use one iteration on all test and train data for evaluation
This commit is contained in:
@@ -39,7 +39,7 @@ class PyTorchClassifierMultiTarget(BasePyTorchModel):
|
||||
self.max_iters = model_training_parameters.get("max_iters", 100)
|
||||
self.batch_size = model_training_parameters.get("batch_size", 64)
|
||||
self.learning_rate = model_training_parameters.get("learning_rate", 3e-4)
|
||||
self.eval_iters = model_training_parameters.get("eval_iters", 10)
|
||||
self.max_n_eval_batches = model_training_parameters.get("max_n_eval_batches", None)
|
||||
self.class_name_to_index = None
|
||||
self.index_to_class_name = None
|
||||
|
||||
@@ -79,7 +79,7 @@ class PyTorchClassifierMultiTarget(BasePyTorchModel):
|
||||
device=self.device,
|
||||
batch_size=self.batch_size,
|
||||
max_iters=self.max_iters,
|
||||
eval_iters=self.eval_iters,
|
||||
max_n_eval_batches=self.max_n_eval_batches,
|
||||
init_model=init_model
|
||||
)
|
||||
trainer.fit(data_dictionary)
|
||||
|
Reference in New Issue
Block a user