Updated
This commit is contained in:
parent
12750cb765
commit
1c7daa713b
@ -1,6 +1,9 @@
|
||||
|
||||
# --- Do not remove these libs ---
|
||||
from freqtrade.strategy.interface import IStrategy
|
||||
from typing import Dict, List
|
||||
from hyperopt import hp
|
||||
from functools import reduce
|
||||
from pandas import DataFrame
|
||||
# --------------------------------
|
||||
|
||||
@ -10,12 +13,40 @@ import freqtrade.vendor.qtpylib.indicators as qtpylib
|
||||
import numpy # noqa
|
||||
|
||||
|
||||
# Update this variable if you change the class name
|
||||
class_name = 'TestStrategy'
|
||||
# Make a backup of default_strategy then move this file over your default strategy in freqtrade/strategy and to run:
|
||||
# 'python3.6 freqtrade/main.py -c config.json hyperopt -s all --realistic-simulation -i 5'
|
||||
# Make sure to take note of the if statements at the bottom of the file, and the pattern of > < and >= <= and the triggers configuration.
|
||||
# Then, take note of the results: There is one trigger in the results, map the trigger as an example:
|
||||
# 'Trigger: 7'
|
||||
# The 7th trigger in this file's if statement such as:
|
||||
# 'sar_reversal': (qtpylib.crossed_above(
|
||||
# dataframe['close'], dataframe['sar']
|
||||
#
|
||||
# Drop the trigger into 'def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:' into your default_strategy backup as:
|
||||
# dataframe['close'], dataframe['sar'] &
|
||||
# Then for your other values such as: 'Mfi-Value: 15.00'
|
||||
# The if statement looks like: conditions.append(dataframe['mfi'] < params['mfi']['value']
|
||||
# Drop this in as:
|
||||
# (dataframe['mfi'] < 15.00) &
|
||||
# The last condition in 'def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:' will have no &
|
||||
|
||||
|
||||
# This class is a sample. Feel free to customize it.
|
||||
class TestStrategy(IStrategy):
|
||||
### As an example the sell/buy trend looks like this:
|
||||
# dataframe.loc[
|
||||
# (
|
||||
# (dataframe['adx'] > 70) &
|
||||
# (dataframe['tema'] < dataframe['tema'].shift(1))
|
||||
# ),
|
||||
# 'sell'] = 1
|
||||
#
|
||||
|
||||
# Once done, move your backup strategy back over this one and backtest.
|
||||
|
||||
|
||||
class_name = 'DefaultStrategy'
|
||||
|
||||
|
||||
class DefaultStrategy(IStrategy):
|
||||
"""
|
||||
This is a test strategy to inspire you.
|
||||
More information in https://github.com/gcarq/freqtrade/blob/develop/docs/bot-optimization.md
|
||||
@ -62,7 +93,7 @@ class TestStrategy(IStrategy):
|
||||
# ADX
|
||||
dataframe['adx'] = ta.ADX(dataframe)
|
||||
|
||||
"""
|
||||
|
||||
# Awesome oscillator
|
||||
dataframe['ao'] = qtpylib.awesome_oscillator(dataframe)
|
||||
|
||||
@ -114,18 +145,28 @@ class TestStrategy(IStrategy):
|
||||
stoch_rsi = ta.STOCHRSI(dataframe)
|
||||
dataframe['fastd_rsi'] = stoch_rsi['fastd']
|
||||
dataframe['fastk_rsi'] = stoch_rsi['fastk']
|
||||
"""
|
||||
|
||||
|
||||
# Overlap Studies
|
||||
# ------------------------------------
|
||||
|
||||
|
||||
# Previous Bollinger bands
|
||||
# Because ta.BBANDS implementation is broken with small numbers, it actually
|
||||
# returns middle band for all the three bands. Switch to qtpylib.bollinger_bands
|
||||
# and use middle band instead.
|
||||
# Is broken
|
||||
"""
|
||||
dataframe['blower'] = ta.BBANDS(dataframe, nbdevup=2, nbdevdn=2)['lowerband']
|
||||
"""
|
||||
|
||||
# Bollinger bands
|
||||
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
|
||||
dataframe['bb_lowerband'] = bollinger['lower']
|
||||
dataframe['bb_middleband'] = bollinger['mid']
|
||||
dataframe['bb_upperband'] = bollinger['upper']
|
||||
|
||||
"""
|
||||
|
||||
# EMA - Exponential Moving Average
|
||||
dataframe['ema3'] = ta.EMA(dataframe, timeperiod=3)
|
||||
dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)
|
||||
@ -138,7 +179,6 @@ class TestStrategy(IStrategy):
|
||||
|
||||
# SMA - Simple Moving Average
|
||||
dataframe['sma'] = ta.SMA(dataframe, timeperiod=40)
|
||||
"""
|
||||
|
||||
# TEMA - Triple Exponential Moving Average
|
||||
dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)
|
||||
@ -152,7 +192,7 @@ class TestStrategy(IStrategy):
|
||||
|
||||
# Pattern Recognition - Bullish candlestick patterns
|
||||
# ------------------------------------
|
||||
"""
|
||||
|
||||
# Hammer: values [0, 100]
|
||||
dataframe['CDLHAMMER'] = ta.CDLHAMMER(dataframe)
|
||||
# Inverted Hammer: values [0, 100]
|
||||
@ -165,11 +205,11 @@ class TestStrategy(IStrategy):
|
||||
dataframe['CDLMORNINGSTAR'] = ta.CDLMORNINGSTAR(dataframe) # values [0, 100]
|
||||
# Three White Soldiers: values [0, 100]
|
||||
dataframe['CDL3WHITESOLDIERS'] = ta.CDL3WHITESOLDIERS(dataframe) # values [0, 100]
|
||||
"""
|
||||
|
||||
|
||||
# Pattern Recognition - Bearish candlestick patterns
|
||||
# ------------------------------------
|
||||
"""
|
||||
|
||||
# Hanging Man: values [0, 100]
|
||||
dataframe['CDLHANGINGMAN'] = ta.CDLHANGINGMAN(dataframe)
|
||||
# Shooting Star: values [0, 100]
|
||||
@ -182,11 +222,10 @@ class TestStrategy(IStrategy):
|
||||
dataframe['CDLEVENINGDOJISTAR'] = ta.CDLEVENINGDOJISTAR(dataframe)
|
||||
# Evening Star: values [0, 100]
|
||||
dataframe['CDLEVENINGSTAR'] = ta.CDLEVENINGSTAR(dataframe)
|
||||
"""
|
||||
|
||||
# Pattern Recognition - Bullish/Bearish candlestick patterns
|
||||
# ------------------------------------
|
||||
"""
|
||||
|
||||
# Three Line Strike: values [0, -100, 100]
|
||||
dataframe['CDL3LINESTRIKE'] = ta.CDL3LINESTRIKE(dataframe)
|
||||
# Spinning Top: values [0, -100, 100]
|
||||
@ -199,18 +238,18 @@ class TestStrategy(IStrategy):
|
||||
dataframe['CDL3OUTSIDE'] = ta.CDL3OUTSIDE(dataframe) # values [0, -100, 100]
|
||||
# Three Inside Up/Down: values [0, -100, 100]
|
||||
dataframe['CDL3INSIDE'] = ta.CDL3INSIDE(dataframe) # values [0, -100, 100]
|
||||
"""
|
||||
|
||||
|
||||
# Chart type
|
||||
# ------------------------------------
|
||||
"""
|
||||
|
||||
# Heikinashi stategy
|
||||
heikinashi = qtpylib.heikinashi(dataframe)
|
||||
dataframe['ha_open'] = heikinashi['open']
|
||||
dataframe['ha_close'] = heikinashi['close']
|
||||
dataframe['ha_high'] = heikinashi['high']
|
||||
dataframe['ha_low'] = heikinashi['low']
|
||||
"""
|
||||
|
||||
|
||||
return dataframe
|
||||
|
||||
@ -220,12 +259,65 @@ class TestStrategy(IStrategy):
|
||||
:param dataframe: DataFrame
|
||||
:return: DataFrame with buy column
|
||||
"""
|
||||
dataframe.loc[
|
||||
(
|
||||
(dataframe['adx'] > 30) &
|
||||
(dataframe['tema'] <= dataframe['bb_middleband']) &
|
||||
(dataframe['tema'] > dataframe['tema'].shift(1))
|
||||
if 'uptrend_long_ema' in params and params['uptrend_long_ema']['enabled']:
|
||||
conditions.append(dataframe['ema50'] > dataframe['ema100'])
|
||||
if 'macd_below_zero' in params and params['macd_below_zero']['enabled']:
|
||||
conditions.append(dataframe['macd'] < 0)
|
||||
if 'uptrend_short_ema' in params and params['uptrend_short_ema']['enabled']:
|
||||
conditions.append(dataframe['ema5'] > dataframe['ema10'])
|
||||
if 'mfi' in params and params['mfi']['enabled']:
|
||||
conditions.append(dataframe['mfi'] < params['mfi']['value'])
|
||||
if 'fastd' in params and params['fastd']['enabled']:
|
||||
conditions.append(dataframe['fastd'] < params['fastd']['value'])
|
||||
if 'adx' in params and params['adx']['enabled']:
|
||||
conditions.append(dataframe['adx'] > params['adx']['value'])
|
||||
if 'rsi' in params and params['rsi']['enabled']:
|
||||
conditions.append(dataframe['rsi'] < params['rsi']['value'])
|
||||
if 'over_sar' in params and params['over_sar']['enabled']:
|
||||
conditions.append(dataframe['close'] > dataframe['sar'])
|
||||
if 'green_candle' in params and params['green_candle']['enabled']:
|
||||
conditions.append(dataframe['close'] > dataframe['open'])
|
||||
if 'uptrend_sma' in params and params['uptrend_sma']['enabled']:
|
||||
prevsma = dataframe['sma'].shift(1)
|
||||
conditions.append(dataframe['sma'] > prevsma)
|
||||
# TRIGGERS
|
||||
triggers = {
|
||||
'lower_bb': (
|
||||
dataframe['close'] < dataframe['bb_lowerband']
|
||||
),
|
||||
'lower_bb_tema': (
|
||||
dataframe['tema'] < dataframe['bb_lowerband']
|
||||
),
|
||||
'faststoch10': (qtpylib.crossed_above(
|
||||
dataframe['fastd'], 10.0
|
||||
)),
|
||||
'ao_cross_zero': (qtpylib.crossed_above(
|
||||
dataframe['ao'], 0.0
|
||||
)),
|
||||
'ema3_cross_ema10': (qtpylib.crossed_above(
|
||||
dataframe['ema3'], dataframe['ema10']
|
||||
)),
|
||||
'macd_cross_signal': (qtpylib.crossed_above(
|
||||
dataframe['macd'], dataframe['macdsignal']
|
||||
)),
|
||||
'sar_reversal': (qtpylib.crossed_above(
|
||||
dataframe['close'], dataframe['sar']
|
||||
)),
|
||||
'ht_sine': (qtpylib.crossed_above(
|
||||
dataframe['htleadsine'], dataframe['htsine']
|
||||
)),
|
||||
'heiken_reversal_bull': (
|
||||
(qtpylib.crossed_above(dataframe['ha_close'], dataframe['ha_open'])) &
|
||||
(dataframe['ha_low'] == dataframe['ha_open'])
|
||||
),
|
||||
'di_cross': (qtpylib.crossed_above(
|
||||
dataframe['plus_di'], dataframe['minus_di']
|
||||
)),
|
||||
}
|
||||
conditions.append(triggers.get(params['trigger']['type']))
|
||||
|
||||
dataframe.loc[
|
||||
reduce(lambda x, y: x & y, conditions),
|
||||
'buy'] = 1
|
||||
|
||||
return dataframe
|
||||
@ -239,8 +331,142 @@ class TestStrategy(IStrategy):
|
||||
dataframe.loc[
|
||||
(
|
||||
(dataframe['adx'] > 70) &
|
||||
(dataframe['tema'] > dataframe['bb_middleband']) &
|
||||
(dataframe['tema'] < dataframe['tema'].shift(1))
|
||||
),
|
||||
'sell'] = 1
|
||||
return dataframe
|
||||
|
||||
def hyperopt_space(self) -> List[Dict]:
|
||||
"""
|
||||
Define your Hyperopt space for the strategy
|
||||
:return: Dict
|
||||
"""
|
||||
space = {
|
||||
'macd_below_zero': hp.choice('macd_below_zero', [
|
||||
{'enabled': False},
|
||||
{'enabled': True}
|
||||
]),
|
||||
'mfi': hp.choice('mfi', [
|
||||
{'enabled': False},
|
||||
{'enabled': True, 'value': hp.quniform('mfi-value', 5, 25, 1)}
|
||||
]),
|
||||
'fastd': hp.choice('fastd', [
|
||||
{'enabled': False},
|
||||
{'enabled': True, 'value': hp.quniform('fastd-value', 10, 50, 1)}
|
||||
]),
|
||||
'adx': hp.choice('adx', [
|
||||
{'enabled': False},
|
||||
{'enabled': True, 'value': hp.quniform('adx-value', 15, 50, 1)}
|
||||
]),
|
||||
'rsi': hp.choice('rsi', [
|
||||
{'enabled': False},
|
||||
{'enabled': True, 'value': hp.quniform('rsi-value', 20, 40, 1)}
|
||||
]),
|
||||
'uptrend_long_ema': hp.choice('uptrend_long_ema', [
|
||||
{'enabled': False},
|
||||
{'enabled': True}
|
||||
]),
|
||||
'uptrend_short_ema': hp.choice('uptrend_short_ema', [
|
||||
{'enabled': False},
|
||||
{'enabled': True}
|
||||
]),
|
||||
'over_sar': hp.choice('over_sar', [
|
||||
{'enabled': False},
|
||||
{'enabled': True}
|
||||
]),
|
||||
'green_candle': hp.choice('green_candle', [
|
||||
{'enabled': False},
|
||||
{'enabled': True}
|
||||
]),
|
||||
'uptrend_sma': hp.choice('uptrend_sma', [
|
||||
{'enabled': False},
|
||||
{'enabled': True}
|
||||
]),
|
||||
'trigger': hp.choice('trigger', [
|
||||
{'type': 'lower_bb'},
|
||||
{'type': 'lower_bb_tema'},
|
||||
{'type': 'faststoch10'},
|
||||
{'type': 'ao_cross_zero'},
|
||||
{'type': 'ema3_cross_ema10'},
|
||||
{'type': 'macd_cross_signal'},
|
||||
{'type': 'sar_reversal'},
|
||||
{'type': 'ht_sine'},
|
||||
{'type': 'heiken_reversal_bull'},
|
||||
{'type': 'di_cross'},
|
||||
]),
|
||||
'stoploss': hp.uniform('stoploss', -0.5, -0.02),
|
||||
}
|
||||
return space
|
||||
|
||||
def buy_strategy_generator(self, params) -> None:
|
||||
"""
|
||||
Define the buy strategy parameters to be used by hyperopt
|
||||
"""
|
||||
def populate_buy_trend(dataframe: DataFrame) -> DataFrame:
|
||||
conditions = []
|
||||
# GUARDS AND TRENDS
|
||||
if 'uptrend_long_ema' in params and params['uptrend_long_ema']['enabled']:
|
||||
conditions.append(dataframe['ema50'] > dataframe['ema100'])
|
||||
if 'macd_below_zero' in params and params['macd_below_zero']['enabled']:
|
||||
conditions.append(dataframe['macd'] < 0)
|
||||
if 'uptrend_short_ema' in params and params['uptrend_short_ema']['enabled']:
|
||||
conditions.append(dataframe['ema5'] > dataframe['ema10'])
|
||||
if 'mfi' in params and params['mfi']['enabled']:
|
||||
conditions.append(dataframe['mfi'] < params['mfi']['value'])
|
||||
if 'fastd' in params and params['fastd']['enabled']:
|
||||
conditions.append(dataframe['fastd'] < params['fastd']['value'])
|
||||
if 'adx' in params and params['adx']['enabled']:
|
||||
conditions.append(dataframe['adx'] > params['adx']['value'])
|
||||
if 'rsi' in params and params['rsi']['enabled']:
|
||||
conditions.append(dataframe['rsi'] < params['rsi']['value'])
|
||||
if 'over_sar' in params and params['over_sar']['enabled']:
|
||||
conditions.append(dataframe['close'] > dataframe['sar'])
|
||||
if 'green_candle' in params and params['green_candle']['enabled']:
|
||||
conditions.append(dataframe['close'] > dataframe['open'])
|
||||
if 'uptrend_sma' in params and params['uptrend_sma']['enabled']:
|
||||
prevsma = dataframe['sma'].shift(1)
|
||||
conditions.append(dataframe['sma'] > prevsma)
|
||||
|
||||
# TRIGGERS
|
||||
triggers = {
|
||||
'lower_bb': (
|
||||
dataframe['close'] < dataframe['bb_lowerband']
|
||||
),
|
||||
'lower_bb_tema': (
|
||||
dataframe['tema'] < dataframe['bb_lowerband']
|
||||
),
|
||||
'faststoch10': (qtpylib.crossed_above(
|
||||
dataframe['fastd'], 10.0
|
||||
)),
|
||||
'ao_cross_zero': (qtpylib.crossed_above(
|
||||
dataframe['ao'], 0.0
|
||||
)),
|
||||
'ema3_cross_ema10': (qtpylib.crossed_above(
|
||||
dataframe['ema3'], dataframe['ema10']
|
||||
)),
|
||||
'macd_cross_signal': (qtpylib.crossed_above(
|
||||
dataframe['macd'], dataframe['macdsignal']
|
||||
)),
|
||||
'sar_reversal': (qtpylib.crossed_above(
|
||||
dataframe['close'], dataframe['sar']
|
||||
)),
|
||||
'ht_sine': (qtpylib.crossed_above(
|
||||
dataframe['htleadsine'], dataframe['htsine']
|
||||
)),
|
||||
'heiken_reversal_bull': (
|
||||
(qtpylib.crossed_above(dataframe['ha_close'], dataframe['ha_open'])) &
|
||||
(dataframe['ha_low'] == dataframe['ha_open'])
|
||||
),
|
||||
'di_cross': (qtpylib.crossed_above(
|
||||
dataframe['plus_di'], dataframe['minus_di']
|
||||
)),
|
||||
}
|
||||
conditions.append(triggers.get(params['trigger']['type']))
|
||||
|
||||
dataframe.loc[
|
||||
reduce(lambda x, y: x & y, conditions),
|
||||
'buy'] = 1
|
||||
|
||||
return dataframe
|
||||
|
||||
return populate_buy_trend
|
||||
|
Loading…
Reference in New Issue
Block a user