add strat and config for testing on PR
This commit is contained in:
parent
47056eded3
commit
217add70bd
@ -1,10 +1,13 @@
|
|||||||
|
import numpy as np
|
||||||
from joblib import Parallel
|
from joblib import Parallel
|
||||||
from sklearn.multioutput import MultiOutputRegressor, _fit_estimator
|
from sklearn.base import is_classifier
|
||||||
|
from sklearn.multioutput import MultiOutputClassifier, _fit_estimator
|
||||||
from sklearn.utils.fixes import delayed
|
from sklearn.utils.fixes import delayed
|
||||||
from sklearn.utils.validation import has_fit_parameter
|
from sklearn.utils.multiclass import check_classification_targets
|
||||||
|
from sklearn.utils.validation import check_is_fitted, has_fit_parameter
|
||||||
|
|
||||||
|
|
||||||
class FreqaiMultiOutputRegressor(MultiOutputRegressor):
|
class FreqaiMultiOutputClassifier(MultiOutputClassifier):
|
||||||
|
|
||||||
def fit(self, X, y, sample_weight=None, fit_params=None):
|
def fit(self, X, y, sample_weight=None, fit_params=None):
|
||||||
"""Fit the model to data, separately for each output variable.
|
"""Fit the model to data, separately for each output variable.
|
||||||
@ -17,7 +20,7 @@ class FreqaiMultiOutputRegressor(MultiOutputRegressor):
|
|||||||
estimation.
|
estimation.
|
||||||
sample_weight : array-like of shape (n_samples,), default=None
|
sample_weight : array-like of shape (n_samples,), default=None
|
||||||
Sample weights. If `None`, then samples are equally weighted.
|
Sample weights. If `None`, then samples are equally weighted.
|
||||||
Only supported if the underlying regressor supports sample
|
Only supported if the underlying classifier supports sample
|
||||||
weights.
|
weights.
|
||||||
fit_params : A list of dicts for the fit_params
|
fit_params : A list of dicts for the fit_params
|
||||||
Parameters passed to the ``estimator.fit`` method of each step.
|
Parameters passed to the ``estimator.fit`` method of each step.
|
||||||
@ -35,6 +38,9 @@ class FreqaiMultiOutputRegressor(MultiOutputRegressor):
|
|||||||
|
|
||||||
y = self._validate_data(X="no_validation", y=y, multi_output=True)
|
y = self._validate_data(X="no_validation", y=y, multi_output=True)
|
||||||
|
|
||||||
|
if is_classifier(self):
|
||||||
|
check_classification_targets(y)
|
||||||
|
|
||||||
if y.ndim == 1:
|
if y.ndim == 1:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
"y must have at least two dimensions for "
|
"y must have at least two dimensions for "
|
||||||
@ -56,9 +62,66 @@ class FreqaiMultiOutputRegressor(MultiOutputRegressor):
|
|||||||
for i in range(y.shape[1])
|
for i in range(y.shape[1])
|
||||||
)
|
)
|
||||||
|
|
||||||
|
self.classes_ = []
|
||||||
|
for estimator in self.estimators_:
|
||||||
|
self.classes_.extend(estimator.classes_)
|
||||||
|
|
||||||
if hasattr(self.estimators_[0], "n_features_in_"):
|
if hasattr(self.estimators_[0], "n_features_in_"):
|
||||||
self.n_features_in_ = self.estimators_[0].n_features_in_
|
self.n_features_in_ = self.estimators_[0].n_features_in_
|
||||||
if hasattr(self.estimators_[0], "feature_names_in_"):
|
if hasattr(self.estimators_[0], "feature_names_in_"):
|
||||||
self.feature_names_in_ = self.estimators_[0].feature_names_in_
|
self.feature_names_in_ = self.estimators_[0].feature_names_in_
|
||||||
|
|
||||||
return
|
return self
|
||||||
|
|
||||||
|
def predict_proba(self, X):
|
||||||
|
"""Return prediction probabilities for each class of each output.
|
||||||
|
|
||||||
|
This method will raise a ``ValueError`` if any of the
|
||||||
|
estimators do not have ``predict_proba``.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
X : array-like of shape (n_samples, n_features)
|
||||||
|
The input data.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
p : array of shape (n_samples, n_classes), or a list of n_outputs \
|
||||||
|
such arrays if n_outputs > 1.
|
||||||
|
The class probabilities of the input samples. The order of the
|
||||||
|
classes corresponds to that in the attribute :term:`classes_`.
|
||||||
|
|
||||||
|
.. versionchanged:: 0.19
|
||||||
|
This function now returns a list of arrays where the length of
|
||||||
|
the list is ``n_outputs``, and each array is (``n_samples``,
|
||||||
|
``n_classes``) for that particular output.
|
||||||
|
"""
|
||||||
|
check_is_fitted(self)
|
||||||
|
results = np.hstack([estimator.predict_proba(X) for estimator in self.estimators_])
|
||||||
|
return np.squeeze(results)
|
||||||
|
|
||||||
|
def predict(self, X):
|
||||||
|
"""Predict multi-output variable using model for each target variable.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
||||||
|
The input data.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
y : {array-like, sparse matrix} of shape (n_samples, n_outputs)
|
||||||
|
Multi-output targets predicted across multiple predictors.
|
||||||
|
Note: Separate models are generated for each predictor.
|
||||||
|
"""
|
||||||
|
check_is_fitted(self)
|
||||||
|
if not hasattr(self.estimators_[0], "predict"):
|
||||||
|
raise ValueError("The base estimator should implement a predict method")
|
||||||
|
|
||||||
|
y = Parallel(n_jobs=self.n_jobs)(
|
||||||
|
delayed(e.predict)(X) for e in self.estimators_
|
||||||
|
)
|
||||||
|
|
||||||
|
results = np.asarray(y).T
|
||||||
|
|
||||||
|
return np.squeeze(results)
|
||||||
|
@ -6,13 +6,14 @@ from typing import Any, Dict
|
|||||||
from catboost import CatBoostClassifier, Pool
|
from catboost import CatBoostClassifier, Pool
|
||||||
|
|
||||||
from freqtrade.freqai.base_models.BaseClassifierModel import BaseClassifierModel
|
from freqtrade.freqai.base_models.BaseClassifierModel import BaseClassifierModel
|
||||||
|
from freqtrade.freqai.base_models.FreqaiMultiOutputClassifier import FreqaiMultiOutputClassifier
|
||||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||||
|
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
class CatboostClassifier(BaseClassifierModel):
|
class CatboostClassifierMultiTarget(BaseClassifierModel):
|
||||||
"""
|
"""
|
||||||
User created prediction model. The class needs to override three necessary
|
User created prediction model. The class needs to override three necessary
|
||||||
functions, predict(), train(), fit(). The class inherits ModelHandler which
|
functions, predict(), train(), fit(). The class inherits ModelHandler which
|
||||||
@ -26,30 +27,48 @@ class CatboostClassifier(BaseClassifierModel):
|
|||||||
all the training and test data/labels.
|
all the training and test data/labels.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
train_data = Pool(
|
cbc = CatBoostClassifier(
|
||||||
data=data_dictionary["train_features"],
|
|
||||||
label=data_dictionary["train_labels"],
|
|
||||||
weight=data_dictionary["train_weights"],
|
|
||||||
)
|
|
||||||
if self.freqai_info.get("data_split_parameters", {}).get("test_size", 0.1) == 0:
|
|
||||||
test_data = None
|
|
||||||
else:
|
|
||||||
test_data = Pool(
|
|
||||||
data=data_dictionary["test_features"],
|
|
||||||
label=data_dictionary["test_labels"],
|
|
||||||
weight=data_dictionary["test_weights"],
|
|
||||||
)
|
|
||||||
|
|
||||||
cbr = CatBoostClassifier(
|
|
||||||
allow_writing_files=True,
|
allow_writing_files=True,
|
||||||
loss_function='MultiClass',
|
loss_function='MultiClass',
|
||||||
train_dir=Path(dk.data_path),
|
train_dir=Path(dk.data_path),
|
||||||
**self.model_training_parameters,
|
**self.model_training_parameters,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
X = data_dictionary["train_features"]
|
||||||
|
y = data_dictionary["train_labels"]
|
||||||
|
|
||||||
|
sample_weight = data_dictionary["train_weights"]
|
||||||
|
|
||||||
|
eval_sets = [None] * y.shape[1]
|
||||||
|
|
||||||
|
if self.freqai_info.get('data_split_parameters', {}).get('test_size', 0.1) != 0:
|
||||||
|
eval_sets = [None] * data_dictionary['test_labels'].shape[1]
|
||||||
|
|
||||||
|
for i in range(data_dictionary['test_labels'].shape[1]):
|
||||||
|
eval_sets[i] = Pool(
|
||||||
|
data=data_dictionary["test_features"],
|
||||||
|
label=data_dictionary["test_labels"].iloc[:, i],
|
||||||
|
weight=data_dictionary["test_weights"],
|
||||||
|
)
|
||||||
|
|
||||||
init_model = self.get_init_model(dk.pair)
|
init_model = self.get_init_model(dk.pair)
|
||||||
|
|
||||||
cbr.fit(X=train_data, eval_set=test_data, init_model=init_model,
|
if init_model:
|
||||||
log_cout=sys.stdout, log_cerr=sys.stderr)
|
init_models = init_model.estimators_
|
||||||
|
else:
|
||||||
|
init_models = [None] * y.shape[1]
|
||||||
|
|
||||||
return cbr
|
fit_params = []
|
||||||
|
for i in range(len(eval_sets)):
|
||||||
|
fit_params.append({
|
||||||
|
'eval_set': eval_sets[i], 'init_model': init_models[i],
|
||||||
|
'log_cout': sys.stdout, 'log_cerr': sys.stderr,
|
||||||
|
})
|
||||||
|
|
||||||
|
model = FreqaiMultiOutputClassifier(estimator=cbc)
|
||||||
|
thread_training = self.freqai_info.get('multitarget_parallel_training', False)
|
||||||
|
if thread_training:
|
||||||
|
model.n_jobs = y.shape[1]
|
||||||
|
model.fit(X=X, y=y, sample_weight=sample_weight, fit_params=fit_params)
|
||||||
|
|
||||||
|
return model
|
||||||
|
244
user_data/strategies/MultiTargetClassifierTestStrategy.py
Normal file
244
user_data/strategies/MultiTargetClassifierTestStrategy.py
Normal file
@ -0,0 +1,244 @@
|
|||||||
|
import logging
|
||||||
|
from functools import reduce
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
|
import talib.abstract as ta
|
||||||
|
from pandas import DataFrame
|
||||||
|
from technical import qtpylib
|
||||||
|
|
||||||
|
from freqtrade.strategy import CategoricalParameter, IStrategy, merge_informative_pair
|
||||||
|
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
class MultiTargetClassifierTestStrategy(IStrategy):
|
||||||
|
"""
|
||||||
|
Example strategy showing how the user connects their own
|
||||||
|
IFreqaiModel to the strategy. Namely, the user uses:
|
||||||
|
self.freqai.start(dataframe, metadata)
|
||||||
|
|
||||||
|
to make predictions on their data. populate_any_indicators() automatically
|
||||||
|
generates the variety of features indicated by the user in the
|
||||||
|
canonical freqtrade configuration file under config['freqai'].
|
||||||
|
"""
|
||||||
|
|
||||||
|
minimal_roi = {"0": 0.1, "240": -1}
|
||||||
|
|
||||||
|
plot_config = {
|
||||||
|
"main_plot": {},
|
||||||
|
"subplots": {
|
||||||
|
"prediction": {"prediction": {"color": "blue"}},
|
||||||
|
"do_predict": {
|
||||||
|
"do_predict": {"color": "brown"},
|
||||||
|
},
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
process_only_new_candles = True
|
||||||
|
stoploss = -0.05
|
||||||
|
use_exit_signal = True
|
||||||
|
# this is the maximum period fed to talib (timeframe independent)
|
||||||
|
startup_candle_count: int = 40
|
||||||
|
can_short = False
|
||||||
|
|
||||||
|
std_dev_multiplier_buy = CategoricalParameter(
|
||||||
|
[0.75, 1, 1.25, 1.5, 1.75], default=1.25, space="buy", optimize=True)
|
||||||
|
std_dev_multiplier_sell = CategoricalParameter(
|
||||||
|
[0.75, 1, 1.25, 1.5, 1.75], space="sell", default=1.25, optimize=True)
|
||||||
|
|
||||||
|
def populate_any_indicators(
|
||||||
|
self, pair, df, tf, informative=None, set_generalized_indicators=False
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Function designed to automatically generate, name and merge features
|
||||||
|
from user indicated timeframes in the configuration file. User controls the indicators
|
||||||
|
passed to the training/prediction by prepending indicators with `'%-' + coin `
|
||||||
|
(see convention below). I.e. user should not prepend any supporting metrics
|
||||||
|
(e.g. bb_lowerband below) with % unless they explicitly want to pass that metric to the
|
||||||
|
model.
|
||||||
|
:param pair: pair to be used as informative
|
||||||
|
:param df: strategy dataframe which will receive merges from informatives
|
||||||
|
:param tf: timeframe of the dataframe which will modify the feature names
|
||||||
|
:param informative: the dataframe associated with the informative pair
|
||||||
|
"""
|
||||||
|
|
||||||
|
coin = pair.split('/')[0]
|
||||||
|
|
||||||
|
if informative is None:
|
||||||
|
informative = self.dp.get_pair_dataframe(pair, tf)
|
||||||
|
|
||||||
|
# first loop is automatically duplicating indicators for time periods
|
||||||
|
for t in self.freqai_info["feature_parameters"]["indicator_periods_candles"]:
|
||||||
|
|
||||||
|
t = int(t)
|
||||||
|
informative[f"%-{coin}rsi-period_{t}"] = ta.RSI(informative, timeperiod=t)
|
||||||
|
informative[f"%-{coin}mfi-period_{t}"] = ta.MFI(informative, timeperiod=t)
|
||||||
|
informative[f"%-{coin}adx-period_{t}"] = ta.ADX(informative, timeperiod=t)
|
||||||
|
informative[f"%-{coin}sma-period_{t}"] = ta.SMA(informative, timeperiod=t)
|
||||||
|
informative[f"%-{coin}ema-period_{t}"] = ta.EMA(informative, timeperiod=t)
|
||||||
|
|
||||||
|
bollinger = qtpylib.bollinger_bands(
|
||||||
|
qtpylib.typical_price(informative), window=t, stds=2.2
|
||||||
|
)
|
||||||
|
informative[f"{coin}bb_lowerband-period_{t}"] = bollinger["lower"]
|
||||||
|
informative[f"{coin}bb_middleband-period_{t}"] = bollinger["mid"]
|
||||||
|
informative[f"{coin}bb_upperband-period_{t}"] = bollinger["upper"]
|
||||||
|
|
||||||
|
informative[f"%-{coin}bb_width-period_{t}"] = (
|
||||||
|
informative[f"{coin}bb_upperband-period_{t}"]
|
||||||
|
- informative[f"{coin}bb_lowerband-period_{t}"]
|
||||||
|
) / informative[f"{coin}bb_middleband-period_{t}"]
|
||||||
|
informative[f"%-{coin}close-bb_lower-period_{t}"] = (
|
||||||
|
informative["close"] / informative[f"{coin}bb_lowerband-period_{t}"]
|
||||||
|
)
|
||||||
|
|
||||||
|
informative[f"%-{coin}roc-period_{t}"] = ta.ROC(informative, timeperiod=t)
|
||||||
|
|
||||||
|
informative[f"%-{coin}relative_volume-period_{t}"] = (
|
||||||
|
informative["volume"] / informative["volume"].rolling(t).mean()
|
||||||
|
)
|
||||||
|
|
||||||
|
informative[f"%-{coin}pct-change"] = informative["close"].pct_change()
|
||||||
|
informative[f"%-{coin}raw_volume"] = informative["volume"]
|
||||||
|
informative[f"%-{coin}raw_price"] = informative["close"]
|
||||||
|
|
||||||
|
indicators = [col for col in informative if col.startswith("%")]
|
||||||
|
# This loop duplicates and shifts all indicators to add a sense of recency to data
|
||||||
|
for n in range(self.freqai_info["feature_parameters"]["include_shifted_candles"] + 1):
|
||||||
|
if n == 0:
|
||||||
|
continue
|
||||||
|
informative_shift = informative[indicators].shift(n)
|
||||||
|
informative_shift = informative_shift.add_suffix("_shift-" + str(n))
|
||||||
|
informative = pd.concat((informative, informative_shift), axis=1)
|
||||||
|
|
||||||
|
df = merge_informative_pair(df, informative, self.config["timeframe"], tf, ffill=True)
|
||||||
|
skip_columns = [
|
||||||
|
(s + "_" + tf) for s in ["date", "open", "high", "low", "close", "volume"]
|
||||||
|
]
|
||||||
|
df = df.drop(columns=skip_columns)
|
||||||
|
|
||||||
|
# Add generalized indicators here (because in live, it will call this
|
||||||
|
# function to populate indicators during training). Notice how we ensure not to
|
||||||
|
# add them multiple times
|
||||||
|
if set_generalized_indicators:
|
||||||
|
df["%-day_of_week"] = (df["date"].dt.dayofweek + 1) / 7
|
||||||
|
df["%-hour_of_day"] = (df["date"].dt.hour + 1) / 25
|
||||||
|
|
||||||
|
# Classifiers are typically set up with strings as targets:
|
||||||
|
df['&s-up_or_down_long'] = np.where(
|
||||||
|
df["close"].shift(-100) > df["close"], 'up_long', 'down_long')
|
||||||
|
df['&s-up_or_down_medium'] = np.where(
|
||||||
|
df["close"].shift(-50) > df["close"], 'up_medium', 'down_medium')
|
||||||
|
df['&s-up_or_down_short'] = np.where(
|
||||||
|
df["close"].shift(-20) > df["close"], 'up_short', 'down_short')
|
||||||
|
|
||||||
|
# If user wishes to use multiple targets, they can add more by
|
||||||
|
# appending more columns with '&'. User should keep in mind that multi targets
|
||||||
|
# requires a multioutput prediction model such as
|
||||||
|
# templates/CatboostPredictionMultiModel.py,
|
||||||
|
|
||||||
|
# df["&-s_range"] = (
|
||||||
|
# df["close"]
|
||||||
|
# .shift(-self.freqai_info["feature_parameters"]["label_period_candles"])
|
||||||
|
# .rolling(self.freqai_info["feature_parameters"]["label_period_candles"])
|
||||||
|
# .max()
|
||||||
|
# -
|
||||||
|
# df["close"]
|
||||||
|
# .shift(-self.freqai_info["feature_parameters"]["label_period_candles"])
|
||||||
|
# .rolling(self.freqai_info["feature_parameters"]["label_period_candles"])
|
||||||
|
# .min()
|
||||||
|
# )
|
||||||
|
|
||||||
|
return df
|
||||||
|
|
||||||
|
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||||
|
|
||||||
|
# All indicators must be populated by populate_any_indicators() for live functionality
|
||||||
|
# to work correctly.
|
||||||
|
|
||||||
|
# the model will return all labels created by user in `populate_any_indicators`
|
||||||
|
# (& appended targets), an indication of whether or not the prediction should be accepted,
|
||||||
|
# the target mean/std values for each of the labels created by user in
|
||||||
|
# `populate_any_indicators()` for each training period.
|
||||||
|
|
||||||
|
dataframe = self.freqai.start(dataframe, metadata, self)
|
||||||
|
for val in self.std_dev_multiplier_buy.range:
|
||||||
|
dataframe[f'target_roi_{val}'] = (
|
||||||
|
dataframe["up_long_mean"] + dataframe["up_long_std"] * val
|
||||||
|
)
|
||||||
|
for val in self.std_dev_multiplier_sell.range:
|
||||||
|
dataframe[f'sell_roi_{val}'] = (
|
||||||
|
dataframe["down_long_mean"] - dataframe["down_long_std"] * val
|
||||||
|
)
|
||||||
|
return dataframe
|
||||||
|
|
||||||
|
def populate_entry_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
|
||||||
|
|
||||||
|
enter_long_conditions = [
|
||||||
|
df["do_predict"] == 1,
|
||||||
|
df["up_long"] > df[f"target_roi_{self.std_dev_multiplier_buy.value}"],
|
||||||
|
]
|
||||||
|
|
||||||
|
if enter_long_conditions:
|
||||||
|
df.loc[
|
||||||
|
reduce(lambda x, y: x & y, enter_long_conditions), ["enter_long", "enter_tag"]
|
||||||
|
] = (1, "long")
|
||||||
|
|
||||||
|
enter_short_conditions = [
|
||||||
|
df["do_predict"] == 1,
|
||||||
|
df["down_long"] < df[f"sell_roi_{self.std_dev_multiplier_sell.value}"],
|
||||||
|
]
|
||||||
|
|
||||||
|
if enter_short_conditions:
|
||||||
|
df.loc[
|
||||||
|
reduce(lambda x, y: x & y, enter_short_conditions), ["enter_short", "enter_tag"]
|
||||||
|
] = (1, "short")
|
||||||
|
|
||||||
|
return df
|
||||||
|
|
||||||
|
def populate_exit_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
|
||||||
|
exit_long_conditions = [
|
||||||
|
df["do_predict"] == 1,
|
||||||
|
df["down_long"] < df[f"sell_roi_{self.std_dev_multiplier_sell.value}"] * 0.25,
|
||||||
|
]
|
||||||
|
if exit_long_conditions:
|
||||||
|
df.loc[reduce(lambda x, y: x & y, exit_long_conditions), "exit_long"] = 1
|
||||||
|
|
||||||
|
exit_short_conditions = [
|
||||||
|
df["do_predict"] == 1,
|
||||||
|
df["up_long"] > df[f"target_roi_{self.std_dev_multiplier_buy.value}"] * 0.25,
|
||||||
|
]
|
||||||
|
if exit_short_conditions:
|
||||||
|
df.loc[reduce(lambda x, y: x & y, exit_short_conditions), "exit_short"] = 1
|
||||||
|
|
||||||
|
return df
|
||||||
|
|
||||||
|
def get_ticker_indicator(self):
|
||||||
|
return int(self.config["timeframe"][:-1])
|
||||||
|
|
||||||
|
def confirm_trade_entry(
|
||||||
|
self,
|
||||||
|
pair: str,
|
||||||
|
order_type: str,
|
||||||
|
amount: float,
|
||||||
|
rate: float,
|
||||||
|
time_in_force: str,
|
||||||
|
current_time,
|
||||||
|
entry_tag,
|
||||||
|
side: str,
|
||||||
|
**kwargs,
|
||||||
|
) -> bool:
|
||||||
|
|
||||||
|
df, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe)
|
||||||
|
last_candle = df.iloc[-1].squeeze()
|
||||||
|
|
||||||
|
if side == "long":
|
||||||
|
if rate > (last_candle["close"] * (1 + 0.0025)):
|
||||||
|
return False
|
||||||
|
else:
|
||||||
|
if rate < (last_candle["close"] * (1 - 0.0025)):
|
||||||
|
return False
|
||||||
|
|
||||||
|
return True
|
105
user_data/strategies/config_test.json
Normal file
105
user_data/strategies/config_test.json
Normal file
@ -0,0 +1,105 @@
|
|||||||
|
{
|
||||||
|
"trading_mode": "futures",
|
||||||
|
"margin_mode": "isolated",
|
||||||
|
"max_open_trades": 5,
|
||||||
|
"stake_currency": "USDT",
|
||||||
|
"stake_amount": 200,
|
||||||
|
"tradable_balance_ratio": 1,
|
||||||
|
"fiat_display_currency": "USD",
|
||||||
|
"dry_run": true,
|
||||||
|
"timeframe": "3m",
|
||||||
|
"dry_run_wallet": 1000,
|
||||||
|
"cancel_open_orders_on_exit": true,
|
||||||
|
"unfilledtimeout": {
|
||||||
|
"entry": 10,
|
||||||
|
"exit": 30
|
||||||
|
},
|
||||||
|
"exchange": {
|
||||||
|
"name": "binance",
|
||||||
|
"key": "",
|
||||||
|
"secret": "",
|
||||||
|
"ccxt_config": {},
|
||||||
|
"ccxt_async_config": {},
|
||||||
|
"pair_whitelist": [
|
||||||
|
"1INCH/USDT",
|
||||||
|
"ALGO/USDT"
|
||||||
|
],
|
||||||
|
"pair_blacklist": []
|
||||||
|
},
|
||||||
|
"entry_pricing": {
|
||||||
|
"price_side": "same",
|
||||||
|
"use_order_book": true,
|
||||||
|
"order_book_top": 1,
|
||||||
|
"price_last_balance": 0.0,
|
||||||
|
"check_depth_of_market": {
|
||||||
|
"enabled": false,
|
||||||
|
"bids_to_ask_delta": 1
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"exit_pricing": {
|
||||||
|
"price_side": "other",
|
||||||
|
"use_order_book": true,
|
||||||
|
"order_book_top": 1
|
||||||
|
},
|
||||||
|
"pairlists": [
|
||||||
|
{
|
||||||
|
"method": "StaticPairList"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"freqai": {
|
||||||
|
"enabled": true,
|
||||||
|
"purge_old_models": true,
|
||||||
|
"train_period_days": 15,
|
||||||
|
"backtest_period_days": 7,
|
||||||
|
"live_retrain_hours": 0,
|
||||||
|
"identifier": "uniqe-id",
|
||||||
|
"multitarget_parallel_training": true,
|
||||||
|
"feature_parameters": {
|
||||||
|
"include_timeframes": [
|
||||||
|
"3m",
|
||||||
|
"15m",
|
||||||
|
"1h"
|
||||||
|
],
|
||||||
|
"include_corr_pairlist": [
|
||||||
|
"BTC/USDT",
|
||||||
|
"ETH/USDT"
|
||||||
|
],
|
||||||
|
"label_period_candles": 20,
|
||||||
|
"include_shifted_candles": 2,
|
||||||
|
"DI_threshold": 0.9,
|
||||||
|
"weight_factor": 0.9,
|
||||||
|
"principal_component_analysis": false,
|
||||||
|
"use_SVM_to_remove_outliers": true,
|
||||||
|
"indicator_periods_candles": [
|
||||||
|
10,
|
||||||
|
20
|
||||||
|
],
|
||||||
|
"plot_feature_importances": 0
|
||||||
|
},
|
||||||
|
"data_split_parameters": {
|
||||||
|
"test_size": 0.33,
|
||||||
|
"random_state": 1
|
||||||
|
},
|
||||||
|
"model_training_parameters": {
|
||||||
|
"n_estimators": 1000,
|
||||||
|
"early_stopping_rounds": 100
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"api_server": {
|
||||||
|
"enabled": true,
|
||||||
|
"listen_ip_address": "127.0.0.1",
|
||||||
|
"listen_port": 8081,
|
||||||
|
"verbosity": "error",
|
||||||
|
"enable_openapi": false,
|
||||||
|
"jwt_secret_key": "test",
|
||||||
|
"CORS_origins": [],
|
||||||
|
"username": "test",
|
||||||
|
"password": "test"
|
||||||
|
},
|
||||||
|
"bot_name": "",
|
||||||
|
"force_entry_enable": true,
|
||||||
|
"initial_state": "running",
|
||||||
|
"internals": {
|
||||||
|
"process_throttle_secs": 5
|
||||||
|
}
|
||||||
|
}
|
Loading…
Reference in New Issue
Block a user