keep model accessible in memory to avoid loading objects from disk during live/dry
This commit is contained in:
parent
67eb94c69d
commit
1fae6c9ef7
@ -50,8 +50,9 @@ class FreqaiDataKitchen:
|
||||
self.full_target_std: npt.ArrayLike = np.array([])
|
||||
self.model_path = Path()
|
||||
self.model_filename: str = ""
|
||||
|
||||
if not live:
|
||||
self.model_dictionary: Dict[Any, Any] = {}
|
||||
self.live = live
|
||||
if not self.live:
|
||||
self.full_timerange = self.create_fulltimerange(self.config["timerange"],
|
||||
self.freqai_config["train_period"]
|
||||
)
|
||||
@ -88,8 +89,8 @@ class FreqaiDataKitchen:
|
||||
|
||||
# Save the trained model
|
||||
dump(model, save_path / str(self.model_filename + "_model.joblib"))
|
||||
self.data["model_path"] = self.model_path
|
||||
self.data["model_filename"] = self.model_filename
|
||||
self.data["model_path"] = str(self.model_path)
|
||||
self.data["model_filename"] = str(self.model_filename)
|
||||
self.data["training_features_list"] = list(self.data_dictionary["train_features"].columns)
|
||||
# store the metadata
|
||||
with open(save_path / str(self.model_filename + "_metadata.json"), "w") as fp:
|
||||
@ -100,6 +101,9 @@ class FreqaiDataKitchen:
|
||||
save_path / str(self.model_filename + "_trained_df.pkl")
|
||||
)
|
||||
|
||||
if self.live:
|
||||
self.model_dictionary[self.model_filename] = model
|
||||
|
||||
return
|
||||
|
||||
def load_data(self) -> Any:
|
||||
@ -108,7 +112,6 @@ class FreqaiDataKitchen:
|
||||
:returns:
|
||||
:model: User trained model which can be inferenced for new predictions
|
||||
"""
|
||||
model = load(self.model_path / str(self.model_filename + "_model.joblib"))
|
||||
|
||||
with open(self.model_path / str(self.model_filename + "_metadata.json"), "r") as fp:
|
||||
self.data = json.load(fp)
|
||||
@ -118,8 +121,20 @@ class FreqaiDataKitchen:
|
||||
self.model_path / str(self.model_filename + "_trained_df.pkl")
|
||||
)
|
||||
|
||||
self.model_path = self.data["model_path"]
|
||||
self.model_path = Path(self.data["model_path"])
|
||||
self.model_filename = self.data["model_filename"]
|
||||
|
||||
# try to access model in memory instead of loading object from disk to save time
|
||||
if self.live and self.model_filename in self.model_dictionary:
|
||||
model = self.model_dictionary[self.model_filename]
|
||||
else:
|
||||
model = load(self.model_path / str(self.model_filename + "_model.joblib"))
|
||||
|
||||
assert model, (
|
||||
f"Unable to load model, ensure model exists at "
|
||||
f"{self.model_path} "
|
||||
)
|
||||
|
||||
if self.config["freqai"]["feature_parameters"]["principal_component_analysis"]:
|
||||
self.pca = pk.load(
|
||||
open(self.model_path / str(self.model_filename + "_pca_object.pkl"), "rb")
|
||||
@ -682,7 +697,8 @@ class FreqaiDataKitchen:
|
||||
for p in pairs:
|
||||
if metadata['pair'] in p:
|
||||
continue # dont repeat anything from whitelist
|
||||
corr_dataframes[p] = {}
|
||||
if p not in corr_dataframes:
|
||||
corr_dataframes[p] = {}
|
||||
corr_dataframes[p][tf] = load_pair_history(datadir=self.config['datadir'],
|
||||
timeframe=tf,
|
||||
pair=p, timerange=timerange)
|
||||
|
@ -59,6 +59,9 @@ class FreqaiExampleStrategy(IStrategy):
|
||||
informative_pairs.append((pair, tf))
|
||||
return informative_pairs
|
||||
|
||||
def bot_start(self):
|
||||
self.model = CustomModel(self.config)
|
||||
|
||||
def populate_any_indicators(self, pair, df, tf, informative=None, coin=""):
|
||||
"""
|
||||
Function designed to automatically generate, name and merge features
|
||||
@ -141,9 +144,6 @@ class FreqaiExampleStrategy(IStrategy):
|
||||
self.freqai_info = self.config["freqai"]
|
||||
self.pair = metadata['pair']
|
||||
|
||||
# the model is instantiated here
|
||||
self.model = CustomModel(self.config)
|
||||
|
||||
print("Populating indicators...")
|
||||
|
||||
# the following loops are necessary for building the features
|
||||
|
Loading…
Reference in New Issue
Block a user