Merge pull request #2624 from freqtrade/backtest_refactor

handle and document ROI=-1
This commit is contained in:
hroff-1902 2019-12-14 23:11:36 +03:00 committed by GitHub
commit 1cc174c007
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 118 additions and 25 deletions

View File

@ -194,7 +194,10 @@ Since backtesting lacks some detailed information about what happens within a ca
- Buys happen at open-price
- Sell signal sells happen at open-price of the following candle
- Low happens before high for stoploss, protecting capital first.
- ROI sells are compared to high - but the ROI value is used (e.g. ROI = 2%, high=5% - so the sell will be at 2%)
- ROI
- sells are compared to high - but the ROI value is used (e.g. ROI = 2%, high=5% - so the sell will be at 2%)
- sells are never "below the candle", so a ROI of 2% may result in a sell at 2.4% if low was at 2.4% profit
- Forcesells caused by `<N>=-1` ROI entries use low as sell value, unless N falls on the candle open (e.g. `120: -1` for 1h candles)
- Stoploss sells happen exactly at stoploss price, even if low was lower
- Trailing stoploss
- High happens first - adjusting stoploss

View File

@ -169,6 +169,9 @@ This parameter can be set in either Strategy or Configuration file. If you use i
`minimal_roi` value from the strategy file.
If it is not set in either Strategy or Configuration, a default of 1000% `{"0": 10}` is used, and minimal roi is disabled unless your trade generates 1000% profit.
!!! Note "Special case to forcesell after a specific time"
A special case presents using `"<N>": -1` as ROI. This forces the bot to sell a trade after N Minutes, no matter if it's positive or negative, so represents a time-limited force-sell.
### Understand stoploss
Go to the [stoploss documentation](stoploss.md) for more details.

View File

@ -261,6 +261,45 @@ class Backtesting:
ticker[pair] = [x for x in ticker_data.itertuples()]
return ticker
def _get_close_rate(self, sell_row, trade: Trade, sell, trade_dur) -> float:
"""
Get close rate for backtesting result
"""
# Special handling if high or low hit STOP_LOSS or ROI
if sell.sell_type in (SellType.STOP_LOSS, SellType.TRAILING_STOP_LOSS):
# Set close_rate to stoploss
return trade.stop_loss
elif sell.sell_type == (SellType.ROI):
roi_entry, roi = self.strategy.min_roi_reached_entry(trade_dur)
if roi is not None:
if roi == -1 and roi_entry % self.timeframe_mins == 0:
# When forceselling with ROI=-1, the roi time will always be equal to trade_dur.
# If that entry is a multiple of the timeframe (so on candle open)
# - we'll use open instead of close
return sell_row.open
# - (Expected abs profit + open_rate + open_fee) / (fee_close -1)
close_rate = - (trade.open_rate * roi + trade.open_rate *
(1 + trade.fee_open)) / (trade.fee_close - 1)
if (trade_dur > 0 and trade_dur == roi_entry
and roi_entry % self.timeframe_mins == 0
and sell_row.open > close_rate):
# new ROI entry came into effect.
# use Open rate if open_rate > calculated sell rate
return sell_row.open
# Use the maximum between close_rate and low as we
# cannot sell outside of a candle.
# Applies when a new ROI setting comes in place and the whole candle is above that.
return max(close_rate, sell_row.low)
else:
# This should not be reached...
return sell_row.open
else:
return sell_row.open
def _get_sell_trade_entry(
self, pair: str, buy_row: DataFrame,
partial_ticker: List, trade_count_lock: Dict,
@ -287,26 +326,7 @@ class Backtesting:
sell_row.sell, low=sell_row.low, high=sell_row.high)
if sell.sell_flag:
trade_dur = int((sell_row.date - buy_row.date).total_seconds() // 60)
# Special handling if high or low hit STOP_LOSS or ROI
if sell.sell_type in (SellType.STOP_LOSS, SellType.TRAILING_STOP_LOSS):
# Set close_rate to stoploss
closerate = trade.stop_loss
elif sell.sell_type == (SellType.ROI):
roi = self.strategy.min_roi_reached_entry(trade_dur)
if roi is not None:
# - (Expected abs profit + open_rate + open_fee) / (fee_close -1)
closerate = - (trade.open_rate * roi + trade.open_rate *
(1 + trade.fee_open)) / (trade.fee_close - 1)
# Use the maximum between closerate and low as we
# cannot sell outside of a candle.
# Applies when using {"xx": -1} as roi to force sells after xx minutes
closerate = max(closerate, sell_row.low)
else:
# This should not be reached...
closerate = sell_row.open
else:
closerate = sell_row.open
closerate = self._get_close_rate(sell_row, trade, sell, trade_dur)
return BacktestResult(pair=pair,
profit_percent=trade.calc_profit_percent(rate=closerate),

View File

@ -394,7 +394,7 @@ class IStrategy(ABC):
return SellCheckTuple(sell_flag=False, sell_type=SellType.NONE)
def min_roi_reached_entry(self, trade_dur: int) -> Optional[float]:
def min_roi_reached_entry(self, trade_dur: int) -> Tuple[Optional[int], Optional[float]]:
"""
Based on trade duration defines the ROI entry that may have been reached.
:param trade_dur: trade duration in minutes
@ -403,9 +403,9 @@ class IStrategy(ABC):
# Get highest entry in ROI dict where key <= trade-duration
roi_list = list(filter(lambda x: x <= trade_dur, self.minimal_roi.keys()))
if not roi_list:
return None
return None, None
roi_entry = max(roi_list)
return self.minimal_roi[roi_entry]
return roi_entry, self.minimal_roi[roi_entry]
def min_roi_reached(self, trade: Trade, current_profit: float, current_time: datetime) -> bool:
"""
@ -415,7 +415,7 @@ class IStrategy(ABC):
"""
# Check if time matches and current rate is above threshold
trade_dur = int((current_time.timestamp() - trade.open_date.timestamp()) // 60)
roi = self.min_roi_reached_entry(trade_dur)
_, roi = self.min_roi_reached_entry(trade_dur)
if roi is None:
return False
else:

View File

@ -265,6 +265,69 @@ tc16 = BTContainer(data=[
trades=[BTrade(sell_reason=SellType.ROI, open_tick=1, close_tick=3)]
)
# Test 17: Buy, hold for 120 mins, then forcesell using roi=-1
# Causes negative profit even though sell-reason is ROI.
# stop-loss: 10%, ROI: 10% (should not apply), -100% after 100 minutes (limits trade duration)
# Uses open as sell-rate (special case) - since the roi-time is a multiple of the ticker interval.
tc17 = BTContainer(data=[
# D O H L C V B S
[0, 5000, 5025, 4975, 4987, 6172, 1, 0],
[1, 5000, 5025, 4975, 4987, 6172, 0, 0],
[2, 4987, 5300, 4950, 5050, 6172, 0, 0],
[3, 4980, 5000, 4940, 4962, 6172, 0, 0], # ForceSell on ROI (roi=-1)
[4, 4962, 4987, 4972, 4950, 6172, 0, 0],
[5, 4950, 4975, 4925, 4950, 6172, 0, 0]],
stop_loss=-0.10, roi={"0": 0.10, "120": -1}, profit_perc=-0.004,
trades=[BTrade(sell_reason=SellType.ROI, open_tick=1, close_tick=3)]
)
# Test 18: Buy, hold for 120 mins, then drop ROI to 1%, causing a sell in candle 3.
# stop-loss: 10%, ROI: 10% (should not apply), -100% after 100 minutes (limits trade duration)
# uses open_rate as sell-price
tc18 = BTContainer(data=[
# D O H L C V B S
[0, 5000, 5025, 4975, 4987, 6172, 1, 0],
[1, 5000, 5025, 4975, 4987, 6172, 0, 0],
[2, 4987, 5300, 4950, 5200, 6172, 0, 0],
[3, 5200, 5220, 4940, 4962, 6172, 0, 0], # Sell on ROI (sells on open)
[4, 4962, 4987, 4972, 4950, 6172, 0, 0],
[5, 4950, 4975, 4925, 4950, 6172, 0, 0]],
stop_loss=-0.10, roi={"0": 0.10, "120": 0.01}, profit_perc=0.04,
trades=[BTrade(sell_reason=SellType.ROI, open_tick=1, close_tick=3)]
)
# Test 19: Buy, hold for 119 mins, then drop ROI to 1%, causing a sell in candle 3.
# stop-loss: 10%, ROI: 10% (should not apply), -100% after 100 minutes (limits trade duration)
# uses calculated ROI (1%) as sell rate, otherwise identical to tc18
tc19 = BTContainer(data=[
# D O H L C V B S
[0, 5000, 5025, 4975, 4987, 6172, 1, 0],
[1, 5000, 5025, 4975, 4987, 6172, 0, 0],
[2, 4987, 5300, 4950, 5200, 6172, 0, 0],
[3, 5000, 5300, 4940, 4962, 6172, 0, 0], # Sell on ROI
[4, 4962, 4987, 4972, 4950, 6172, 0, 0],
[5, 4550, 4975, 4925, 4950, 6172, 0, 0]],
stop_loss=-0.10, roi={"0": 0.10, "120": 0.01}, profit_perc=0.01,
trades=[BTrade(sell_reason=SellType.ROI, open_tick=1, close_tick=3)]
)
# Test 20: Buy, hold for 119 mins, then drop ROI to 1%, causing a sell in candle 3.
# stop-loss: 10%, ROI: 10% (should not apply), -100% after 100 minutes (limits trade duration)
# uses calculated ROI (1%) as sell rate, otherwise identical to tc18
tc20 = BTContainer(data=[
# D O H L C V B S
[0, 5000, 5025, 4975, 4987, 6172, 1, 0],
[1, 5000, 5025, 4975, 4987, 6172, 0, 0],
[2, 4987, 5300, 4950, 5200, 6172, 0, 0],
[3, 5200, 5300, 4940, 4962, 6172, 0, 0], # Sell on ROI
[4, 4962, 4987, 4972, 4950, 6172, 0, 0],
[5, 4550, 4975, 4925, 4950, 6172, 0, 0]],
stop_loss=-0.10, roi={"0": 0.10, "119": 0.01}, profit_perc=0.01,
trades=[BTrade(sell_reason=SellType.ROI, open_tick=1, close_tick=3)]
)
TESTS = [
tc0,
tc1,
@ -283,6 +346,10 @@ TESTS = [
tc14,
tc15,
tc16,
tc17,
tc18,
tc19,
tc20,
]