Merge branch 'develop' of https://github.com/freqtrade/freqtrade into max-open-trades
This commit is contained in:
commit
24ace646c3
@ -474,7 +474,7 @@ class Exchange:
|
|||||||
try:
|
try:
|
||||||
if self._api_async:
|
if self._api_async:
|
||||||
self.loop.run_until_complete(
|
self.loop.run_until_complete(
|
||||||
self._api_async.load_markets(reload=reload))
|
self._api_async.load_markets(reload=reload, params={}))
|
||||||
|
|
||||||
except (asyncio.TimeoutError, ccxt.BaseError) as e:
|
except (asyncio.TimeoutError, ccxt.BaseError) as e:
|
||||||
logger.warning('Could not load async markets. Reason: %s', e)
|
logger.warning('Could not load async markets. Reason: %s', e)
|
||||||
@ -483,7 +483,7 @@ class Exchange:
|
|||||||
def _load_markets(self) -> None:
|
def _load_markets(self) -> None:
|
||||||
""" Initialize markets both sync and async """
|
""" Initialize markets both sync and async """
|
||||||
try:
|
try:
|
||||||
self._markets = self._api.load_markets()
|
self._markets = self._api.load_markets(params={})
|
||||||
self._load_async_markets()
|
self._load_async_markets()
|
||||||
self._last_markets_refresh = arrow.utcnow().int_timestamp
|
self._last_markets_refresh = arrow.utcnow().int_timestamp
|
||||||
if self._ft_has['needs_trading_fees']:
|
if self._ft_has['needs_trading_fees']:
|
||||||
@ -501,7 +501,7 @@ class Exchange:
|
|||||||
return None
|
return None
|
||||||
logger.debug("Performing scheduled market reload..")
|
logger.debug("Performing scheduled market reload..")
|
||||||
try:
|
try:
|
||||||
self._markets = self._api.load_markets(reload=True)
|
self._markets = self._api.load_markets(reload=True, params={})
|
||||||
# Also reload async markets to avoid issues with newly listed pairs
|
# Also reload async markets to avoid issues with newly listed pairs
|
||||||
self._load_async_markets(reload=True)
|
self._load_async_markets(reload=True)
|
||||||
self._last_markets_refresh = arrow.utcnow().int_timestamp
|
self._last_markets_refresh = arrow.utcnow().int_timestamp
|
||||||
@ -1705,7 +1705,7 @@ class Exchange:
|
|||||||
return self._config['fee']
|
return self._config['fee']
|
||||||
# validate that markets are loaded before trying to get fee
|
# validate that markets are loaded before trying to get fee
|
||||||
if self._api.markets is None or len(self._api.markets) == 0:
|
if self._api.markets is None or len(self._api.markets) == 0:
|
||||||
self._api.load_markets()
|
self._api.load_markets(params={})
|
||||||
|
|
||||||
return self._api.calculate_fee(symbol=symbol, type=type, side=side, amount=amount,
|
return self._api.calculate_fee(symbol=symbol, type=type, side=side, amount=amount,
|
||||||
price=price, takerOrMaker=taker_or_maker)['rate']
|
price=price, takerOrMaker=taker_or_maker)['rate']
|
||||||
|
@ -374,7 +374,7 @@ class FreqtradeBot(LoggingMixin):
|
|||||||
for trade in trades:
|
for trade in trades:
|
||||||
if not trade.is_open and not trade.fee_updated(trade.exit_side):
|
if not trade.is_open and not trade.fee_updated(trade.exit_side):
|
||||||
# Get sell fee
|
# Get sell fee
|
||||||
order = trade.select_order(trade.exit_side, False)
|
order = trade.select_order(trade.exit_side, False, only_filled=True)
|
||||||
if not order:
|
if not order:
|
||||||
order = trade.select_order('stoploss', False)
|
order = trade.select_order('stoploss', False)
|
||||||
if order:
|
if order:
|
||||||
@ -390,7 +390,7 @@ class FreqtradeBot(LoggingMixin):
|
|||||||
for trade in trades:
|
for trade in trades:
|
||||||
with self._exit_lock:
|
with self._exit_lock:
|
||||||
if trade.is_open and not trade.fee_updated(trade.entry_side):
|
if trade.is_open and not trade.fee_updated(trade.entry_side):
|
||||||
order = trade.select_order(trade.entry_side, False)
|
order = trade.select_order(trade.entry_side, False, only_filled=True)
|
||||||
open_order = trade.select_order(trade.entry_side, True)
|
open_order = trade.select_order(trade.entry_side, True)
|
||||||
if order and open_order is None:
|
if order and open_order is None:
|
||||||
logger.info(
|
logger.info(
|
||||||
|
@ -5,13 +5,11 @@ This module defines the alternative HyperOptLoss class which can be used for
|
|||||||
Hyperoptimization.
|
Hyperoptimization.
|
||||||
"""
|
"""
|
||||||
from datetime import datetime
|
from datetime import datetime
|
||||||
from math import sqrt as msqrt
|
|
||||||
from typing import Any, Dict
|
|
||||||
|
|
||||||
from pandas import DataFrame
|
from pandas import DataFrame
|
||||||
|
|
||||||
from freqtrade.constants import Config
|
from freqtrade.constants import Config
|
||||||
from freqtrade.data.metrics import calculate_max_drawdown
|
from freqtrade.data.metrics import calculate_calmar
|
||||||
from freqtrade.optimize.hyperopt import IHyperOptLoss
|
from freqtrade.optimize.hyperopt import IHyperOptLoss
|
||||||
|
|
||||||
|
|
||||||
@ -23,42 +21,15 @@ class CalmarHyperOptLoss(IHyperOptLoss):
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def hyperopt_loss_function(
|
def hyperopt_loss_function(results: DataFrame, trade_count: int,
|
||||||
results: DataFrame,
|
min_date: datetime, max_date: datetime,
|
||||||
trade_count: int,
|
config: Config, *args, **kwargs) -> float:
|
||||||
min_date: datetime,
|
|
||||||
max_date: datetime,
|
|
||||||
config: Config,
|
|
||||||
processed: Dict[str, DataFrame],
|
|
||||||
backtest_stats: Dict[str, Any],
|
|
||||||
*args,
|
|
||||||
**kwargs
|
|
||||||
) -> float:
|
|
||||||
"""
|
"""
|
||||||
Objective function, returns smaller number for more optimal results.
|
Objective function, returns smaller number for more optimal results.
|
||||||
|
|
||||||
Uses Calmar Ratio calculation.
|
Uses Calmar Ratio calculation.
|
||||||
"""
|
"""
|
||||||
total_profit = backtest_stats["profit_total"]
|
starting_balance = config['dry_run_wallet']
|
||||||
days_period = (max_date - min_date).days
|
calmar_ratio = calculate_calmar(results, min_date, max_date, starting_balance)
|
||||||
|
|
||||||
# adding slippage of 0.1% per trade
|
|
||||||
total_profit = total_profit - 0.0005
|
|
||||||
expected_returns_mean = total_profit.sum() / days_period * 100
|
|
||||||
|
|
||||||
# calculate max drawdown
|
|
||||||
try:
|
|
||||||
_, _, _, _, _, max_drawdown = calculate_max_drawdown(
|
|
||||||
results, value_col="profit_abs"
|
|
||||||
)
|
|
||||||
except ValueError:
|
|
||||||
max_drawdown = 0
|
|
||||||
|
|
||||||
if max_drawdown != 0:
|
|
||||||
calmar_ratio = expected_returns_mean / max_drawdown * msqrt(365)
|
|
||||||
else:
|
|
||||||
# Define high (negative) calmar ratio to be clear that this is NOT optimal.
|
|
||||||
calmar_ratio = -20.0
|
|
||||||
|
|
||||||
# print(expected_returns_mean, max_drawdown, calmar_ratio)
|
# print(expected_returns_mean, max_drawdown, calmar_ratio)
|
||||||
return -calmar_ratio
|
return -calmar_ratio
|
||||||
|
@ -6,9 +6,10 @@ Hyperoptimization.
|
|||||||
"""
|
"""
|
||||||
from datetime import datetime
|
from datetime import datetime
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
from pandas import DataFrame
|
from pandas import DataFrame
|
||||||
|
|
||||||
|
from freqtrade.constants import Config
|
||||||
|
from freqtrade.data.metrics import calculate_sharpe
|
||||||
from freqtrade.optimize.hyperopt import IHyperOptLoss
|
from freqtrade.optimize.hyperopt import IHyperOptLoss
|
||||||
|
|
||||||
|
|
||||||
@ -22,25 +23,13 @@ class SharpeHyperOptLoss(IHyperOptLoss):
|
|||||||
@staticmethod
|
@staticmethod
|
||||||
def hyperopt_loss_function(results: DataFrame, trade_count: int,
|
def hyperopt_loss_function(results: DataFrame, trade_count: int,
|
||||||
min_date: datetime, max_date: datetime,
|
min_date: datetime, max_date: datetime,
|
||||||
*args, **kwargs) -> float:
|
config: Config, *args, **kwargs) -> float:
|
||||||
"""
|
"""
|
||||||
Objective function, returns smaller number for more optimal results.
|
Objective function, returns smaller number for more optimal results.
|
||||||
|
|
||||||
Uses Sharpe Ratio calculation.
|
Uses Sharpe Ratio calculation.
|
||||||
"""
|
"""
|
||||||
total_profit = results["profit_ratio"]
|
starting_balance = config['dry_run_wallet']
|
||||||
days_period = (max_date - min_date).days
|
sharp_ratio = calculate_sharpe(results, min_date, max_date, starting_balance)
|
||||||
|
|
||||||
# adding slippage of 0.1% per trade
|
|
||||||
total_profit = total_profit - 0.0005
|
|
||||||
expected_returns_mean = total_profit.sum() / days_period
|
|
||||||
up_stdev = np.std(total_profit)
|
|
||||||
|
|
||||||
if up_stdev != 0:
|
|
||||||
sharp_ratio = expected_returns_mean / up_stdev * np.sqrt(365)
|
|
||||||
else:
|
|
||||||
# Define high (negative) sharpe ratio to be clear that this is NOT optimal.
|
|
||||||
sharp_ratio = -20.
|
|
||||||
|
|
||||||
# print(expected_returns_mean, up_stdev, sharp_ratio)
|
# print(expected_returns_mean, up_stdev, sharp_ratio)
|
||||||
return -sharp_ratio
|
return -sharp_ratio
|
||||||
|
@ -6,9 +6,10 @@ Hyperoptimization.
|
|||||||
"""
|
"""
|
||||||
from datetime import datetime
|
from datetime import datetime
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
from pandas import DataFrame
|
from pandas import DataFrame
|
||||||
|
|
||||||
|
from freqtrade.constants import Config
|
||||||
|
from freqtrade.data.metrics import calculate_sortino
|
||||||
from freqtrade.optimize.hyperopt import IHyperOptLoss
|
from freqtrade.optimize.hyperopt import IHyperOptLoss
|
||||||
|
|
||||||
|
|
||||||
@ -22,28 +23,13 @@ class SortinoHyperOptLoss(IHyperOptLoss):
|
|||||||
@staticmethod
|
@staticmethod
|
||||||
def hyperopt_loss_function(results: DataFrame, trade_count: int,
|
def hyperopt_loss_function(results: DataFrame, trade_count: int,
|
||||||
min_date: datetime, max_date: datetime,
|
min_date: datetime, max_date: datetime,
|
||||||
*args, **kwargs) -> float:
|
config: Config, *args, **kwargs) -> float:
|
||||||
"""
|
"""
|
||||||
Objective function, returns smaller number for more optimal results.
|
Objective function, returns smaller number for more optimal results.
|
||||||
|
|
||||||
Uses Sortino Ratio calculation.
|
Uses Sortino Ratio calculation.
|
||||||
"""
|
"""
|
||||||
total_profit = results["profit_ratio"]
|
starting_balance = config['dry_run_wallet']
|
||||||
days_period = (max_date - min_date).days
|
sortino_ratio = calculate_sortino(results, min_date, max_date, starting_balance)
|
||||||
|
|
||||||
# adding slippage of 0.1% per trade
|
|
||||||
total_profit = total_profit - 0.0005
|
|
||||||
expected_returns_mean = total_profit.sum() / days_period
|
|
||||||
|
|
||||||
results['downside_returns'] = 0
|
|
||||||
results.loc[total_profit < 0, 'downside_returns'] = results['profit_ratio']
|
|
||||||
down_stdev = np.std(results['downside_returns'])
|
|
||||||
|
|
||||||
if down_stdev != 0:
|
|
||||||
sortino_ratio = expected_returns_mean / down_stdev * np.sqrt(365)
|
|
||||||
else:
|
|
||||||
# Define high (negative) sortino ratio to be clear that this is NOT optimal.
|
|
||||||
sortino_ratio = -20.
|
|
||||||
|
|
||||||
# print(expected_returns_mean, down_stdev, sortino_ratio)
|
# print(expected_returns_mean, down_stdev, sortino_ratio)
|
||||||
return -sortino_ratio
|
return -sortino_ratio
|
||||||
|
@ -956,11 +956,12 @@ class LocalTrade():
|
|||||||
return None
|
return None
|
||||||
|
|
||||||
def select_order(self, order_side: Optional[str] = None,
|
def select_order(self, order_side: Optional[str] = None,
|
||||||
is_open: Optional[bool] = None) -> Optional[Order]:
|
is_open: Optional[bool] = None, only_filled: bool = False) -> Optional[Order]:
|
||||||
"""
|
"""
|
||||||
Finds latest order for this orderside and status
|
Finds latest order for this orderside and status
|
||||||
:param order_side: ft_order_side of the order (either 'buy', 'sell' or 'stoploss')
|
:param order_side: ft_order_side of the order (either 'buy', 'sell' or 'stoploss')
|
||||||
:param is_open: Only search for open orders?
|
:param is_open: Only search for open orders?
|
||||||
|
:param only_filled: Only search for Filled orders (only valid with is_open=False).
|
||||||
:return: latest Order object if it exists, else None
|
:return: latest Order object if it exists, else None
|
||||||
"""
|
"""
|
||||||
orders = self.orders
|
orders = self.orders
|
||||||
@ -968,6 +969,8 @@ class LocalTrade():
|
|||||||
orders = [o for o in orders if o.ft_order_side == order_side]
|
orders = [o for o in orders if o.ft_order_side == order_side]
|
||||||
if is_open is not None:
|
if is_open is not None:
|
||||||
orders = [o for o in orders if o.ft_is_open == is_open]
|
orders = [o for o in orders if o.ft_is_open == is_open]
|
||||||
|
if is_open is False and only_filled:
|
||||||
|
orders = [o for o in orders if o.filled and o.status in NON_OPEN_EXCHANGE_STATES]
|
||||||
if len(orders) > 0:
|
if len(orders) > 0:
|
||||||
return orders[-1]
|
return orders[-1]
|
||||||
else:
|
else:
|
||||||
|
@ -2,7 +2,7 @@ numpy==1.24.1
|
|||||||
pandas==1.5.2
|
pandas==1.5.2
|
||||||
pandas-ta==0.3.14b
|
pandas-ta==0.3.14b
|
||||||
|
|
||||||
ccxt==2.4.60
|
ccxt==2.5.46
|
||||||
# Pin cryptography for now due to rust build errors with piwheels
|
# Pin cryptography for now due to rust build errors with piwheels
|
||||||
cryptography==38.0.1; platform_machine == 'armv7l'
|
cryptography==38.0.1; platform_machine == 'armv7l'
|
||||||
cryptography==38.0.4; platform_machine != 'armv7l'
|
cryptography==38.0.4; platform_machine != 'armv7l'
|
||||||
|
@ -48,8 +48,8 @@ def hyperopt_results():
|
|||||||
return pd.DataFrame(
|
return pd.DataFrame(
|
||||||
{
|
{
|
||||||
'pair': ['ETH/USDT', 'ETH/USDT', 'ETH/USDT', 'ETH/USDT'],
|
'pair': ['ETH/USDT', 'ETH/USDT', 'ETH/USDT', 'ETH/USDT'],
|
||||||
'profit_ratio': [-0.1, 0.2, -0.1, 0.3],
|
'profit_ratio': [-0.1, 0.2, -0.12, 0.3],
|
||||||
'profit_abs': [-0.2, 0.4, -0.2, 0.6],
|
'profit_abs': [-0.2, 0.4, -0.21, 0.6],
|
||||||
'trade_duration': [10, 30, 10, 10],
|
'trade_duration': [10, 30, 10, 10],
|
||||||
'amount': [0.1, 0.1, 0.1, 0.1],
|
'amount': [0.1, 0.1, 0.1, 0.1],
|
||||||
'exit_reason': [ExitType.STOP_LOSS, ExitType.ROI, ExitType.STOP_LOSS, ExitType.ROI],
|
'exit_reason': [ExitType.STOP_LOSS, ExitType.ROI, ExitType.STOP_LOSS, ExitType.ROI],
|
||||||
|
Loading…
Reference in New Issue
Block a user