diff --git a/freqtrade/freqai/data_drawer.py b/freqtrade/freqai/data_drawer.py index 14986d854..0e41655fe 100644 --- a/freqtrade/freqai/data_drawer.py +++ b/freqtrade/freqai/data_drawer.py @@ -74,8 +74,8 @@ class FreqaiDataDrawer: self.historic_predictions: Dict[str, DataFrame] = {} self.full_path = full_path self.historic_predictions_path = Path(self.full_path / "historic_predictions.pkl") - self.historic_predictions_bkp_path = Path( - self.full_path / "historic_predictions.backup.pkl") + self.historic_predictions_folder = Path(self.full_path / "historic_predictions") + self.historic_predictions_bkp_folder = Path(self.full_path / "historic_predictions_backup") self.pair_dictionary_path = Path(self.full_path / "pair_dictionary.json") self.global_metadata_path = Path(self.full_path / "global_metadata.json") self.metric_tracker_path = Path(self.full_path / "metric_tracker.json") @@ -163,11 +163,12 @@ class FreqaiDataDrawer: Locate and load a previously saved historic predictions. :return: bool - whether or not the drawer was located """ - exists = self.historic_predictions_path.is_file() + exists = self.historic_predictions_folder.exists() + convert = self.historic_predictions_path.is_file() + if exists: try: - with self.historic_predictions_path.open("rb") as fp: - self.historic_predictions = cloudpickle.load(fp) + self.load_historic_predictions_from_folder() logger.info( f"Found existing historic predictions at {self.full_path}, but beware " "that statistics may be inaccurate if the bot has been offline for " @@ -175,25 +176,54 @@ class FreqaiDataDrawer: ) except EOFError: logger.warning( - 'Historical prediction file was corrupted. Trying to load backup file.') - with self.historic_predictions_bkp_path.open("rb") as fp: - self.historic_predictions = cloudpickle.load(fp) - logger.warning('FreqAI successfully loaded the backup historical predictions file.') + 'Historical prediction files were corrupted. Trying to load backup files.') + self.load_historic_predictions_from_folder() + logger.warning('FreqAI successfully loaded the backup ' + 'historical predictions files.') + + elif not exists and convert: + logger.info("Converting your historic predictions pkl to parquet" + "to improve performance.") + with Path.open(self.historic_predictions_path, "rb") as fp: + self.historic_predictions = cloudpickle.load(fp) + self.save_historic_predictions_to_disk() + exists = True else: - logger.info("Could not find existing historic_predictions, starting from scratch") + logger.warning( + f"Follower could not find historic predictions at {self.full_path} " + "sending null values back to strategy" + ) return exists + def load_historic_predictions_from_folder(self): + """ + Try to build the historic_predictions dictionary from parquet + files in the historic_predictions_folder + """ + for file_path in self.historic_predictions_folder.glob("*.parquet"): + key = file_path.stem + key.replace("_", "/") + self.historic_predictions[key] = pd.read_parquet(file_path) + + return + def save_historic_predictions_to_disk(self): """ Save historic predictions pickle to disk """ - with self.historic_predictions_path.open("wb") as fp: - cloudpickle.dump(self.historic_predictions, fp, protocol=cloudpickle.DEFAULT_PROTOCOL) + + self.historic_predictions_folder.mkdir(parents=True, exist_ok=True) + for key, value in self.historic_predictions.items(): + key = key.replace("/", "_") + # pytest.set_trace() + filename = Path(self.historic_predictions_folder / f"{key}.parquet") + value.to_parquet(filename) # create a backup - shutil.copy(self.historic_predictions_path, self.historic_predictions_bkp_path) + shutil.copytree(self.historic_predictions_folder, + self.historic_predictions_bkp_folder, dirs_exist_ok=True) def save_metric_tracker_to_disk(self): """ @@ -675,7 +705,7 @@ class FreqaiDataDrawer: Returns timerange information based on historic predictions file :return: timerange calculated from saved live data """ - if not self.historic_predictions_path.is_file(): + if not self.historic_predictions_folder.exists(): raise OperationalException( 'Historic predictions not found. Historic predictions data is required ' 'to run backtest with the freqai-backtest-live-models option '