY.get_exit_signal('ETH/BTC', '5m', mocked_history, True) == (False, False)
assert _STRATEGY.get_exit_signal('ETH/BTC', '5m', mocked_history) == (True, False, None)
assert _STRATEGY.get_exit_signal('ETH/BTC', '5m', mocked_history, True) == (False, False, None)
mocked_history.loc[1, 'exit_long'] = 0
mocked_history.loc[1, 'enter_long'] = 0
assert _STRATEGY.get_entry_signal('ETH/BTC', '5m', mocked_history) == (None, None)
assert _STRATEGY.get_exit_signal('ETH/BTC', '5m', mocked_history) == (False, False)
assert _STRATEGY.get_exit_signal('ETH/BTC', '5m', mocked_history, True) == (False, False)
assert _STRATEGY.get_exit_signal('ETH/BTC', '5m', mocked_history) == (False, False, None)
assert _STRATEGY.get_exit_signal('ETH/BTC', '5m', mocked_history, True) == (False, False, None)
mocked_history.loc[1, 'exit_long'] = 0
mocked_history.loc[1, 'enter_long'] = 1
mocked_history.loc[1, 'enter_tag'] = 'buy_signal_01'
assert _STRATEGY.get_entry_signal(
'ETH/BTC', '5m', mocked_history) == (SignalDirection.LONG, 'buy_signal_01')
assert _STRATEGY.get_exit_signal('ETH/BTC', '5m', mocked_history) == (True, False)
assert _STRATEGY.get_exit_signal('ETH/BTC', '5m', mocked_history, True) == (False, False)
assert _STRATEGY.get_exit_signal('ETH/BTC', '5m', mocked_history) == (True, False, None)
assert _STRATEGY.get_exit_signal('ETH/BTC', '5m', mocked_history, True) == (False, False, None)
mocked_history.loc[1, 'exit_long'] = 0
mocked_history.loc[1, 'enter_long'] = 0
@ -74,15 +74,18 @@ def test_returns_latest_signal(ohlcv_history):
assert _STRATEGY.get_entry_signal(
'ETH/BTC', '5m', mocked_history) == (SignalDirection.SHORT, 'sell_signal_01')
assert _STRATEGY.get_exit_signal('ETH/BTC', '5m', mocked_history) == (False, False)
assert _STRATEGY.get_exit_signal('ETH/BTC', '5m', mocked_history, True) == (True, False)
assert _STRATEGY.get_exit_signal('ETH/BTC', '5m', mocked_history) == (False, False, None)
assert _STRATEGY.get_exit_signal('ETH/BTC', '5m', mocked_history, True) == (True, False, None)
mocked_history.loc[1, 'enter_short'] = 0
mocked_history.loc[1, 'exit_short'] = 1
mocked_history.loc[1, 'exit_tag'] = 'sell_signal_02'
assert _STRATEGY.get_entry_signal(
'ETH/BTC', '5m', mocked_history) == (None, None)
assert _STRATEGY.get_exit_signal('ETH/BTC', '5m', mocked_history) == (False, False)
assert _STRATEGY.get_exit_signal('ETH/BTC', '5m', mocked_history, True) == (False, True)
assert _STRATEGY.get_exit_signal(
'ETH/BTC', '5m', mocked_history) == (False, False, 'sell_signal_02')
assert _STRATEGY.get_exit_signal(
'ETH/BTC', '5m', mocked_history, True) == (False, True, 'sell_signal_02')
def test_analyze_pair_empty(default_conf, mocker, caplog, ohlcv_history):
@ -633,6 +636,13 @@ def test_is_pair_locked(default_conf):
strategy.unlock_pair(pair)
assert not strategy.is_pair_locked(pair)
# Lock with reason
reason = "TestLockR"
strategy.lock_pair(pair, arrow.now(timezone.utc).shift(minutes=4).datetime, reason)
assert strategy.is_pair_locked(pair)
strategy.unlock_reason(reason)
assert not strategy.is_pair_locked(pair)
pair = 'BTC/USDT'
# Lock until 14:30
lock_time = datetime(2020, 5, 1, 14, 30, 0, tzinfo=timezone.utc)
@ -704,7 +714,7 @@ def test_strategy_safe_wrapper(value):
ret = strategy_safe_wrapper(working_method, message='DeadBeef')(value)
assert type(ret) == type(value)
assert isinstance(ret, type(value))
assert ret == value

View File

@ -62,8 +62,8 @@ def test_load_strategy(default_conf, result):
def test_load_strategy_base64(result, caplog, default_conf):
with (Path(__file__).parents[2] / 'freqtrade/templates/sample_strategy.py').open("rb") as file:
encoded_string = urlsafe_b64encode(file.read()).decode("utf-8")
filepath = Path(__file__).parents[2] / 'freqtrade/templates/sample_strategy.py'
encoded_string = urlsafe_b64encode(filepath.read_bytes()).decode("utf-8")
default_conf.update({'strategy': 'SampleStrategy:{}'.format(encoded_string)})
strategy = StrategyResolver.load_strategy(default_conf)

View File

@ -1360,6 +1360,7 @@ def test_flat_vars_to_nested_dict(caplog):
'FREQTRADE__ASK_STRATEGY__PRICE_SIDE': 'bid',
'FREQTRADE__ASK_STRATEGY__cccc': '500',
'FREQTRADE__STAKE_AMOUNT': '200.05',
'FREQTRADE__TELEGRAM__CHAT_ID': '2151',
'NOT_RELEVANT': '200.0', # Will be ignored
}
expected = {
@ -1374,6 +1375,9 @@ def test_flat_vars_to_nested_dict(caplog):
},
'some_setting': True,
'some_false_setting': False,
},
'telegram': {
'chat_id': '2151'
}
}
res = flat_vars_to_nested_dict(test_args, ENV_VAR_PREFIX)

View File

@ -236,7 +236,7 @@ def test_edge_overrides_stoploss(limit_order, fee, caplog, mocker,
# stoploss shoud be hit
assert freqtrade.handle_trade(trade) is not ignore_strat_sl
if not ignore_strat_sl:
assert log_has('Exit for NEO/BTC detected. Reason: stop_loss', caplog)
assert log_has_re('Exit for NEO/BTC detected. Reason: stop_loss.*', caplog)
assert trade.sell_reason == SellType.STOP_LOSS.value
@ -458,7 +458,6 @@ def test_create_trade_no_signal(default_conf_usdt, fee, mocker) -> None:
)
default_conf_usdt['stake_amount'] = 10
freqtrade = FreqtradeBot(default_conf_usdt)
# patch_get_signal(freqtrade, enter_long=False)
patch_get_signal(freqtrade, enter_long=False, exit_long=False)
Trade.query = MagicMock()
@ -1800,6 +1799,15 @@ def test_update_trade_state(
freqtrade.update_trade_state(trade, '123')
assert log_has_re('Found open order for.*', caplog)
limit_buy_order_usdt_new = deepcopy(limit_order)
limit_buy_order_usdt_new['filled'] = 0.0
limit_buy_order_usdt_new['status'] = 'canceled'
mocker.patch('freqtrade.freqtradebot.FreqtradeBot.get_real_amount', side_effect=ValueError)
mocker.patch('freqtrade.exchange.Exchange.fetch_order', return_value=limit_buy_order_usdt_new)
res = freqtrade.update_trade_state(trade, '123')
# Cancelled empty
assert res is True
@pytest.mark.parametrize("is_short", [False, True])
@ -1956,7 +1964,8 @@ def test_handle_trade(
assert trade.is_open is True
freqtrade.wallets.update()
patch_get_signal(freqtrade, enter_long=False, exit_short=is_short, exit_long=not is_short)
patch_get_signal(freqtrade, enter_long=False, exit_short=is_short,
exit_long=not is_short, exit_tag='sell_signal1')
assert freqtrade.handle_trade(trade) is True
assert trade.open_order_id == exit_order['id']
@ -1967,6 +1976,7 @@ def test_handle_trade(
assert trade.close_profit == close_profit
assert trade.calc_profit() == 5.685
assert trade.close_date is not None
assert trade.sell_reason == 'sell_signal1'
@pytest.mark.parametrize("is_short", [False, True])
@ -2851,6 +2861,7 @@ def test_execute_trade_exit_up(default_conf_usdt, ticker_usdt, fee, ticker_usdt_
'limit': 2.0 if is_short else 2.2,
'amount': amt,
'order_type': 'limit',
'buy_tag': None,
'open_rate': open_rate,
'current_rate': 2.01 if is_short else 2.3,
'profit_amount': 0.29554455 if is_short else 5.685,
@ -2906,6 +2917,7 @@ def test_execute_trade_exit_down(default_conf_usdt, ticker_usdt, fee, ticker_usd
'limit': 2.2 if is_short else 2.01,
'amount': 29.70297029 if is_short else 30.0,
'order_type': 'limit',
'buy_tag': None,
'open_rate': 2.02 if is_short else 2.0,
'current_rate': 2.2 if is_short else 2.0,
'profit_amount': -5.65990099 if is_short else -0.00075,
@ -2980,6 +2992,7 @@ def test_execute_trade_exit_custom_exit_price(
'limit': limit,
'amount': amount,
'order_type': 'limit',
'buy_tag': None,
'open_rate': open_rate,
'current_rate': current_rate,
'profit_amount': profit_amount,
@ -3043,6 +3056,7 @@ def test_execute_trade_exit_down_stoploss_on_exchange_dry_run(
'limit': 2.02 if is_short else 1.98,
'amount': 29.70297029 if is_short else 30.0,
'order_type': 'limit',
'buy_tag': None,
'open_rate': 2.02 if is_short else 2.0,
'current_rate': 2.2 if is_short else 2.0,
'profit_amount': -0.3 if is_short else -0.8985,
@ -3295,6 +3309,7 @@ def test_execute_trade_exit_market_order(
'limit': limit,
'amount': round(amount, 9),
'order_type': 'market',
'buy_tag': None,
'open_rate': open_rate,
'current_rate': current_rate,
'profit_amount': profit_amount,

View File

@ -2108,6 +2108,10 @@ def test_Trade_object_idem():
'get_open_trades_without_assigned_fees',
'get_open_order_trades',
'get_trades',
'get_sell_reason_performance',
'get_buy_tag_performance',
'get_mix_tag_performance',
)
# Parent (LocalTrade) should have the same attributes