diff --git a/analyze.py b/analyze.py index 4878333b6..12de90d8b 100644 --- a/analyze.py +++ b/analyze.py @@ -49,19 +49,9 @@ def populate_indicators(dataframe: DataFrame) -> DataFrame: """ Adds several different TA indicators to the given DataFrame """ - dataframe['close_30_ema'] = ta.EMA(dataframe, timeperiod=30) - dataframe['close_90_ema'] = ta.EMA(dataframe, timeperiod=90) - - dataframe['sar'] = ta.SAR(dataframe, 0.02, 0.2) - - # calculate StochRSI - stochrsi = ta.STOCHRSI(dataframe) - dataframe['stochrsi'] = stochrsi['fastd'] # values between 0-100, not 0-1 - - macd = ta.MACD(dataframe) - dataframe['macd'] = macd['macd'] - dataframe['macds'] = macd['macdsignal'] - dataframe['macdh'] = macd['macdhist'] + dataframe['ema'] = ta.EMA(dataframe, timeperiod=33) + dataframe['sar'] = ta.SAR(dataframe, 0.02, 0.22) + dataframe['adx'] = ta.ADX(dataframe) return dataframe @@ -72,13 +62,29 @@ def populate_buy_trend(dataframe: DataFrame) -> DataFrame: :param dataframe: DataFrame :return: DataFrame with buy column """ + prev_sar = dataframe['sar'].shift(1) + prev_close = dataframe['close'].shift(1) + prev_sar2 = dataframe['sar'].shift(2) + prev_close2 = dataframe['close'].shift(2) + + # wait for stable turn from bearish to bullish market dataframe.loc[ - (dataframe['stochrsi'] < 20) - & (dataframe['macd'] > dataframe['macds']) - & (dataframe['close'] > dataframe['sar']), - 'buy' + (dataframe['close'] > dataframe['sar']) & + (prev_close > prev_sar) & + (prev_close2 < prev_sar2), + 'swap' ] = 1 + + # consider prices above ema to be in upswing + dataframe.loc[dataframe['ema'] <= dataframe['close'], 'upswing'] = 1 + + dataframe.loc[ + (dataframe['upswing'] == 1) & + (dataframe['swap'] == 1) & + (dataframe['adx'] > 25), # adx over 25 tells there's enough momentum + 'buy'] = 1 dataframe.loc[dataframe['buy'] == 1, 'buy_price'] = dataframe['close'] + return dataframe @@ -127,27 +133,20 @@ def plot_dataframe(dataframe: DataFrame, pair: str) -> None: matplotlib.use("Qt5Agg") import matplotlib.pyplot as plt - # Three subplots sharing x axe - fig, (ax1, ax2, ax3) = plt.subplots(3, sharex=True) + # Two subplots sharing x axis + fig, (ax1, ax2) = plt.subplots(2, sharex=True) fig.suptitle(pair, fontsize=14, fontweight='bold') + ax1.plot(dataframe.index.values, dataframe['sar'], 'g_', label='pSAR') ax1.plot(dataframe.index.values, dataframe['close'], label='close') - ax1.plot(dataframe.index.values, dataframe['close_30_ema'], label='EMA(30)') - ax1.plot(dataframe.index.values, dataframe['close_90_ema'], label='EMA(90)') # ax1.plot(dataframe.index.values, dataframe['sell'], 'ro', label='sell') - ax1.plot(dataframe.index.values, dataframe['buy_price'], 'bo', label='buy') + ax1.plot(dataframe.index.values, dataframe['ema'], '--', label='EMA(20)') + ax1.plot(dataframe.index.values, dataframe['buy'], 'bo', label='buy') ax1.legend() - ax2.plot(dataframe.index.values, dataframe['macd'], label='MACD') - ax2.plot(dataframe.index.values, dataframe['macds'], label='MACDS') - ax2.plot(dataframe.index.values, dataframe['macdh'], label='MACD Histogram') - ax2.plot(dataframe.index.values, [0] * len(dataframe.index.values)) + ax2.plot(dataframe.index.values, dataframe['adx'], label='ADX') + ax2.plot(dataframe.index.values, [25] * len(dataframe.index.values)) ax2.legend() - ax3.plot(dataframe.index.values, dataframe['stochrsi'], label='StochRSI') - ax3.plot(dataframe.index.values, [80] * len(dataframe.index.values)) - ax3.plot(dataframe.index.values, [20] * len(dataframe.index.values)) - ax3.legend() - # Fine-tune figure; make subplots close to each other and hide x ticks for # all but bottom plot. fig.subplots_adjust(hspace=0)