fix tensorboard path so that users can track all historical models
This commit is contained in:
parent
2493e0c8a5
commit
240b529533
@ -72,8 +72,8 @@
|
|||||||
"5m",
|
"5m",
|
||||||
"30m"
|
"30m"
|
||||||
],
|
],
|
||||||
"indicator_max_period_candles": 10,
|
"indicator_max_period_candles": 20,
|
||||||
"indicator_periods_candles": [5]
|
"indicator_periods_candles": [14]
|
||||||
},
|
},
|
||||||
"data_split_parameters": {
|
"data_split_parameters": {
|
||||||
"test_size": 0.5,
|
"test_size": 0.5,
|
||||||
|
@ -28,14 +28,14 @@ class ReinforcementLearner(BaseReinforcementLearningModel):
|
|||||||
|
|
||||||
if dk.pair not in self.dd.model_dictionary or not self.continual_learning:
|
if dk.pair not in self.dd.model_dictionary or not self.continual_learning:
|
||||||
model = self.MODELCLASS(self.policy_type, self.train_env, policy_kwargs=policy_kwargs,
|
model = self.MODELCLASS(self.policy_type, self.train_env, policy_kwargs=policy_kwargs,
|
||||||
tensorboard_log=Path(dk.data_path / "tensorboard"),
|
tensorboard_log=Path(
|
||||||
|
dk.full_path / "tensorboard" / dk.pair.split('/')[0]),
|
||||||
**self.freqai_info['model_training_parameters']
|
**self.freqai_info['model_training_parameters']
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
logger.info('Continual training activated - starting training from previously '
|
logger.info('Continual training activated - starting training from previously '
|
||||||
'trained agent.')
|
'trained agent.')
|
||||||
model = self.dd.model_dictionary[dk.pair]
|
model = self.dd.model_dictionary[dk.pair]
|
||||||
model.tensorboard_log = Path(dk.data_path / "tensorboard")
|
|
||||||
model.set_env(self.train_env)
|
model.set_env(self.train_env)
|
||||||
|
|
||||||
model.learn(
|
model.learn(
|
||||||
|
@ -31,14 +31,14 @@ class ReinforcementLearner_multiproc(BaseReinforcementLearningModel):
|
|||||||
|
|
||||||
if dk.pair not in self.dd.model_dictionary or not self.continual_learning:
|
if dk.pair not in self.dd.model_dictionary or not self.continual_learning:
|
||||||
model = self.MODELCLASS(self.policy_type, self.train_env, policy_kwargs=policy_kwargs,
|
model = self.MODELCLASS(self.policy_type, self.train_env, policy_kwargs=policy_kwargs,
|
||||||
tensorboard_log=Path(dk.full_path / "tensorboard"),
|
tensorboard_log=Path(
|
||||||
|
dk.full_path / "tensorboard" / dk.pair.split('/')[0]),
|
||||||
**self.freqai_info['model_training_parameters']
|
**self.freqai_info['model_training_parameters']
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
logger.info('Continual learning activated - starting training from previously '
|
logger.info('Continual learning activated - starting training from previously '
|
||||||
'trained agent.')
|
'trained agent.')
|
||||||
model = self.dd.model_dictionary[dk.pair]
|
model = self.dd.model_dictionary[dk.pair]
|
||||||
model.tensorboard_log = Path(dk.data_path / "tensorboard")
|
|
||||||
model.set_env(self.train_env)
|
model.set_env(self.train_env)
|
||||||
|
|
||||||
model.learn(
|
model.learn(
|
||||||
|
Loading…
Reference in New Issue
Block a user