add strat and config for testing on PR
This commit is contained in:
@@ -6,13 +6,14 @@ from typing import Any, Dict
|
||||
from catboost import CatBoostClassifier, Pool
|
||||
|
||||
from freqtrade.freqai.base_models.BaseClassifierModel import BaseClassifierModel
|
||||
from freqtrade.freqai.base_models.FreqaiMultiOutputClassifier import FreqaiMultiOutputClassifier
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class CatboostClassifier(BaseClassifierModel):
|
||||
class CatboostClassifierMultiTarget(BaseClassifierModel):
|
||||
"""
|
||||
User created prediction model. The class needs to override three necessary
|
||||
functions, predict(), train(), fit(). The class inherits ModelHandler which
|
||||
@@ -26,30 +27,48 @@ class CatboostClassifier(BaseClassifierModel):
|
||||
all the training and test data/labels.
|
||||
"""
|
||||
|
||||
train_data = Pool(
|
||||
data=data_dictionary["train_features"],
|
||||
label=data_dictionary["train_labels"],
|
||||
weight=data_dictionary["train_weights"],
|
||||
)
|
||||
if self.freqai_info.get("data_split_parameters", {}).get("test_size", 0.1) == 0:
|
||||
test_data = None
|
||||
else:
|
||||
test_data = Pool(
|
||||
data=data_dictionary["test_features"],
|
||||
label=data_dictionary["test_labels"],
|
||||
weight=data_dictionary["test_weights"],
|
||||
)
|
||||
|
||||
cbr = CatBoostClassifier(
|
||||
cbc = CatBoostClassifier(
|
||||
allow_writing_files=True,
|
||||
loss_function='MultiClass',
|
||||
train_dir=Path(dk.data_path),
|
||||
**self.model_training_parameters,
|
||||
)
|
||||
|
||||
X = data_dictionary["train_features"]
|
||||
y = data_dictionary["train_labels"]
|
||||
|
||||
sample_weight = data_dictionary["train_weights"]
|
||||
|
||||
eval_sets = [None] * y.shape[1]
|
||||
|
||||
if self.freqai_info.get('data_split_parameters', {}).get('test_size', 0.1) != 0:
|
||||
eval_sets = [None] * data_dictionary['test_labels'].shape[1]
|
||||
|
||||
for i in range(data_dictionary['test_labels'].shape[1]):
|
||||
eval_sets[i] = Pool(
|
||||
data=data_dictionary["test_features"],
|
||||
label=data_dictionary["test_labels"].iloc[:, i],
|
||||
weight=data_dictionary["test_weights"],
|
||||
)
|
||||
|
||||
init_model = self.get_init_model(dk.pair)
|
||||
|
||||
cbr.fit(X=train_data, eval_set=test_data, init_model=init_model,
|
||||
log_cout=sys.stdout, log_cerr=sys.stderr)
|
||||
if init_model:
|
||||
init_models = init_model.estimators_
|
||||
else:
|
||||
init_models = [None] * y.shape[1]
|
||||
|
||||
return cbr
|
||||
fit_params = []
|
||||
for i in range(len(eval_sets)):
|
||||
fit_params.append({
|
||||
'eval_set': eval_sets[i], 'init_model': init_models[i],
|
||||
'log_cout': sys.stdout, 'log_cerr': sys.stderr,
|
||||
})
|
||||
|
||||
model = FreqaiMultiOutputClassifier(estimator=cbc)
|
||||
thread_training = self.freqai_info.get('multitarget_parallel_training', False)
|
||||
if thread_training:
|
||||
model.n_jobs = y.shape[1]
|
||||
model.fit(X=X, y=y, sample_weight=sample_weight, fit_params=fit_params)
|
||||
|
||||
return model
|
||||
|
Reference in New Issue
Block a user