Merge pull request #7707 from freqtrade/bt/full_detail
backtesting - use full detail timeframe
This commit is contained in:
commit
2219d2f491
@ -583,7 +583,8 @@ To utilize this, you can append `--timeframe-detail 5m` to your regular backtest
|
||||
freqtrade backtesting --strategy AwesomeStrategy --timeframe 1h --timeframe-detail 5m
|
||||
```
|
||||
|
||||
This will load 1h data as well as 5m data for the timeframe. The strategy will be analyzed with the 1h timeframe - and for every "open trade candle" (candles where a trade is open) the 5m data will be used to simulate intra-candle movements.
|
||||
This will load 1h data as well as 5m data for the timeframe. The strategy will be analyzed with the 1h timeframe, and Entry orders will only be placed at the main timeframe, however Order fills and exit signals will be evaluated at the 5m candle, simulating intra-candle movements.
|
||||
|
||||
All callback functions (`custom_exit()`, `custom_stoploss()`, ... ) will be running for each 5m candle once the trade is opened (so 12 times in the above example of 1h timeframe, and 5m detailed timeframe).
|
||||
|
||||
`--timeframe-detail` must be smaller than the original timeframe, otherwise backtesting will fail to start.
|
||||
|
@ -692,10 +692,11 @@ class Backtesting:
|
||||
trade.orders.append(order)
|
||||
return trade
|
||||
|
||||
def _get_exit_trade_entry(self, trade: LocalTrade, row: Tuple) -> Optional[LocalTrade]:
|
||||
def _get_exit_trade_entry(
|
||||
self, trade: LocalTrade, row: Tuple, is_first: bool) -> Optional[LocalTrade]:
|
||||
exit_candle_time: datetime = row[DATE_IDX].to_pydatetime()
|
||||
|
||||
if self.trading_mode == TradingMode.FUTURES:
|
||||
if is_first and self.trading_mode == TradingMode.FUTURES:
|
||||
trade.funding_fees = self.exchange.calculate_funding_fees(
|
||||
self.futures_data[trade.pair],
|
||||
amount=trade.amount,
|
||||
@ -704,32 +705,7 @@ class Backtesting:
|
||||
close_date=exit_candle_time,
|
||||
)
|
||||
|
||||
if self.timeframe_detail and trade.pair in self.detail_data:
|
||||
exit_candle_end = exit_candle_time + timedelta(minutes=self.timeframe_min)
|
||||
|
||||
detail_data = self.detail_data[trade.pair]
|
||||
detail_data = detail_data.loc[
|
||||
(detail_data['date'] >= exit_candle_time) &
|
||||
(detail_data['date'] < exit_candle_end)
|
||||
].copy()
|
||||
if len(detail_data) == 0:
|
||||
# Fall back to "regular" data if no detail data was found for this candle
|
||||
return self._get_exit_trade_entry_for_candle(trade, row)
|
||||
detail_data.loc[:, 'enter_long'] = row[LONG_IDX]
|
||||
detail_data.loc[:, 'exit_long'] = row[ELONG_IDX]
|
||||
detail_data.loc[:, 'enter_short'] = row[SHORT_IDX]
|
||||
detail_data.loc[:, 'exit_short'] = row[ESHORT_IDX]
|
||||
detail_data.loc[:, 'enter_tag'] = row[ENTER_TAG_IDX]
|
||||
detail_data.loc[:, 'exit_tag'] = row[EXIT_TAG_IDX]
|
||||
for det_row in detail_data[HEADERS].values.tolist():
|
||||
res = self._get_exit_trade_entry_for_candle(trade, det_row)
|
||||
if res:
|
||||
return res
|
||||
|
||||
return None
|
||||
|
||||
else:
|
||||
return self._get_exit_trade_entry_for_candle(trade, row)
|
||||
return self._get_exit_trade_entry_for_candle(trade, row)
|
||||
|
||||
def get_valid_price_and_stake(
|
||||
self, pair: str, row: Tuple, propose_rate: float, stake_amount: float,
|
||||
@ -1074,7 +1050,7 @@ class Backtesting:
|
||||
|
||||
def backtest_loop(
|
||||
self, row: Tuple, pair: str, current_time: datetime, end_date: datetime,
|
||||
max_open_trades: int, open_trade_count_start: int) -> int:
|
||||
max_open_trades: int, open_trade_count_start: int, is_first: bool = True) -> int:
|
||||
"""
|
||||
NOTE: This method is used by Hyperopt at each iteration. Please keep it optimized.
|
||||
|
||||
@ -1092,9 +1068,11 @@ class Backtesting:
|
||||
# without positionstacking, we can only have one open trade per pair.
|
||||
# max_open_trades must be respected
|
||||
# don't open on the last row
|
||||
# We only open trades on the main candle, not on detail candles
|
||||
trade_dir = self.check_for_trade_entry(row)
|
||||
if (
|
||||
(self._position_stacking or len(LocalTrade.bt_trades_open_pp[pair]) == 0)
|
||||
and is_first
|
||||
and self.trade_slot_available(max_open_trades, open_trade_count_start)
|
||||
and current_time != end_date
|
||||
and trade_dir is not None
|
||||
@ -1120,7 +1098,7 @@ class Backtesting:
|
||||
|
||||
# 4. Create exit orders (if any)
|
||||
if not trade.open_order_id:
|
||||
self._get_exit_trade_entry(trade, row) # Place exit order if necessary
|
||||
self._get_exit_trade_entry(trade, row, is_first) # Place exit order if necessary
|
||||
|
||||
# 5. Process exit orders.
|
||||
order = trade.select_order(trade.exit_side, is_open=True)
|
||||
@ -1171,7 +1149,6 @@ class Backtesting:
|
||||
|
||||
self.progress.init_step(BacktestState.BACKTEST, int(
|
||||
(end_date - start_date) / timedelta(minutes=self.timeframe_min)))
|
||||
|
||||
# Loop timerange and get candle for each pair at that point in time
|
||||
while current_time <= end_date:
|
||||
open_trade_count_start = LocalTrade.bt_open_open_trade_count
|
||||
@ -1185,9 +1162,37 @@ class Backtesting:
|
||||
row_index += 1
|
||||
indexes[pair] = row_index
|
||||
self.dataprovider._set_dataframe_max_index(row_index)
|
||||
current_detail_time: datetime = row[DATE_IDX].to_pydatetime()
|
||||
if self.timeframe_detail and pair in self.detail_data:
|
||||
exit_candle_end = current_detail_time + timedelta(minutes=self.timeframe_min)
|
||||
|
||||
open_trade_count_start = self.backtest_loop(
|
||||
row, pair, current_time, end_date, max_open_trades, open_trade_count_start)
|
||||
detail_data = self.detail_data[pair]
|
||||
detail_data = detail_data.loc[
|
||||
(detail_data['date'] >= current_detail_time) &
|
||||
(detail_data['date'] < exit_candle_end)
|
||||
].copy()
|
||||
if len(detail_data) == 0:
|
||||
# Fall back to "regular" data if no detail data was found for this candle
|
||||
open_trade_count_start = self.backtest_loop(
|
||||
row, pair, current_time, end_date, max_open_trades,
|
||||
open_trade_count_start)
|
||||
detail_data.loc[:, 'enter_long'] = row[LONG_IDX]
|
||||
detail_data.loc[:, 'exit_long'] = row[ELONG_IDX]
|
||||
detail_data.loc[:, 'enter_short'] = row[SHORT_IDX]
|
||||
detail_data.loc[:, 'exit_short'] = row[ESHORT_IDX]
|
||||
detail_data.loc[:, 'enter_tag'] = row[ENTER_TAG_IDX]
|
||||
detail_data.loc[:, 'exit_tag'] = row[EXIT_TAG_IDX]
|
||||
is_first = True
|
||||
current_time_det = current_time
|
||||
for det_row in detail_data[HEADERS].values.tolist():
|
||||
open_trade_count_start = self.backtest_loop(
|
||||
det_row, pair, current_time_det, end_date, max_open_trades,
|
||||
open_trade_count_start, is_first)
|
||||
current_time_det += timedelta(minutes=self.timeframe_detail_min)
|
||||
is_first = False
|
||||
else:
|
||||
open_trade_count_start = self.backtest_loop(
|
||||
row, pair, current_time, end_date, max_open_trades, open_trade_count_start)
|
||||
|
||||
# Move time one configured time_interval ahead.
|
||||
self.progress.increment()
|
||||
|
@ -663,30 +663,9 @@ def test_backtest__get_sell_trade_entry(default_conf, fee, mocker) -> None:
|
||||
'', # Exit Signal Name
|
||||
|
||||
]
|
||||
row_detail = pd.DataFrame(
|
||||
[
|
||||
[
|
||||
pd.Timestamp(year=2020, month=1, day=1, hour=5, minute=0, tzinfo=timezone.utc),
|
||||
200, 200.1, 197, 199, 1, 0, 0, 0, '', '', '',
|
||||
], [
|
||||
pd.Timestamp(year=2020, month=1, day=1, hour=5, minute=1, tzinfo=timezone.utc),
|
||||
199, 199.7, 199, 199.5, 0, 0, 0, 0, '', '', '',
|
||||
], [
|
||||
pd.Timestamp(year=2020, month=1, day=1, hour=5, minute=2, tzinfo=timezone.utc),
|
||||
199.5, 200.8, 199, 200.9, 0, 0, 0, 0, '', '', '',
|
||||
], [
|
||||
pd.Timestamp(year=2020, month=1, day=1, hour=5, minute=3, tzinfo=timezone.utc),
|
||||
200.5, 210.5, 193, 210.5, 0, 0, 0, 0, '', '', '', # ROI sell (?)
|
||||
], [
|
||||
pd.Timestamp(year=2020, month=1, day=1, hour=5, minute=4, tzinfo=timezone.utc),
|
||||
200, 200.1, 193, 199, 0, 0, 0, 0, '', '', '',
|
||||
],
|
||||
], columns=['date', 'open', 'high', 'low', 'close', 'enter_long', 'exit_long',
|
||||
'enter_short', 'exit_short', 'long_tag', 'short_tag', 'exit_tag']
|
||||
)
|
||||
|
||||
# No data available.
|
||||
res = backtesting._get_exit_trade_entry(trade, row_sell)
|
||||
res = backtesting._get_exit_trade_entry(trade, row_sell, True)
|
||||
assert res is not None
|
||||
assert res.exit_reason == ExitType.ROI.value
|
||||
assert res.close_date_utc == datetime(2020, 1, 1, 5, 0, tzinfo=timezone.utc)
|
||||
@ -699,20 +678,9 @@ def test_backtest__get_sell_trade_entry(default_conf, fee, mocker) -> None:
|
||||
[], columns=['date', 'open', 'high', 'low', 'close', 'enter_long', 'exit_long',
|
||||
'enter_short', 'exit_short', 'long_tag', 'short_tag', 'exit_tag'])
|
||||
|
||||
res = backtesting._get_exit_trade_entry(trade, row)
|
||||
res = backtesting._get_exit_trade_entry(trade, row, True)
|
||||
assert res is None
|
||||
|
||||
# Assign backtest-detail data
|
||||
backtesting.detail_data[pair] = row_detail
|
||||
|
||||
res = backtesting._get_exit_trade_entry(trade, row_sell)
|
||||
assert res is not None
|
||||
assert res.exit_reason == ExitType.ROI.value
|
||||
# Sell at minute 3 (not available above!)
|
||||
assert res.close_date_utc == datetime(2020, 1, 1, 5, 3, tzinfo=timezone.utc)
|
||||
sell_order = res.select_order('sell', True)
|
||||
assert sell_order is not None
|
||||
|
||||
|
||||
def test_backtest_one(default_conf, fee, mocker, testdatadir) -> None:
|
||||
default_conf['use_exit_signal'] = False
|
||||
@ -788,17 +756,98 @@ def test_backtest_one(default_conf, fee, mocker, testdatadir) -> None:
|
||||
for _, t in results.iterrows():
|
||||
assert len(t['orders']) == 2
|
||||
ln = data_pair.loc[data_pair["date"] == t["open_date"]]
|
||||
# Check open trade rate alignes to open rate
|
||||
# Check open trade rate aligns to open rate
|
||||
assert not ln.empty
|
||||
assert round(ln.iloc[0]["open"], 6) == round(t["open_rate"], 6)
|
||||
# check close trade rate alignes to close rate or is between high and low
|
||||
# check close trade rate aligns to close rate or is between high and low
|
||||
ln1 = data_pair.loc[data_pair["date"] == t["close_date"]]
|
||||
assert not ln1.empty
|
||||
assert (round(ln1.iloc[0]["open"], 6) == round(t["close_rate"], 6) or
|
||||
round(ln1.iloc[0]["low"], 6) < round(
|
||||
t["close_rate"], 6) < round(ln1.iloc[0]["high"], 6))
|
||||
|
||||
|
||||
@pytest.mark.parametrize('use_detail', [True, False])
|
||||
def test_backtest_one_detail(default_conf_usdt, fee, mocker, testdatadir, use_detail) -> None:
|
||||
default_conf_usdt['use_exit_signal'] = False
|
||||
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
|
||||
mocker.patch("freqtrade.exchange.Exchange.get_min_pair_stake_amount", return_value=0.00001)
|
||||
mocker.patch("freqtrade.exchange.Exchange.get_max_pair_stake_amount", return_value=float('inf'))
|
||||
if use_detail:
|
||||
default_conf_usdt['timeframe_detail'] = '1m'
|
||||
patch_exchange(mocker)
|
||||
|
||||
def advise_entry(df, *args, **kwargs):
|
||||
# Mock function to force several entries
|
||||
df.loc[(df['rsi'] < 40), 'enter_long'] = 1
|
||||
return df
|
||||
|
||||
def custom_entry_price(proposed_rate, **kwargs):
|
||||
return proposed_rate * 0.997
|
||||
|
||||
backtesting = Backtesting(default_conf_usdt)
|
||||
backtesting._set_strategy(backtesting.strategylist[0])
|
||||
backtesting.strategy.populate_entry_trend = advise_entry
|
||||
backtesting.strategy.custom_entry_price = custom_entry_price
|
||||
pair = 'XRP/ETH'
|
||||
# Pick a timerange adapted to the pair we use to test
|
||||
timerange = TimeRange.parse_timerange('20191010-20191013')
|
||||
data = history.load_data(datadir=testdatadir, timeframe='5m', pairs=['XRP/ETH'],
|
||||
timerange=timerange)
|
||||
if use_detail:
|
||||
data_1m = history.load_data(datadir=testdatadir, timeframe='1m', pairs=['XRP/ETH'],
|
||||
timerange=timerange)
|
||||
backtesting.detail_data = data_1m
|
||||
processed = backtesting.strategy.advise_all_indicators(data)
|
||||
min_date, max_date = get_timerange(processed)
|
||||
|
||||
result = backtesting.backtest(
|
||||
processed=deepcopy(processed),
|
||||
start_date=min_date,
|
||||
end_date=max_date,
|
||||
max_open_trades=10,
|
||||
)
|
||||
results = result['results']
|
||||
assert not results.empty
|
||||
# Timeout settings from default_conf = entry: 10, exit: 30
|
||||
assert len(results) == (2 if use_detail else 3)
|
||||
|
||||
assert 'orders' in results.columns
|
||||
data_pair = processed[pair]
|
||||
|
||||
data_1m_pair = data_1m[pair] if use_detail else pd.DataFrame()
|
||||
late_entry = 0
|
||||
for _, t in results.iterrows():
|
||||
assert len(t['orders']) == 2
|
||||
|
||||
entryo = t['orders'][0]
|
||||
entry_ts = datetime.fromtimestamp(entryo['order_filled_timestamp'] // 1000, tz=timezone.utc)
|
||||
if entry_ts > t['open_date']:
|
||||
late_entry += 1
|
||||
|
||||
# Get "entry fill" candle
|
||||
ln = (data_1m_pair.loc[data_1m_pair["date"] == entry_ts]
|
||||
if use_detail else data_pair.loc[data_pair["date"] == entry_ts])
|
||||
# Check open trade rate aligns to open rate
|
||||
assert not ln.empty
|
||||
|
||||
# assert round(ln.iloc[0]["open"], 6) == round(t["open_rate"], 6)
|
||||
assert round(ln.iloc[0]["low"], 6) <= round(
|
||||
t["open_rate"], 6) <= round(ln.iloc[0]["high"], 6)
|
||||
# check close trade rate aligns to close rate or is between high and low
|
||||
ln1 = data_pair.loc[data_pair["date"] == t["close_date"]]
|
||||
if use_detail:
|
||||
ln1_1m = data_1m_pair.loc[data_1m_pair["date"] == t["close_date"]]
|
||||
assert not ln1.empty or not ln1_1m.empty
|
||||
else:
|
||||
assert not ln1.empty
|
||||
ln2 = ln1_1m if ln1.empty else ln1
|
||||
|
||||
assert (round(ln2.iloc[0]["low"], 6) <= round(
|
||||
t["close_rate"], 6) <= round(ln2.iloc[0]["high"], 6))
|
||||
|
||||
assert late_entry > 0
|
||||
|
||||
|
||||
def test_backtest_timedout_entry_orders(default_conf, fee, mocker, testdatadir) -> None:
|
||||
# This strategy intentionally places unfillable orders.
|
||||
default_conf['strategy'] = 'StrategyTestV3CustomEntryPrice'
|
||||
|
Loading…
Reference in New Issue
Block a user