move dataframe converter to converter.py
This commit is contained in:
@@ -159,6 +159,7 @@ CONF_SCHEMA = {
|
||||
'ignore_buying_expired_candle_after': {'type': 'number'},
|
||||
'trading_mode': {'type': 'string', 'enum': TRADING_MODES},
|
||||
'margin_mode': {'type': 'string', 'enum': MARGIN_MODES},
|
||||
'convert_df_to_32bit': {'type': 'number', 'default': False},
|
||||
'liquidation_buffer': {'type': 'number', 'minimum': 0.0, 'maximum': 0.99},
|
||||
'backtest_breakdown': {
|
||||
'type': 'array',
|
||||
|
@@ -7,6 +7,7 @@ from datetime import datetime, timezone
|
||||
from operator import itemgetter
|
||||
from typing import Dict, List
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from pandas import DataFrame, to_datetime
|
||||
|
||||
@@ -313,3 +314,29 @@ def convert_ohlcv_format(
|
||||
if erase and convert_from != convert_to:
|
||||
logger.info(f"Deleting source data for {pair} / {timeframe}")
|
||||
src.ohlcv_purge(pair=pair, timeframe=timeframe, candle_type=candle_type)
|
||||
|
||||
|
||||
def reduce_dataframe_footprint(df: DataFrame) -> DataFrame:
|
||||
"""
|
||||
Ensure all values are float32 in the incoming dataframe.
|
||||
:param df: Dataframe to be converted to float/int 32s
|
||||
:return: Dataframe converted to float/int 32s
|
||||
"""
|
||||
|
||||
logger.debug(f"Memory usage of dataframe is "
|
||||
f"{df.memory_usage().sum() / 1024**2:.2f} MB")
|
||||
|
||||
df_dtypes = df.dtypes
|
||||
for column, dtype in df_dtypes.items():
|
||||
if column in ['open', 'high', 'low', 'close', 'volume']:
|
||||
continue
|
||||
if dtype == np.float64:
|
||||
df_dtypes[column] = np.float32
|
||||
elif dtype == np.int64:
|
||||
df_dtypes[column] = np.int32
|
||||
df = df.astype(df_dtypes)
|
||||
|
||||
logger.debug(f"Memory usage after optimization is: "
|
||||
f"{df.memory_usage().sum() / 1024**2:.2f} MB")
|
||||
|
||||
return df
|
||||
|
@@ -19,6 +19,7 @@ from sklearn.neighbors import NearestNeighbors
|
||||
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.constants import Config
|
||||
from freqtrade.data.converter import reduce_dataframe_footprint
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.exchange import timeframe_to_seconds
|
||||
from freqtrade.strategy.interface import IStrategy
|
||||
@@ -1275,8 +1276,8 @@ class FreqaiDataKitchen:
|
||||
|
||||
dataframe = self.remove_special_chars_from_feature_names(dataframe)
|
||||
|
||||
if self.freqai_config.get('convert_df_to_float32', False):
|
||||
dataframe = self.reduce_dataframe_footprint(dataframe)
|
||||
if self.config.get('convert_df_to_32bit', False):
|
||||
dataframe = reduce_dataframe_footprint(dataframe)
|
||||
|
||||
return dataframe
|
||||
|
||||
@@ -1492,25 +1493,3 @@ class FreqaiDataKitchen:
|
||||
dataframe.columns = dataframe.columns.str.replace(c, "")
|
||||
|
||||
return dataframe
|
||||
|
||||
def reduce_dataframe_footprint(self, df: DataFrame) -> DataFrame:
|
||||
"""
|
||||
Ensure all values are float32
|
||||
"""
|
||||
logger.debug(f"Memory usage of dataframe is "
|
||||
f"{df.memory_usage().sum() / 1024**2:.2f} MB")
|
||||
|
||||
df_dtypes = df.dtypes
|
||||
for column, dtype in df_dtypes.items():
|
||||
if column in ['open', 'high', 'low', 'close', 'volume']:
|
||||
continue
|
||||
if dtype == np.float64:
|
||||
df_dtypes[column] = np.float32
|
||||
elif dtype == np.int64:
|
||||
df_dtypes[column] = np.int32
|
||||
df = df.astype(df_dtypes)
|
||||
|
||||
logger.debug(f"Memory usage after optimization is: "
|
||||
f"{df.memory_usage().sum() / 1024**2:.2f} MB")
|
||||
|
||||
return df
|
||||
|
Reference in New Issue
Block a user