add predict_proba to base classifier, improve historic predictions handling
This commit is contained in:
parent
d36da95941
commit
23cc21ce59
@ -358,10 +358,12 @@ class FreqaiDataDrawer:
|
|||||||
|
|
||||||
dk.find_features(dataframe)
|
dk.find_features(dataframe)
|
||||||
|
|
||||||
if self.freqai_info.get('predict_proba', []):
|
added_labels = []
|
||||||
full_labels = dk.label_list + self.freqai_info['predict_proba']
|
if dk.unique_classes:
|
||||||
else:
|
for label in dk.unique_classes:
|
||||||
full_labels = dk.label_list
|
added_labels += dk.unique_classes[label]
|
||||||
|
|
||||||
|
full_labels = dk.label_list + added_labels
|
||||||
|
|
||||||
for label in full_labels:
|
for label in full_labels:
|
||||||
dataframe[label] = 0
|
dataframe[label] = 0
|
||||||
|
@ -90,6 +90,7 @@ class FreqaiDataKitchen:
|
|||||||
self.data['extra_returns_per_train'] = self.freqai_config.get('extra_returns_per_train', {})
|
self.data['extra_returns_per_train'] = self.freqai_config.get('extra_returns_per_train', {})
|
||||||
self.thread_count = self.freqai_config.get("data_kitchen_thread_count", -1)
|
self.thread_count = self.freqai_config.get("data_kitchen_thread_count", -1)
|
||||||
self.train_dates: DataFrame = pd.DataFrame()
|
self.train_dates: DataFrame = pd.DataFrame()
|
||||||
|
self.unique_classes: Dict[str, list] = {}
|
||||||
|
|
||||||
def set_paths(
|
def set_paths(
|
||||||
self,
|
self,
|
||||||
@ -977,6 +978,8 @@ class FreqaiDataKitchen:
|
|||||||
informative=corr_dataframes[i][tf]
|
informative=corr_dataframes[i][tf]
|
||||||
)
|
)
|
||||||
|
|
||||||
|
self.get_unique_classes_from_labels(dataframe)
|
||||||
|
|
||||||
return dataframe
|
return dataframe
|
||||||
|
|
||||||
def fit_labels(self) -> None:
|
def fit_labels(self) -> None:
|
||||||
@ -1003,3 +1006,11 @@ class FreqaiDataKitchen:
|
|||||||
col for col in dataframe.columns if not col.startswith("%") or col.startswith("%%")
|
col for col in dataframe.columns if not col.startswith("%") or col.startswith("%%")
|
||||||
]
|
]
|
||||||
return dataframe[to_keep]
|
return dataframe[to_keep]
|
||||||
|
|
||||||
|
def get_unique_classes_from_labels(self, dataframe: DataFrame) -> None:
|
||||||
|
|
||||||
|
self.find_features(dataframe)
|
||||||
|
|
||||||
|
for key in self.label_list:
|
||||||
|
if dataframe[key].dtype == object:
|
||||||
|
self.unique_classes[key] = dataframe[key].dropna().unique()
|
||||||
|
@ -1,10 +1,12 @@
|
|||||||
import logging
|
import logging
|
||||||
from typing import Any, Dict
|
from typing import Any, Dict, Tuple
|
||||||
|
import pandas as pd
|
||||||
|
from pandas import DataFrame
|
||||||
from catboost import CatBoostClassifier, Pool
|
from catboost import CatBoostClassifier, Pool
|
||||||
|
import numpy.typing as npt
|
||||||
|
import numpy as np
|
||||||
from freqtrade.freqai.prediction_models.BaseRegressionModel import BaseRegressionModel
|
from freqtrade.freqai.prediction_models.BaseRegressionModel import BaseRegressionModel
|
||||||
|
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
@ -39,3 +41,34 @@ class CatboostClassifier(BaseRegressionModel):
|
|||||||
cbr.fit(train_data)
|
cbr.fit(train_data)
|
||||||
|
|
||||||
return cbr
|
return cbr
|
||||||
|
|
||||||
|
def predict(
|
||||||
|
self, unfiltered_dataframe: DataFrame, dk: FreqaiDataKitchen, first: bool = False
|
||||||
|
) -> Tuple[DataFrame, npt.NDArray[np.int_]]:
|
||||||
|
"""
|
||||||
|
Filter the prediction features data and predict with it.
|
||||||
|
:param: unfiltered_dataframe: Full dataframe for the current backtest period.
|
||||||
|
:return:
|
||||||
|
:pred_df: dataframe containing the predictions
|
||||||
|
:do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove
|
||||||
|
data (NaNs) or felt uncertain about data (PCA and DI index)
|
||||||
|
"""
|
||||||
|
|
||||||
|
dk.find_features(unfiltered_dataframe)
|
||||||
|
filtered_dataframe, _ = dk.filter_features(
|
||||||
|
unfiltered_dataframe, dk.training_features_list, training_filter=False
|
||||||
|
)
|
||||||
|
filtered_dataframe = dk.normalize_data_from_metadata(filtered_dataframe)
|
||||||
|
dk.data_dictionary["prediction_features"] = filtered_dataframe
|
||||||
|
|
||||||
|
self.data_cleaning_predict(dk, filtered_dataframe)
|
||||||
|
|
||||||
|
predictions = self.model.predict(dk.data_dictionary["prediction_features"])
|
||||||
|
pred_df = DataFrame(predictions, columns=dk.label_list)
|
||||||
|
|
||||||
|
predictions_prob = self.model.predict_proba(dk.data_dictionary["prediction_features"])
|
||||||
|
pred_df_prob = DataFrame(predictions_prob, columns=self.model.classes_)
|
||||||
|
|
||||||
|
pred_df = pd.concat([pred_df, pred_df_prob], axis=1)
|
||||||
|
|
||||||
|
return (pred_df, dk.do_predict)
|
||||||
|
Loading…
Reference in New Issue
Block a user