Move Backtesting to a class and add unit tests
This commit is contained in:
@@ -1,18 +1,16 @@
|
||||
# pragma pylint: disable=missing-docstring
|
||||
|
||||
import logging
|
||||
import json
|
||||
import os
|
||||
from typing import Optional, List, Dict
|
||||
from pandas import DataFrame
|
||||
import gzip
|
||||
from freqtrade.exchange import get_ticker_history
|
||||
from freqtrade.analyze import populate_indicators, parse_ticker_dataframe
|
||||
|
||||
from freqtrade import misc
|
||||
from freqtrade.logger import Logger
|
||||
from user_data.hyperopt_conf import hyperopt_optimize_conf
|
||||
import gzip
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
logger = Logger(name=__name__).get_logger()
|
||||
|
||||
|
||||
def trim_tickerlist(tickerlist, timerange):
|
||||
@@ -84,21 +82,13 @@ def load_data(datadir: str, ticker_interval: int, pairs: Optional[List[str]] = N
|
||||
return result
|
||||
|
||||
|
||||
def tickerdata_to_dataframe(data):
|
||||
preprocessed = preprocess(data)
|
||||
return preprocessed
|
||||
|
||||
|
||||
def preprocess(tickerdata: Dict[str, List]) -> Dict[str, DataFrame]:
|
||||
"""Creates a dataframe and populates indicators for given ticker data"""
|
||||
return {pair: populate_indicators(parse_ticker_dataframe(pair_data))
|
||||
for pair, pair_data in tickerdata.items()}
|
||||
|
||||
|
||||
def make_testdata_path(datadir: str) -> str:
|
||||
"""Return the path where testdata files are stored"""
|
||||
return datadir or os.path.abspath(os.path.join(os.path.dirname(__file__),
|
||||
'..', 'tests', 'testdata'))
|
||||
return datadir or os.path.abspath(
|
||||
os.path.join(
|
||||
os.path.dirname(__file__), '..', 'tests', 'testdata'
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
def download_pairs(datadir, pairs: List[str], ticker_interval: int) -> bool:
|
||||
@@ -115,11 +105,6 @@ def download_pairs(datadir, pairs: List[str], ticker_interval: int) -> bool:
|
||||
return True
|
||||
|
||||
|
||||
def file_dump_json(filename, data):
|
||||
with open(filename, "wt") as fp:
|
||||
json.dump(data, fp)
|
||||
|
||||
|
||||
# FIX: 20180110, suggest rename interval to tick_interval
|
||||
def download_backtesting_testdata(datadir: str, pair: str, interval: int = 5) -> bool:
|
||||
"""
|
||||
@@ -142,8 +127,8 @@ def download_backtesting_testdata(datadir: str, pair: str, interval: int = 5) ->
|
||||
))
|
||||
|
||||
if os.path.isfile(filename):
|
||||
with open(filename, "rt") as fp:
|
||||
data = json.load(fp)
|
||||
with open(filename, "rt") as file:
|
||||
data = json.load(file)
|
||||
logger.debug("Current Start: {}".format(data[1]['T']))
|
||||
logger.debug("Current End: {}".format(data[-1:][0]['T']))
|
||||
else:
|
||||
|
@@ -1,235 +1,321 @@
|
||||
# pragma pylint: disable=missing-docstring,W0212
|
||||
# pragma pylint: disable=missing-docstring, W0212, too-many-arguments
|
||||
|
||||
"""
|
||||
This module contains the backtesting logic
|
||||
"""
|
||||
|
||||
from typing import Dict, Tuple, Any
|
||||
import logging
|
||||
from typing import Dict, Tuple
|
||||
|
||||
import arrow
|
||||
from pandas import DataFrame, Series
|
||||
from tabulate import tabulate
|
||||
|
||||
import freqtrade.misc as misc
|
||||
import freqtrade.optimize as optimize
|
||||
from freqtrade import exchange
|
||||
from freqtrade.analyze import populate_buy_trend, populate_sell_trend
|
||||
from freqtrade.arguments import Arguments
|
||||
from freqtrade.exchange import Bittrex
|
||||
from freqtrade.main import should_sell
|
||||
from freqtrade.configuration import Configuration
|
||||
from freqtrade import exchange
|
||||
from freqtrade.analyze import Analyze
|
||||
from freqtrade.logger import Logger
|
||||
from freqtrade.misc import file_dump_json
|
||||
from freqtrade.persistence import Trade
|
||||
from freqtrade.strategy.strategy import Strategy
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def get_timeframe(data: Dict[str, DataFrame]) -> Tuple[arrow.Arrow, arrow.Arrow]:
|
||||
class Backtesting(object):
|
||||
"""
|
||||
Get the maximum timeframe for the given backtest data
|
||||
:param data: dictionary with preprocessed backtesting data
|
||||
:return: tuple containing min_date, max_date
|
||||
"""
|
||||
all_dates = Series([])
|
||||
for pair_data in data.values():
|
||||
all_dates = all_dates.append(pair_data['date'])
|
||||
all_dates.sort_values(inplace=True)
|
||||
return arrow.get(all_dates.iloc[0]), arrow.get(all_dates.iloc[-1])
|
||||
Backtesting class, this class contains all the logic to run a backtest
|
||||
|
||||
To run a backtest:
|
||||
backtesting = Backtesting(config)
|
||||
backtesting.start()
|
||||
"""
|
||||
def __init__(self, config: Dict[str, Any]) -> None:
|
||||
self.logging = Logger(name=__name__)
|
||||
self.logger = self.logging.get_logger()
|
||||
|
||||
def generate_text_table(
|
||||
data: Dict[str, Dict], results: DataFrame, stake_currency, ticker_interval) -> str:
|
||||
"""
|
||||
Generates and returns a text table for the given backtest data and the results dataframe
|
||||
:return: pretty printed table with tabulate as str
|
||||
"""
|
||||
floatfmt = ('s', 'd', '.2f', '.8f', '.1f')
|
||||
tabular_data = []
|
||||
headers = ['pair', 'buy count', 'avg profit %',
|
||||
'total profit ' + stake_currency, 'avg duration', 'profit', 'loss']
|
||||
for pair in data:
|
||||
result = results[results.currency == pair]
|
||||
self.config = config
|
||||
self.analyze = None
|
||||
self.ticker_interval = None
|
||||
self.tickerdata_to_dataframe = None
|
||||
self.populate_buy_trend = None
|
||||
self.populate_sell_trend = None
|
||||
self._init()
|
||||
|
||||
def _init(self) -> None:
|
||||
"""
|
||||
Init objects required for backtesting
|
||||
:return: None
|
||||
"""
|
||||
self.analyze = Analyze(self.config)
|
||||
self.ticker_interval = self.analyze.strategy.ticker_interval
|
||||
self.tickerdata_to_dataframe = self.analyze.tickerdata_to_dataframe
|
||||
self.populate_buy_trend = self.analyze.populate_buy_trend
|
||||
self.populate_sell_trend = self.analyze.populate_sell_trend
|
||||
exchange._API = Bittrex({'key': '', 'secret': ''})
|
||||
|
||||
@staticmethod
|
||||
def get_timeframe(data: Dict[str, DataFrame]) -> Tuple[arrow.Arrow, arrow.Arrow]:
|
||||
"""
|
||||
Get the maximum timeframe for the given backtest data
|
||||
:param data: dictionary with preprocessed backtesting data
|
||||
:return: tuple containing min_date, max_date
|
||||
"""
|
||||
all_dates = Series([])
|
||||
for pair_data in data.values():
|
||||
all_dates = all_dates.append(pair_data['date'])
|
||||
all_dates.sort_values(inplace=True)
|
||||
return arrow.get(all_dates.iloc[0]), arrow.get(all_dates.iloc[-1])
|
||||
|
||||
def _generate_text_table(self, data: Dict[str, Dict], results: DataFrame) -> str:
|
||||
"""
|
||||
Generates and returns a text table for the given backtest data and the results dataframe
|
||||
:return: pretty printed table with tabulate as str
|
||||
"""
|
||||
stake_currency = self.config.get('stake_currency')
|
||||
ticker_interval = self.ticker_interval
|
||||
|
||||
floatfmt = ('s', 'd', '.2f', '.8f', '.1f')
|
||||
tabular_data = []
|
||||
headers = ['pair', 'buy count', 'avg profit %',
|
||||
'total profit ' + stake_currency, 'avg duration', 'profit', 'loss']
|
||||
for pair in data:
|
||||
result = results[results.currency == pair]
|
||||
tabular_data.append([
|
||||
pair,
|
||||
len(result.index),
|
||||
result.profit_percent.mean() * 100.0,
|
||||
result.profit_BTC.sum(),
|
||||
result.duration.mean() * ticker_interval,
|
||||
len(result[result.profit_BTC > 0]),
|
||||
len(result[result.profit_BTC < 0])
|
||||
])
|
||||
|
||||
# Append Total
|
||||
tabular_data.append([
|
||||
pair,
|
||||
len(result.index),
|
||||
result.profit_percent.mean() * 100.0,
|
||||
result.profit_BTC.sum(),
|
||||
result.duration.mean() * ticker_interval,
|
||||
len(result[result.profit_BTC > 0]),
|
||||
len(result[result.profit_BTC < 0])
|
||||
'TOTAL',
|
||||
len(results.index),
|
||||
results.profit_percent.mean() * 100.0,
|
||||
results.profit_BTC.sum(),
|
||||
results.duration.mean() * ticker_interval,
|
||||
len(results[results.profit_BTC > 0]),
|
||||
len(results[results.profit_BTC < 0])
|
||||
])
|
||||
return tabulate(tabular_data, headers=headers, floatfmt=floatfmt)
|
||||
|
||||
# Append Total
|
||||
tabular_data.append([
|
||||
'TOTAL',
|
||||
len(results.index),
|
||||
results.profit_percent.mean() * 100.0,
|
||||
results.profit_BTC.sum(),
|
||||
results.duration.mean() * ticker_interval,
|
||||
len(results[results.profit_BTC > 0]),
|
||||
len(results[results.profit_BTC < 0])
|
||||
])
|
||||
return tabulate(tabular_data, headers=headers, floatfmt=floatfmt)
|
||||
def _get_sell_trade_entry(self, pair, row, buy_subset, ticker, trade_count_lock, args):
|
||||
stake_amount = args['stake_amount']
|
||||
max_open_trades = args.get('max_open_trades', 0)
|
||||
trade = Trade(
|
||||
open_rate=row.close,
|
||||
open_date=row.date,
|
||||
stake_amount=stake_amount,
|
||||
amount=stake_amount / row.open,
|
||||
fee=exchange.get_fee()
|
||||
)
|
||||
|
||||
|
||||
def get_sell_trade_entry(pair, row, buy_subset, ticker, trade_count_lock, args):
|
||||
stake_amount = args['stake_amount']
|
||||
max_open_trades = args.get('max_open_trades', 0)
|
||||
trade = Trade(open_rate=row.close,
|
||||
open_date=row.date,
|
||||
stake_amount=stake_amount,
|
||||
amount=stake_amount / row.open,
|
||||
fee=exchange.get_fee()
|
||||
)
|
||||
|
||||
# calculate win/lose forwards from buy point
|
||||
sell_subset = ticker[ticker.date > row.date][['close', 'date', 'sell']]
|
||||
for row2 in sell_subset.itertuples(index=True):
|
||||
if max_open_trades > 0:
|
||||
# Increase trade_count_lock for every iteration
|
||||
trade_count_lock[row2.date] = trade_count_lock.get(row2.date, 0) + 1
|
||||
|
||||
# Buy is on is in the buy_subset there is a row that matches the date
|
||||
# of the sell event
|
||||
buy_signal = not buy_subset[buy_subset.date == row2.date].empty
|
||||
if(should_sell(trade, row2.close, row2.date, buy_signal, row2.sell)):
|
||||
return row2, (pair,
|
||||
trade.calc_profit_percent(rate=row2.close),
|
||||
trade.calc_profit(rate=row2.close),
|
||||
row2.Index - row.Index
|
||||
), row2.date
|
||||
return None
|
||||
|
||||
|
||||
def backtest(args) -> DataFrame:
|
||||
"""
|
||||
Implements backtesting functionality
|
||||
:param args: a dict containing:
|
||||
stake_amount: btc amount to use for each trade
|
||||
processed: a processed dictionary with format {pair, data}
|
||||
max_open_trades: maximum number of concurrent trades (default: 0, disabled)
|
||||
realistic: do we try to simulate realistic trades? (default: True)
|
||||
sell_profit_only: sell if profit only
|
||||
use_sell_signal: act on sell-signal
|
||||
stoploss: use stoploss
|
||||
:return: DataFrame
|
||||
"""
|
||||
processed = args['processed']
|
||||
max_open_trades = args.get('max_open_trades', 0)
|
||||
realistic = args.get('realistic', True)
|
||||
record = args.get('record', None)
|
||||
records = []
|
||||
trades = []
|
||||
trade_count_lock: dict = {}
|
||||
exchange._API = Bittrex({'key': '', 'secret': ''})
|
||||
for pair, pair_data in processed.items():
|
||||
pair_data['buy'], pair_data['sell'] = 0, 0
|
||||
ticker = populate_sell_trend(populate_buy_trend(pair_data))
|
||||
# for each buy point
|
||||
lock_pair_until = None
|
||||
headers = ['buy', 'open', 'close', 'date', 'sell']
|
||||
buy_subset = ticker[(ticker.buy == 1) & (ticker.sell == 0)][headers]
|
||||
for row in buy_subset.itertuples(index=True):
|
||||
if realistic:
|
||||
if lock_pair_until is not None and row.date <= lock_pair_until:
|
||||
continue
|
||||
# calculate win/lose forwards from buy point
|
||||
sell_subset = ticker[ticker.date > row.date][['close', 'date', 'sell']]
|
||||
for row2 in sell_subset.itertuples(index=True):
|
||||
if max_open_trades > 0:
|
||||
# Check if max_open_trades has already been reached for the given date
|
||||
if not trade_count_lock.get(row.date, 0) < max_open_trades:
|
||||
continue
|
||||
# Increase trade_count_lock for every iteration
|
||||
trade_count_lock[row2.date] = trade_count_lock.get(row2.date, 0) + 1
|
||||
|
||||
if max_open_trades > 0:
|
||||
# Increase lock
|
||||
trade_count_lock[row.date] = trade_count_lock.get(row.date, 0) + 1
|
||||
# Buy is on is in the buy_subset there is a row that matches the date
|
||||
# of the sell event
|
||||
buy_signal = not buy_subset[buy_subset.date == row2.date].empty
|
||||
if(
|
||||
self.analyze.should_sell(
|
||||
trade=trade,
|
||||
rate=row2.close,
|
||||
date=row2.date,
|
||||
buy=buy_signal,
|
||||
sell=row2.sell
|
||||
)
|
||||
):
|
||||
return \
|
||||
row2, \
|
||||
(
|
||||
pair,
|
||||
trade.calc_profit_percent(rate=row2.close),
|
||||
trade.calc_profit(rate=row2.close),
|
||||
row2.Index - row.Index
|
||||
),\
|
||||
row2.date
|
||||
return None
|
||||
|
||||
ret = get_sell_trade_entry(pair, row, buy_subset, ticker,
|
||||
trade_count_lock, args)
|
||||
if ret:
|
||||
row2, trade_entry, next_date = ret
|
||||
lock_pair_until = next_date
|
||||
trades.append(trade_entry)
|
||||
if record:
|
||||
# Note, need to be json.dump friendly
|
||||
# record a tuple of pair, current_profit_percent,
|
||||
# entry-date, duration
|
||||
records.append((pair, trade_entry[1],
|
||||
row.date.strftime('%s'),
|
||||
row2.date.strftime('%s'),
|
||||
row.Index, trade_entry[3]))
|
||||
# For now export inside backtest(), maybe change so that backtest()
|
||||
# returns a tuple like: (dataframe, records, logs, etc)
|
||||
if record and record.find('trades') >= 0:
|
||||
logger.info('Dumping backtest results')
|
||||
misc.file_dump_json('backtest-result.json', records)
|
||||
labels = ['currency', 'profit_percent', 'profit_BTC', 'duration']
|
||||
return DataFrame.from_records(trades, columns=labels)
|
||||
def backtest(self, args) -> DataFrame:
|
||||
"""
|
||||
Implements backtesting functionality
|
||||
|
||||
NOTE: This method is used by Hyperopt at each iteration. Please keep it optimized.
|
||||
Of course try to not have ugly code. By some accessor are sometime slower than functions.
|
||||
Avoid, logging on this method
|
||||
|
||||
:param args: a dict containing:
|
||||
stake_amount: btc amount to use for each trade
|
||||
processed: a processed dictionary with format {pair, data}
|
||||
max_open_trades: maximum number of concurrent trades (default: 0, disabled)
|
||||
realistic: do we try to simulate realistic trades? (default: True)
|
||||
sell_profit_only: sell if profit only
|
||||
use_sell_signal: act on sell-signal
|
||||
stoploss: use stoploss
|
||||
:return: DataFrame
|
||||
"""
|
||||
processed = args['processed']
|
||||
max_open_trades = args.get('max_open_trades', 0)
|
||||
realistic = args.get('realistic', True)
|
||||
record = args.get('record', None)
|
||||
records = []
|
||||
trades = []
|
||||
trade_count_lock = {}
|
||||
for pair, pair_data in processed.items():
|
||||
pair_data['buy'], pair_data['sell'] = 0, 0
|
||||
ticker = self.populate_sell_trend(
|
||||
self.populate_buy_trend(pair_data)
|
||||
)
|
||||
# for each buy point
|
||||
lock_pair_until = None
|
||||
headers = ['buy', 'open', 'close', 'date', 'sell']
|
||||
buy_subset = ticker[(ticker.buy == 1) & (ticker.sell == 0)][headers]
|
||||
for row in buy_subset.itertuples(index=True):
|
||||
if realistic:
|
||||
if lock_pair_until is not None and row.date <= lock_pair_until:
|
||||
continue
|
||||
if max_open_trades > 0:
|
||||
# Check if max_open_trades has already been reached for the given date
|
||||
if not trade_count_lock.get(row.date, 0) < max_open_trades:
|
||||
continue
|
||||
|
||||
if max_open_trades > 0:
|
||||
# Increase lock
|
||||
trade_count_lock[row.date] = trade_count_lock.get(row.date, 0) + 1
|
||||
|
||||
ret = self._get_sell_trade_entry(
|
||||
pair=pair,
|
||||
row=row,
|
||||
buy_subset=buy_subset,
|
||||
ticker=ticker,
|
||||
trade_count_lock=trade_count_lock,
|
||||
args=args
|
||||
)
|
||||
|
||||
if ret:
|
||||
row2, trade_entry, next_date = ret
|
||||
lock_pair_until = next_date
|
||||
trades.append(trade_entry)
|
||||
if record:
|
||||
# Note, need to be json.dump friendly
|
||||
# record a tuple of pair, current_profit_percent,
|
||||
# entry-date, duration
|
||||
records.append((pair, trade_entry[1],
|
||||
row.date.strftime('%s'),
|
||||
row2.date.strftime('%s'),
|
||||
row.Index, trade_entry[3]))
|
||||
# For now export inside backtest(), maybe change so that backtest()
|
||||
# returns a tuple like: (dataframe, records, logs, etc)
|
||||
if record and record.find('trades') >= 0:
|
||||
self.logger.info('Dumping backtest results')
|
||||
file_dump_json('backtest-result.json', records)
|
||||
labels = ['currency', 'profit_percent', 'profit_BTC', 'duration']
|
||||
return DataFrame.from_records(trades, columns=labels)
|
||||
|
||||
def start(self) -> None:
|
||||
"""
|
||||
Run a backtesting end-to-end
|
||||
:return: None
|
||||
"""
|
||||
data = {}
|
||||
pairs = self.config['exchange']['pair_whitelist']
|
||||
|
||||
if self.config.get('live'):
|
||||
self.logger.info('Downloading data for all pairs in whitelist ...')
|
||||
for pair in pairs:
|
||||
data[pair] = exchange.get_ticker_history(pair, self.ticker_interval)
|
||||
else:
|
||||
self.logger.info('Using local backtesting data (using whitelist in given config) ...')
|
||||
self.logger.info('Using stake_currency: %s ...', self.config['stake_currency'])
|
||||
self.logger.info('Using stake_amount: %s ...', self.config['stake_amount'])
|
||||
|
||||
timerange = Arguments.parse_timerange(self.config.get('timerange'))
|
||||
data = optimize.load_data(
|
||||
self.config['datadir'],
|
||||
pairs=pairs,
|
||||
ticker_interval=self.ticker_interval,
|
||||
refresh_pairs=self.config.get('refresh_pairs', False),
|
||||
timerange=timerange
|
||||
)
|
||||
|
||||
max_open_trades = self.config.get('max_open_trades', 0)
|
||||
|
||||
preprocessed = self.tickerdata_to_dataframe(data)
|
||||
# Print timeframe
|
||||
min_date, max_date = self.get_timeframe(preprocessed)
|
||||
self.logger.info(
|
||||
'Measuring data from %s up to %s (%s days)..',
|
||||
min_date.isoformat(),
|
||||
max_date.isoformat(),
|
||||
(max_date - min_date).days
|
||||
)
|
||||
|
||||
# Execute backtest and print results
|
||||
sell_profit_only = self.config.get('experimental', {}).get('sell_profit_only', False)
|
||||
use_sell_signal = self.config.get('experimental', {}).get('use_sell_signal', False)
|
||||
results = self.backtest(
|
||||
{
|
||||
'stake_amount': self.config.get('stake_amount'),
|
||||
'processed': preprocessed,
|
||||
'max_open_trades': max_open_trades,
|
||||
'realistic': self.config.get('realistic_simulation', False),
|
||||
'sell_profit_only': sell_profit_only,
|
||||
'use_sell_signal': use_sell_signal,
|
||||
'stoploss': self.analyze.strategy.stoploss,
|
||||
'record': self.config.get('export')
|
||||
}
|
||||
)
|
||||
|
||||
self.logging.set_format('%(message)s')
|
||||
self.logger.info(
|
||||
'\n==================================== '
|
||||
'BACKTESTING REPORT'
|
||||
' ====================================\n'
|
||||
'%s',
|
||||
self._generate_text_table(
|
||||
data,
|
||||
results
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
def start(args):
|
||||
def setup_configuration(args) -> Dict[str, Any]:
|
||||
"""
|
||||
Prepare the configuration for the backtesting
|
||||
:param args: Cli args from Arguments()
|
||||
:return: Configuration
|
||||
"""
|
||||
configuration = Configuration(args)
|
||||
config = configuration.get_config()
|
||||
|
||||
# Ensure we do not use Exchange credentials
|
||||
config['exchange']['key'] = ''
|
||||
config['exchange']['secret'] = ''
|
||||
|
||||
return config
|
||||
|
||||
|
||||
def start(args) -> None:
|
||||
"""
|
||||
Start Backtesting script
|
||||
:param args: Cli args from Arguments()
|
||||
:return: None
|
||||
"""
|
||||
|
||||
# Initialize logger
|
||||
logging.basicConfig(
|
||||
level=args.loglevel,
|
||||
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
||||
)
|
||||
logger = Logger(name=__name__).get_logger()
|
||||
logger.info('Starting freqtrade in Backtesting mode')
|
||||
|
||||
exchange._API = Bittrex({'key': '', 'secret': ''})
|
||||
# Initialize configuration
|
||||
config = setup_configuration(args)
|
||||
|
||||
logger.info('Using config: %s ...', args.config)
|
||||
config = misc.load_config(args.config)
|
||||
|
||||
# If -i/--ticker-interval is use we override the configuration parameter
|
||||
# (that will override the strategy configuration)
|
||||
if args.ticker_interval:
|
||||
config.update({'ticker_interval': args.ticker_interval})
|
||||
|
||||
# init the strategy to use
|
||||
config.update({'strategy': args.strategy})
|
||||
strategy = Strategy()
|
||||
strategy.init(config)
|
||||
|
||||
logger.info('Using ticker_interval: %d ...', strategy.ticker_interval)
|
||||
|
||||
data = {}
|
||||
pairs = config['exchange']['pair_whitelist']
|
||||
if args.live:
|
||||
logger.info('Downloading data for all pairs in whitelist ...')
|
||||
for pair in pairs:
|
||||
data[pair] = exchange.get_ticker_history(pair, strategy.ticker_interval)
|
||||
else:
|
||||
logger.info('Using local backtesting data (using whitelist in given config) ...')
|
||||
logger.info('Using stake_currency: %s ...', config['stake_currency'])
|
||||
logger.info('Using stake_amount: %s ...', config['stake_amount'])
|
||||
|
||||
timerange = misc.parse_timerange(args.timerange)
|
||||
data = optimize.load_data(args.datadir,
|
||||
pairs=pairs,
|
||||
ticker_interval=strategy.ticker_interval,
|
||||
refresh_pairs=args.refresh_pairs,
|
||||
timerange=timerange)
|
||||
max_open_trades = 0
|
||||
if args.realistic_simulation:
|
||||
logger.info('Using max_open_trades: %s ...', config['max_open_trades'])
|
||||
max_open_trades = config['max_open_trades']
|
||||
|
||||
# Monkey patch config
|
||||
from freqtrade import main
|
||||
main._CONF = config
|
||||
|
||||
preprocessed = optimize.tickerdata_to_dataframe(data)
|
||||
# Print timeframe
|
||||
min_date, max_date = get_timeframe(preprocessed)
|
||||
logger.info('Measuring data from %s up to %s (%s days)..',
|
||||
min_date.isoformat(),
|
||||
max_date.isoformat(),
|
||||
(max_date-min_date).days)
|
||||
# Execute backtest and print results
|
||||
sell_profit_only = config.get('experimental', {}).get('sell_profit_only', False)
|
||||
use_sell_signal = config.get('experimental', {}).get('use_sell_signal', False)
|
||||
results = backtest({'stake_amount': config['stake_amount'],
|
||||
'processed': preprocessed,
|
||||
'max_open_trades': max_open_trades,
|
||||
'realistic': args.realistic_simulation,
|
||||
'sell_profit_only': sell_profit_only,
|
||||
'use_sell_signal': use_sell_signal,
|
||||
'stoploss': strategy.stoploss,
|
||||
'record': args.export
|
||||
})
|
||||
logger.info(
|
||||
'\n==================================== BACKTESTING REPORT ====================================\n%s', # noqa
|
||||
generate_text_table(data, results, config['stake_currency'], strategy.ticker_interval)
|
||||
)
|
||||
# Initialize backtesting object
|
||||
backtesting = Backtesting(config)
|
||||
backtesting.start()
|
||||
|
Reference in New Issue
Block a user