Fix constant PCA
This commit is contained in:
parent
62ca822597
commit
20fc521771
@ -206,7 +206,11 @@ class FreqaiDataKitchen:
|
||||
|
||||
drop_index = pd.isnull(filtered_df).any(axis=1) # get the rows that have NaNs,
|
||||
drop_index = drop_index.replace(True, 1).replace(False, 0) # pep8 requirement.
|
||||
ft_params = self.freqai_config["feature_parameters"]
|
||||
if (training_filter):
|
||||
if not ft_params.get(
|
||||
"principal_component_analysis", False
|
||||
):
|
||||
const_cols = list((filtered_df.nunique() == 1).loc[lambda x: x].index)
|
||||
if const_cols:
|
||||
filtered_df = filtered_df.filter(filtered_df.columns.difference(const_cols))
|
||||
@ -241,6 +245,9 @@ class FreqaiDataKitchen:
|
||||
self.data["filter_drop_index_training"] = drop_index
|
||||
|
||||
else:
|
||||
if not ft_params.get(
|
||||
"principal_component_analysis", False
|
||||
):
|
||||
filtered_df = self.check_pred_labels(filtered_df)
|
||||
# we are backtesting so we need to preserve row number to send back to strategy,
|
||||
# so now we use do_predict to avoid any prediction based on a NaN
|
||||
|
Loading…
Reference in New Issue
Block a user