add self-retraining functionality for live/dry
This commit is contained in:
parent
178c2014b0
commit
22bd5556ed
@ -13,7 +13,7 @@
|
|||||||
"exit": 30
|
"exit": 30
|
||||||
},
|
},
|
||||||
"exchange": {
|
"exchange": {
|
||||||
"name": "ftx",
|
"name": "binance",
|
||||||
"key": "",
|
"key": "",
|
||||||
"secret": "",
|
"secret": "",
|
||||||
"ccxt_config": {
|
"ccxt_config": {
|
||||||
@ -55,7 +55,9 @@
|
|||||||
],
|
],
|
||||||
"train_period": 30,
|
"train_period": 30,
|
||||||
"backtest_period": 7,
|
"backtest_period": 7,
|
||||||
"identifier": "example",
|
"identifier": "livetest5",
|
||||||
|
"live_trained_timerange": "20220330-20220429",
|
||||||
|
"live_full_backtestrange": "20220302-20220501",
|
||||||
"base_features": [
|
"base_features": [
|
||||||
"rsi",
|
"rsi",
|
||||||
"close_over_20sma",
|
"close_over_20sma",
|
||||||
@ -68,6 +70,7 @@
|
|||||||
"macd"
|
"macd"
|
||||||
],
|
],
|
||||||
"corr_pairlist": [
|
"corr_pairlist": [
|
||||||
|
"BTC/USDT",
|
||||||
"ETH/USDT",
|
"ETH/USDT",
|
||||||
"LINK/USDT",
|
"LINK/USDT",
|
||||||
"DOT/USDT"
|
"DOT/USDT"
|
||||||
|
@ -440,6 +440,8 @@ CONF_SCHEMA = {
|
|||||||
"train_period": {"type": "integer", "default": 0},
|
"train_period": {"type": "integer", "default": 0},
|
||||||
"backtest_period": {"type": "integer", "default": 7},
|
"backtest_period": {"type": "integer", "default": 7},
|
||||||
"identifier": {"type": "str", "default": "example"},
|
"identifier": {"type": "str", "default": "example"},
|
||||||
|
"live_trained_timerange": {"type": "str"},
|
||||||
|
"live_full_backtestrange": {"type": "str"},
|
||||||
"base_features": {"type": "list"},
|
"base_features": {"type": "list"},
|
||||||
"corr_pairlist": {"type": "list"},
|
"corr_pairlist": {"type": "list"},
|
||||||
"feature_parameters": {
|
"feature_parameters": {
|
||||||
|
@ -16,6 +16,10 @@ from sklearn.metrics.pairwise import pairwise_distances
|
|||||||
from sklearn.model_selection import train_test_split
|
from sklearn.model_selection import train_test_split
|
||||||
|
|
||||||
from freqtrade.configuration import TimeRange
|
from freqtrade.configuration import TimeRange
|
||||||
|
from freqtrade.data.history import load_pair_history
|
||||||
|
from freqtrade.data.history.history_utils import refresh_backtest_ohlcv_data
|
||||||
|
from freqtrade.resolvers import ExchangeResolver
|
||||||
|
from freqtrade.strategy.interface import IStrategy
|
||||||
|
|
||||||
|
|
||||||
SECONDS_IN_DAY = 86400
|
SECONDS_IN_DAY = 86400
|
||||||
@ -30,7 +34,7 @@ class FreqaiDataKitchen:
|
|||||||
author: Robert Caulk, rob.caulk@gmail.com
|
author: Robert Caulk, rob.caulk@gmail.com
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, config: Dict[str, Any], dataframe: DataFrame):
|
def __init__(self, config: Dict[str, Any], dataframe: DataFrame, live: bool = False):
|
||||||
self.full_dataframe = dataframe
|
self.full_dataframe = dataframe
|
||||||
self.data: Dict[Any, Any] = {}
|
self.data: Dict[Any, Any] = {}
|
||||||
self.data_dictionary: Dict[Any, Any] = {}
|
self.data_dictionary: Dict[Any, Any] = {}
|
||||||
@ -45,17 +49,29 @@ class FreqaiDataKitchen:
|
|||||||
self.full_target_mean: npt.ArrayLike = np.array([])
|
self.full_target_mean: npt.ArrayLike = np.array([])
|
||||||
self.full_target_std: npt.ArrayLike = np.array([])
|
self.full_target_std: npt.ArrayLike = np.array([])
|
||||||
self.model_path = Path()
|
self.model_path = Path()
|
||||||
self.model_filename = ""
|
self.model_filename: str = ""
|
||||||
|
|
||||||
self.full_timerange = self.create_fulltimerange(
|
if not live:
|
||||||
self.config["timerange"], self.freqai_config["train_period"]
|
self.full_timerange = self.create_fulltimerange(self.config["timerange"],
|
||||||
)
|
self.freqai_config["train_period"]
|
||||||
|
)
|
||||||
|
|
||||||
(self.training_timeranges, self.backtesting_timeranges) = self.split_timerange(
|
(self.training_timeranges, self.backtesting_timeranges) = self.split_timerange(
|
||||||
self.full_timerange,
|
self.full_timerange,
|
||||||
config["freqai"]["train_period"],
|
config["freqai"]["train_period"],
|
||||||
config["freqai"]["backtest_period"],
|
config["freqai"]["backtest_period"],
|
||||||
)
|
)
|
||||||
|
|
||||||
|
def set_paths(self) -> None:
|
||||||
|
self.full_path = Path(self.config['user_data_dir'] /
|
||||||
|
"models" /
|
||||||
|
str(self.freqai_config['live_full_backtestrange'] +
|
||||||
|
self.freqai_config['identifier']))
|
||||||
|
|
||||||
|
self.model_path = Path(self.full_path / str("sub-train" + "-" +
|
||||||
|
str(self.freqai_config['live_trained_timerange'])))
|
||||||
|
|
||||||
|
return
|
||||||
|
|
||||||
def save_data(self, model: Any) -> None:
|
def save_data(self, model: Any) -> None:
|
||||||
"""
|
"""
|
||||||
@ -187,10 +203,10 @@ class FreqaiDataKitchen:
|
|||||||
labels = labels[
|
labels = labels[
|
||||||
(drop_index == 0) & (drop_index_labels == 0)
|
(drop_index == 0) & (drop_index_labels == 0)
|
||||||
] # assuming the labels depend entirely on the dataframe here.
|
] # assuming the labels depend entirely on the dataframe here.
|
||||||
logger.info(
|
# logger.info(
|
||||||
"dropped %s training points due to NaNs, ensure all historical data downloaded",
|
# "dropped %s training points due to NaNs, ensure all historical data downloaded",
|
||||||
len(unfiltered_dataframe) - len(filtered_dataframe),
|
# len(unfiltered_dataframe) - len(filtered_dataframe),
|
||||||
)
|
# )
|
||||||
self.data["filter_drop_index_training"] = drop_index
|
self.data["filter_drop_index_training"] = drop_index
|
||||||
|
|
||||||
else:
|
else:
|
||||||
@ -485,11 +501,11 @@ class FreqaiDataKitchen:
|
|||||||
shift = ""
|
shift = ""
|
||||||
if n > 0:
|
if n > 0:
|
||||||
shift = "_shift-" + str(n)
|
shift = "_shift-" + str(n)
|
||||||
features.append(ft + shift + "_" + tf)
|
# features.append(ft + shift + "_" + tf)
|
||||||
for p in config["freqai"]["corr_pairlist"]:
|
for p in config["freqai"]["corr_pairlist"]:
|
||||||
features.append(p.split("/")[0] + "-" + ft + shift + "_" + tf)
|
features.append(p.split("/")[0] + "-" + ft + shift + "_" + tf)
|
||||||
|
|
||||||
logger.info("number of features %s", len(features))
|
# logger.info("number of features %s", len(features))
|
||||||
return features
|
return features
|
||||||
|
|
||||||
def check_if_pred_in_training_spaces(self) -> None:
|
def check_if_pred_in_training_spaces(self) -> None:
|
||||||
@ -513,10 +529,10 @@ class FreqaiDataKitchen:
|
|||||||
0,
|
0,
|
||||||
)
|
)
|
||||||
|
|
||||||
logger.info(
|
# logger.info(
|
||||||
"Distance checker tossed %s predictions for being too far from training data",
|
# "Distance checker tossed %s predictions for being too far from training data",
|
||||||
len(do_predict) - do_predict.sum(),
|
# len(do_predict) - do_predict.sum(),
|
||||||
)
|
# )
|
||||||
|
|
||||||
self.do_predict += do_predict
|
self.do_predict += do_predict
|
||||||
self.do_predict -= 1
|
self.do_predict -= 1
|
||||||
@ -577,15 +593,105 @@ class FreqaiDataKitchen:
|
|||||||
/ str(full_timerange + self.freqai_config["identifier"])
|
/ str(full_timerange + self.freqai_config["identifier"])
|
||||||
)
|
)
|
||||||
|
|
||||||
|
config_path = Path(self.config["config_files"][0])
|
||||||
|
|
||||||
if not self.full_path.is_dir():
|
if not self.full_path.is_dir():
|
||||||
self.full_path.mkdir(parents=True, exist_ok=True)
|
self.full_path.mkdir(parents=True, exist_ok=True)
|
||||||
shutil.copy(
|
shutil.copy(
|
||||||
Path(self.config["config_files"][0]).name,
|
config_path.name,
|
||||||
Path(self.full_path / self.config["config_files"][0]),
|
Path(self.full_path / config_path.parts[-1]),
|
||||||
)
|
)
|
||||||
|
|
||||||
return full_timerange
|
return full_timerange
|
||||||
|
|
||||||
|
def check_if_new_training_required(self, training_timerange: str,
|
||||||
|
metadata: dict) -> Tuple[bool, str]:
|
||||||
|
|
||||||
|
time = datetime.datetime.now(tz=datetime.timezone.utc).timestamp()
|
||||||
|
|
||||||
|
trained_timerange = TimeRange.parse_timerange(training_timerange)
|
||||||
|
|
||||||
|
elapsed_time = (time - trained_timerange.stopts) / SECONDS_IN_DAY
|
||||||
|
|
||||||
|
trained_timerange.startts += self.freqai_config['backtest_period'] * SECONDS_IN_DAY
|
||||||
|
trained_timerange.stopts += self.freqai_config['backtest_period'] * SECONDS_IN_DAY
|
||||||
|
start = datetime.datetime.utcfromtimestamp(trained_timerange.startts)
|
||||||
|
stop = datetime.datetime.utcfromtimestamp(trained_timerange.stopts)
|
||||||
|
|
||||||
|
new_trained_timerange = start.strftime("%Y%m%d") + "-" + stop.strftime("%Y%m%d")
|
||||||
|
|
||||||
|
retrain = elapsed_time > self.freqai_config['backtest_period']
|
||||||
|
|
||||||
|
if retrain:
|
||||||
|
coin, _ = metadata['pair'].split("/")
|
||||||
|
# set the new model_path
|
||||||
|
self.model_path = Path(self.full_path / str("sub-train" + "-" +
|
||||||
|
str(new_trained_timerange)))
|
||||||
|
|
||||||
|
self.model_filename = "cb_" + coin.lower() + "_" + new_trained_timerange
|
||||||
|
# this is not persistent at the moment TODO
|
||||||
|
self.freqai_config['live_trained_timerange'] = new_trained_timerange
|
||||||
|
# enables persistence, but not fully implemented into save/load data yer
|
||||||
|
self.data['live_trained_timerange'] = new_trained_timerange
|
||||||
|
|
||||||
|
return retrain, new_trained_timerange
|
||||||
|
|
||||||
|
def download_new_data_for_retraining(self, new_timerange: str, metadata: dict) -> None:
|
||||||
|
|
||||||
|
exchange = ExchangeResolver.load_exchange(self.config['exchange']['name'],
|
||||||
|
self.config, validate=False)
|
||||||
|
pairs = self.freqai_config['corr_pairlist'] + [metadata['pair']]
|
||||||
|
timerange = TimeRange.parse_timerange(new_timerange)
|
||||||
|
# data_handler = get_datahandler(datadir, data_format)
|
||||||
|
|
||||||
|
refresh_backtest_ohlcv_data(
|
||||||
|
exchange, pairs=pairs, timeframes=self.freqai_config['timeframes'],
|
||||||
|
datadir=self.config['datadir'], timerange=timerange,
|
||||||
|
new_pairs_days=self.config['new_pairs_days'],
|
||||||
|
erase=False, data_format=self.config['dataformat_ohlcv'],
|
||||||
|
trading_mode=self.config.get('trading_mode', 'spot'),
|
||||||
|
prepend=self.config.get('prepend_data', False)
|
||||||
|
)
|
||||||
|
|
||||||
|
def load_pairs_histories(self, new_timerange: str, metadata: dict) -> Tuple[Dict[Any, Any],
|
||||||
|
DataFrame]:
|
||||||
|
corr_dataframes: Dict[Any, Any] = {}
|
||||||
|
# pair_dataframes: Dict[Any, Any] = {}
|
||||||
|
pairs = self.freqai_config['corr_pairlist'] # + [metadata['pair']]
|
||||||
|
timerange = TimeRange.parse_timerange(new_timerange)
|
||||||
|
|
||||||
|
for p in pairs:
|
||||||
|
corr_dataframes[p] = {}
|
||||||
|
for tf in self.freqai_config['timeframes']:
|
||||||
|
corr_dataframes[p][tf] = load_pair_history(datadir=self.config['datadir'],
|
||||||
|
timeframe=tf,
|
||||||
|
pair=p, timerange=timerange)
|
||||||
|
|
||||||
|
base_dataframe = [dataframe for key, dataframe in corr_dataframes.items()
|
||||||
|
if metadata['pair'] in key]
|
||||||
|
|
||||||
|
# [0] indexes the lowest tf for the basepair
|
||||||
|
return corr_dataframes, base_dataframe[0][self.config['timeframe']]
|
||||||
|
|
||||||
|
def use_strategy_to_populate_indicators(self, strategy: IStrategy, metadata: dict,
|
||||||
|
corr_dataframes: dict,
|
||||||
|
dataframe: DataFrame) -> DataFrame:
|
||||||
|
|
||||||
|
# dataframe = pair_dataframes[0] # this is the base tf pair df
|
||||||
|
|
||||||
|
for tf in self.freqai_config["timeframes"]:
|
||||||
|
# dataframe = strategy.populate_any_indicators(metadata["pair"], dataframe.copy,
|
||||||
|
# tf, pair_dataframes[tf])
|
||||||
|
for i in self.freqai_config["corr_pairlist"]:
|
||||||
|
dataframe = strategy.populate_any_indicators(i,
|
||||||
|
dataframe.copy(),
|
||||||
|
tf,
|
||||||
|
corr_dataframes[i][tf],
|
||||||
|
coin=i.split("/")[0] + "-"
|
||||||
|
)
|
||||||
|
|
||||||
|
return dataframe
|
||||||
|
|
||||||
def np_encoder(self, object):
|
def np_encoder(self, object):
|
||||||
if isinstance(object, np.generic):
|
if isinstance(object, np.generic):
|
||||||
return object.item()
|
return object.item()
|
||||||
|
@ -8,9 +8,9 @@ import numpy.typing as npt
|
|||||||
import pandas as pd
|
import pandas as pd
|
||||||
from pandas import DataFrame
|
from pandas import DataFrame
|
||||||
|
|
||||||
from freqtrade.data.dataprovider import DataProvider
|
|
||||||
from freqtrade.enums import RunMode
|
from freqtrade.enums import RunMode
|
||||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||||
|
from freqtrade.strategy.interface import IStrategy
|
||||||
|
|
||||||
|
|
||||||
pd.options.mode.chained_assignment = None
|
pd.options.mode.chained_assignment = None
|
||||||
@ -33,15 +33,14 @@ class IFreqaiModel(ABC):
|
|||||||
self.data_split_parameters = config["freqai"]["data_split_parameters"]
|
self.data_split_parameters = config["freqai"]["data_split_parameters"]
|
||||||
self.model_training_parameters = config["freqai"]["model_training_parameters"]
|
self.model_training_parameters = config["freqai"]["model_training_parameters"]
|
||||||
self.feature_parameters = config["freqai"]["feature_parameters"]
|
self.feature_parameters = config["freqai"]["feature_parameters"]
|
||||||
self.backtest_timerange = config["timerange"]
|
# self.backtest_timerange = config["timerange"]
|
||||||
|
|
||||||
self.time_last_trained = None
|
self.time_last_trained = None
|
||||||
self.current_time = None
|
self.current_time = None
|
||||||
self.model = None
|
self.model = None
|
||||||
self.predictions = None
|
self.predictions = None
|
||||||
self.live_trained_timerange = None
|
|
||||||
|
|
||||||
def start(self, dataframe: DataFrame, metadata: dict, dp: DataProvider) -> DataFrame:
|
def start(self, dataframe: DataFrame, metadata: dict, strategy: IStrategy) -> DataFrame:
|
||||||
"""
|
"""
|
||||||
Entry point to the FreqaiModel, it will train a new model if
|
Entry point to the FreqaiModel, it will train a new model if
|
||||||
necesssary before making the prediction.
|
necesssary before making the prediction.
|
||||||
@ -57,11 +56,18 @@ class IFreqaiModel(ABC):
|
|||||||
the model.
|
the model.
|
||||||
:metadata: pair metadataa coming from strategy.
|
:metadata: pair metadataa coming from strategy.
|
||||||
"""
|
"""
|
||||||
self.pair = metadata["pair"]
|
|
||||||
self.dh = FreqaiDataKitchen(self.config, dataframe)
|
|
||||||
|
|
||||||
if dp.runmode in (RunMode.DRY_RUN, RunMode.LIVE):
|
live = strategy.dp.runmode in (RunMode.DRY_RUN, RunMode.LIVE)
|
||||||
logger.info('testing live')
|
|
||||||
|
self.pair = metadata["pair"]
|
||||||
|
self.dh = FreqaiDataKitchen(self.config, dataframe, live)
|
||||||
|
|
||||||
|
if live:
|
||||||
|
# logger.info('testing live')
|
||||||
|
self.start_live(dataframe, metadata, strategy)
|
||||||
|
|
||||||
|
return (self.dh.full_predictions, self.dh.full_do_predict,
|
||||||
|
self.dh.full_target_mean, self.dh.full_target_std)
|
||||||
|
|
||||||
logger.info("going to train %s timeranges", len(self.dh.training_timeranges))
|
logger.info("going to train %s timeranges", len(self.dh.training_timeranges))
|
||||||
|
|
||||||
@ -98,6 +104,42 @@ class IFreqaiModel(ABC):
|
|||||||
return (self.dh.full_predictions, self.dh.full_do_predict,
|
return (self.dh.full_predictions, self.dh.full_do_predict,
|
||||||
self.dh.full_target_mean, self.dh.full_target_std)
|
self.dh.full_target_mean, self.dh.full_target_std)
|
||||||
|
|
||||||
|
def start_live(self, dataframe: DataFrame, metadata: dict, strategy: IStrategy) -> None:
|
||||||
|
|
||||||
|
self.dh.set_paths()
|
||||||
|
|
||||||
|
file_exists = self.model_exists(metadata['pair'],
|
||||||
|
training_timerange=self.freqai_info[
|
||||||
|
'live_trained_timerange'])
|
||||||
|
|
||||||
|
(retrain,
|
||||||
|
new_trained_timerange) = self.dh.check_if_new_training_required(self.freqai_info[
|
||||||
|
'live_trained_timerange'],
|
||||||
|
metadata)
|
||||||
|
|
||||||
|
if retrain or not file_exists:
|
||||||
|
self.dh.download_new_data_for_retraining(new_trained_timerange, metadata)
|
||||||
|
# dataframe = download-data
|
||||||
|
corr_dataframes, pair_dataframes = self.dh.load_pairs_histories(new_trained_timerange,
|
||||||
|
metadata)
|
||||||
|
|
||||||
|
unfiltered_dataframe = self.dh.use_strategy_to_populate_indicators(strategy,
|
||||||
|
metadata,
|
||||||
|
corr_dataframes,
|
||||||
|
pair_dataframes)
|
||||||
|
|
||||||
|
self.model = self.train(unfiltered_dataframe, metadata)
|
||||||
|
self.dh.save_data(self.model)
|
||||||
|
|
||||||
|
self.freqai_info
|
||||||
|
|
||||||
|
self.model = self.dh.load_data()
|
||||||
|
preds, do_preds = self.predict(dataframe)
|
||||||
|
self.dh.append_predictions(preds, do_preds, len(dataframe))
|
||||||
|
# dataframe should have len 1 here
|
||||||
|
|
||||||
|
return
|
||||||
|
|
||||||
def make_labels(self, dataframe: DataFrame) -> DataFrame:
|
def make_labels(self, dataframe: DataFrame) -> DataFrame:
|
||||||
"""
|
"""
|
||||||
User defines the labels here (target values).
|
User defines the labels here (target values).
|
||||||
|
@ -532,6 +532,22 @@ class IStrategy(ABC, HyperStrategyMixin):
|
|||||||
"""
|
"""
|
||||||
return None
|
return None
|
||||||
|
|
||||||
|
def populate_any_indicators(self, pair: str, df: DataFrame, tf: str,
|
||||||
|
informative: DataFrame = None, coin: str = "") -> DataFrame:
|
||||||
|
"""
|
||||||
|
Function designed to automatically generate, name and merge features
|
||||||
|
from user indicated timeframes in the configuration file. User can add
|
||||||
|
additional features here, but must follow the naming convention.
|
||||||
|
Defined in IStrategy because Freqai needs to know it exists.
|
||||||
|
:params:
|
||||||
|
:pair: pair to be used as informative
|
||||||
|
:df: strategy dataframe which will receive merges from informatives
|
||||||
|
:tf: timeframe of the dataframe which will modify the feature names
|
||||||
|
:informative: the dataframe associated with the informative pair
|
||||||
|
:coin: the name of the coin which will modify the feature names.
|
||||||
|
"""
|
||||||
|
return df
|
||||||
|
|
||||||
###
|
###
|
||||||
# END - Intended to be overridden by strategy
|
# END - Intended to be overridden by strategy
|
||||||
###
|
###
|
||||||
|
@ -124,7 +124,7 @@ class ExamplePredictionModel(IFreqaiModel):
|
|||||||
data (NaNs) or felt uncertain about data (PCA and DI index)
|
data (NaNs) or felt uncertain about data (PCA and DI index)
|
||||||
"""
|
"""
|
||||||
|
|
||||||
logger.info("--------------------Starting prediction--------------------")
|
# logger.info("--------------------Starting prediction--------------------")
|
||||||
|
|
||||||
original_feature_list = self.dh.build_feature_list(self.config)
|
original_feature_list = self.dh.build_feature_list(self.config)
|
||||||
filtered_dataframe, _ = self.dh.filter_features(
|
filtered_dataframe, _ = self.dh.filter_features(
|
||||||
@ -151,8 +151,8 @@ class ExamplePredictionModel(IFreqaiModel):
|
|||||||
predictions = self.model.predict(self.dh.data_dictionary["prediction_features"])
|
predictions = self.model.predict(self.dh.data_dictionary["prediction_features"])
|
||||||
|
|
||||||
# compute the non-standardized predictions
|
# compute the non-standardized predictions
|
||||||
predictions = predictions * self.dh.data["labels_std"] + self.dh.data["labels_mean"]
|
self.dh.predictions = predictions * self.dh.data["labels_std"] + self.dh.data["labels_mean"]
|
||||||
|
|
||||||
logger.info("--------------------Finished prediction--------------------")
|
# logger.info("--------------------Finished prediction--------------------")
|
||||||
|
|
||||||
return (predictions, self.dh.do_predict)
|
return (self.dh.predictions, self.dh.do_predict)
|
||||||
|
@ -44,13 +44,16 @@ class FreqaiExampleStrategy(IStrategy):
|
|||||||
|
|
||||||
stoploss = -0.05
|
stoploss = -0.05
|
||||||
use_sell_signal = True
|
use_sell_signal = True
|
||||||
startup_candle_count: int = 1000
|
startup_candle_count: int = 300
|
||||||
|
|
||||||
def informative_pairs(self):
|
def informative_pairs(self):
|
||||||
pairs = self.freqai_info["corr_pairlist"]
|
pairs = self.config["freqai"]["corr_pairlist"]
|
||||||
informative_pairs = []
|
informative_pairs = []
|
||||||
for tf in self.timeframes:
|
for tf in self.config["freqai"]["timeframes"]:
|
||||||
informative_pairs.append([(pair, tf) for pair in pairs])
|
# informative_pairs.append((self.pair, tf))
|
||||||
|
# informative_pairs.append([(pair, tf) for pair in pairs])
|
||||||
|
for pair in pairs:
|
||||||
|
informative_pairs.append((pair, tf))
|
||||||
return informative_pairs
|
return informative_pairs
|
||||||
|
|
||||||
def populate_any_indicators(self, pair, df, tf, informative=None, coin=""):
|
def populate_any_indicators(self, pair, df, tf, informative=None, coin=""):
|
||||||
@ -129,6 +132,7 @@ class FreqaiExampleStrategy(IStrategy):
|
|||||||
|
|
||||||
# the configuration file parameters are stored here
|
# the configuration file parameters are stored here
|
||||||
self.freqai_info = self.config["freqai"]
|
self.freqai_info = self.config["freqai"]
|
||||||
|
self.pair = metadata['pair']
|
||||||
|
|
||||||
# the model is instantiated here
|
# the model is instantiated here
|
||||||
self.model = CustomModel(self.config)
|
self.model = CustomModel(self.config)
|
||||||
@ -138,12 +142,13 @@ class FreqaiExampleStrategy(IStrategy):
|
|||||||
# the following loops are necessary for building the features
|
# the following loops are necessary for building the features
|
||||||
# indicated by the user in the configuration file.
|
# indicated by the user in the configuration file.
|
||||||
for tf in self.freqai_info["timeframes"]:
|
for tf in self.freqai_info["timeframes"]:
|
||||||
dataframe = self.populate_any_indicators(metadata["pair"], dataframe.copy(), tf)
|
# dataframe = self.populate_any_indicators(metadata["pair"], dataframe.copy(), tf)
|
||||||
for i in self.freqai_info["corr_pairlist"]:
|
for pair in self.freqai_info["corr_pairlist"]:
|
||||||
dataframe = self.populate_any_indicators(
|
dataframe = self.populate_any_indicators(
|
||||||
i, dataframe.copy(), tf, coin=i.split("/")[0] + "-"
|
pair, dataframe.copy(), tf, coin=pair.split("/")[0] + "-"
|
||||||
)
|
)
|
||||||
|
|
||||||
|
print('dataframe_built')
|
||||||
# the model will return 4 values, its prediction, an indication of whether or not the
|
# the model will return 4 values, its prediction, an indication of whether or not the
|
||||||
# prediction should be accepted, the target mean/std values from the labels used during
|
# prediction should be accepted, the target mean/std values from the labels used during
|
||||||
# each training period.
|
# each training period.
|
||||||
@ -152,7 +157,7 @@ class FreqaiExampleStrategy(IStrategy):
|
|||||||
dataframe["do_predict"],
|
dataframe["do_predict"],
|
||||||
dataframe["target_mean"],
|
dataframe["target_mean"],
|
||||||
dataframe["target_std"],
|
dataframe["target_std"],
|
||||||
) = self.model.bridge.start(dataframe, metadata)
|
) = self.model.bridge.start(dataframe, metadata, self)
|
||||||
|
|
||||||
dataframe["target_roi"] = dataframe["target_mean"] + dataframe["target_std"] * 0.5
|
dataframe["target_roi"] = dataframe["target_mean"] + dataframe["target_std"] * 0.5
|
||||||
dataframe["sell_roi"] = dataframe["target_mean"] - dataframe["target_std"] * 1.5
|
dataframe["sell_roi"] = dataframe["target_mean"] - dataframe["target_std"] * 1.5
|
||||||
|
Loading…
Reference in New Issue
Block a user