add strat and config for testing on PR

This commit is contained in:
Mark Regan
2022-10-25 20:07:39 +01:00
parent 47056eded3
commit 217add70bd
4 changed files with 455 additions and 24 deletions

View File

@@ -6,13 +6,14 @@ from typing import Any, Dict
from catboost import CatBoostClassifier, Pool
from freqtrade.freqai.base_models.BaseClassifierModel import BaseClassifierModel
from freqtrade.freqai.base_models.FreqaiMultiOutputClassifier import FreqaiMultiOutputClassifier
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
logger = logging.getLogger(__name__)
class CatboostClassifier(BaseClassifierModel):
class CatboostClassifierMultiTarget(BaseClassifierModel):
"""
User created prediction model. The class needs to override three necessary
functions, predict(), train(), fit(). The class inherits ModelHandler which
@@ -26,30 +27,48 @@ class CatboostClassifier(BaseClassifierModel):
all the training and test data/labels.
"""
train_data = Pool(
data=data_dictionary["train_features"],
label=data_dictionary["train_labels"],
weight=data_dictionary["train_weights"],
)
if self.freqai_info.get("data_split_parameters", {}).get("test_size", 0.1) == 0:
test_data = None
else:
test_data = Pool(
data=data_dictionary["test_features"],
label=data_dictionary["test_labels"],
weight=data_dictionary["test_weights"],
)
cbr = CatBoostClassifier(
cbc = CatBoostClassifier(
allow_writing_files=True,
loss_function='MultiClass',
train_dir=Path(dk.data_path),
**self.model_training_parameters,
)
X = data_dictionary["train_features"]
y = data_dictionary["train_labels"]
sample_weight = data_dictionary["train_weights"]
eval_sets = [None] * y.shape[1]
if self.freqai_info.get('data_split_parameters', {}).get('test_size', 0.1) != 0:
eval_sets = [None] * data_dictionary['test_labels'].shape[1]
for i in range(data_dictionary['test_labels'].shape[1]):
eval_sets[i] = Pool(
data=data_dictionary["test_features"],
label=data_dictionary["test_labels"].iloc[:, i],
weight=data_dictionary["test_weights"],
)
init_model = self.get_init_model(dk.pair)
cbr.fit(X=train_data, eval_set=test_data, init_model=init_model,
log_cout=sys.stdout, log_cerr=sys.stderr)
if init_model:
init_models = init_model.estimators_
else:
init_models = [None] * y.shape[1]
return cbr
fit_params = []
for i in range(len(eval_sets)):
fit_params.append({
'eval_set': eval_sets[i], 'init_model': init_models[i],
'log_cout': sys.stdout, 'log_cerr': sys.stderr,
})
model = FreqaiMultiOutputClassifier(estimator=cbc)
thread_training = self.freqai_info.get('multitarget_parallel_training', False)
if thread_training:
model.n_jobs = y.shape[1]
model.fit(X=X, y=y, sample_weight=sample_weight, fit_params=fit_params)
return model