simplify plot_feature_importance call

This commit is contained in:
initrv 2022-09-17 18:53:43 +03:00
parent 86aa875bc9
commit 1c92734f39
2 changed files with 20 additions and 29 deletions

View File

@ -556,14 +556,6 @@ class IFreqaiModel(ABC):
model = self.train(unfiltered_dataframe, pair, dk)
if self.freqai_info["feature_parameters"].get("plot_feature_importance", False):
plot_feature_importance(
model=model,
feature_names=dk.training_features_list,
pair=pair,
train_dir=dk.data_path
)
self.dd.pair_dict[pair]["trained_timestamp"] = new_trained_timerange.stopts
dk.set_new_model_names(pair, new_trained_timerange)
self.dd.pair_dict[pair]["first"] = False
@ -571,6 +563,9 @@ class IFreqaiModel(ABC):
self.dd.pair_to_end_of_training_queue(pair)
self.dd.save_data(model, pair, dk)
if self.freqai_info["feature_parameters"].get("plot_feature_importance", False):
plot_feature_importance(model, pair, dk)
if self.freqai_info.get("purge_old_models", False):
self.dd.purge_old_models()

View File

@ -1,6 +1,7 @@
import logging
from datetime import datetime, timezone
from pathlib import Path
from typing import Any
import numpy as np
import pandas as pd
@ -11,6 +12,7 @@ from freqtrade.data.history.history_utils import refresh_backtest_ohlcv_data
from freqtrade.exceptions import OperationalException
from freqtrade.exchange import timeframe_to_seconds
from freqtrade.exchange.exchange import market_is_active
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
from freqtrade.plugins.pairlist.pairlist_helpers import dynamic_expand_pairlist
@ -138,36 +140,30 @@ def get_required_data_timerange(
# )
def plot_feature_importance(model, feature_names, pair, train_dir, count_max=50) -> None:
def plot_feature_importance(model: Any, pair: str, dk: FreqaiDataKitchen,
count_max: int = 25) -> None:
"""
Plot Best and Worst Features by importance for CatBoost model.
Called once per sub-train.
Usage: plot_feature_importance(
model=model,
feature_names=dk.training_features_list,
pair=pair,
train_dir=dk.data_path)
Plot Best and worst features by importance for a single sub-train.
:param model: Any = A model which was `fit` using a common library
such as catboost or lightgbm
:param pair: str = pair e.g. BTC/USD
:param dk: FreqaiDataKitchen = non-persistent data container for current coin/loop
:param count_max: int = the amount of features to be loaded per column
"""
try:
import plotly.graph_objects as go
from plotly.subplots import make_subplots
except ImportError:
logger.exception("Module plotly not found \n Please install using `pip3 install plotly`")
exit(1)
from freqtrade.plot.plotting import go, make_subplots, store_plot_file
from freqtrade.plot.plotting import store_plot_file
# Gather feature importance from model
# Extract feature importance from model
if "catboost.core" in str(model.__class__):
feature_importance = model.get_feature_importance()
elif "lightgbm.sklearn" in str(model.__class__):
feature_importance = model.feature_importances_
else:
raise NotImplementedError(f"Cannot extract feature importance for {model.__class__}")
# TODO: Add support for more libraries
raise NotImplementedError(f"Cannot extract feature importance from {model.__class__}")
# Data preparation
fi_df = pd.DataFrame({
"feature_names": np.array(feature_names),
"feature_names": np.array(dk.training_features_list),
"feature_importance": np.array(feature_importance)
})
fi_df_top = fi_df.nlargest(count_max, "feature_importance")[::-1]
@ -185,9 +181,9 @@ def plot_feature_importance(model, feature_names, pair, train_dir, count_max=50)
fig = make_subplots(rows=1, cols=2, horizontal_spacing=0.5)
fig = add_feature_trace(fig, fi_df_top, 1)
fig = add_feature_trace(fig, fi_df_worst, 2)
fig.update_layout(title_text=f"Best and Worst Features {pair}")
fig.update_layout(title_text=f"Best and worst features by importance {pair}")
# Store plot file
model_dir, train_name = str(train_dir).rsplit("/", 1)
model_dir, train_name = str(dk.data_path).rsplit("/", 1)
fi_dir = Path(f"{model_dir}/feature_importance/{pair.split('/')[0]}")
store_plot_file(fig, f"{train_name}.html", fi_dir)