Add Calmar Ratio Daily
This hyper opt loss calculates the daily Calmar ratio.
This commit is contained in:
parent
ca20e17d40
commit
24baad7884
79
freqtrade/optimize/hyperopt_loss_calmar_daily.py
Normal file
79
freqtrade/optimize/hyperopt_loss_calmar_daily.py
Normal file
@ -0,0 +1,79 @@
|
||||
"""
|
||||
CalmarHyperOptLossDaily
|
||||
|
||||
This module defines the alternative HyperOptLoss class which can be used for
|
||||
Hyperoptimization.
|
||||
"""
|
||||
from datetime import datetime
|
||||
from math import sqrt as msqrt
|
||||
from typing import Any, Dict
|
||||
|
||||
from pandas import DataFrame, date_range
|
||||
|
||||
from freqtrade.optimize.hyperopt import IHyperOptLoss
|
||||
|
||||
|
||||
class CalmarHyperOptLossDaily(IHyperOptLoss):
|
||||
"""
|
||||
Defines the loss function for hyperopt.
|
||||
|
||||
This implementation uses the Calmar Ratio calculation.
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def hyperopt_loss_function(
|
||||
results: DataFrame,
|
||||
trade_count: int,
|
||||
min_date: datetime,
|
||||
max_date: datetime,
|
||||
backtest_stats: Dict[str, Any],
|
||||
*args,
|
||||
**kwargs
|
||||
) -> float:
|
||||
"""
|
||||
Objective function, returns smaller number for more optimal results.
|
||||
|
||||
Uses Calmar Ratio calculation.
|
||||
"""
|
||||
resample_freq = "1D"
|
||||
slippage_per_trade_ratio = 0.0005
|
||||
days_in_year = 365
|
||||
|
||||
# create the index within the min_date and end max_date
|
||||
t_index = date_range(
|
||||
start=min_date, end=max_date, freq=resample_freq, normalize=True
|
||||
)
|
||||
|
||||
# apply slippage per trade to profit_total
|
||||
results.loc[:, "profit_ratio_after_slippage"] = (
|
||||
results["profit_ratio"] - slippage_per_trade_ratio
|
||||
)
|
||||
|
||||
sum_daily = (
|
||||
results.resample(resample_freq, on="close_date")
|
||||
.agg({"profit_ratio_after_slippage": sum})
|
||||
.reindex(t_index)
|
||||
.fillna(0)
|
||||
)
|
||||
|
||||
total_profit = sum_daily["profit_ratio_after_slippage"]
|
||||
expected_returns_mean = total_profit.mean() * 100
|
||||
|
||||
# calculate max drawdown
|
||||
try:
|
||||
high_val = total_profit.max()
|
||||
low_val = total_profit.min()
|
||||
max_drawdown = (high_val - low_val) / high_val
|
||||
|
||||
except (ValueError, ZeroDivisionError):
|
||||
max_drawdown = 0
|
||||
|
||||
if max_drawdown != 0:
|
||||
calmar_ratio = expected_returns_mean / max_drawdown * msqrt(days_in_year)
|
||||
else:
|
||||
# Define high (negative) calmar ratio to be clear that this is NOT optimal.
|
||||
calmar_ratio = -20.0
|
||||
|
||||
# print(t_index, sum_daily, total_profit)
|
||||
# print(expected_returns_mean, max_drawdown, calmar_ratio)
|
||||
return -calmar_ratio
|
Loading…
Reference in New Issue
Block a user