This commit is contained in:
MoonGem 2018-03-23 16:41:06 -05:00 committed by GitHub
parent 12750cb765
commit 1c7daa713b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -1,6 +1,9 @@
# --- Do not remove these libs --- # --- Do not remove these libs ---
from freqtrade.strategy.interface import IStrategy from freqtrade.strategy.interface import IStrategy
from typing import Dict, List
from hyperopt import hp
from functools import reduce
from pandas import DataFrame from pandas import DataFrame
# -------------------------------- # --------------------------------
@ -10,12 +13,40 @@ import freqtrade.vendor.qtpylib.indicators as qtpylib
import numpy # noqa import numpy # noqa
# Update this variable if you change the class name # Make a backup of default_strategy then move this file over your default strategy in freqtrade/strategy and to run:
class_name = 'TestStrategy' # 'python3.6 freqtrade/main.py -c config.json hyperopt -s all --realistic-simulation -i 5'
# Make sure to take note of the if statements at the bottom of the file, and the pattern of > < and >= <= and the triggers configuration.
# Then, take note of the results: There is one trigger in the results, map the trigger as an example:
# 'Trigger: 7'
# The 7th trigger in this file's if statement such as:
# 'sar_reversal': (qtpylib.crossed_above(
# dataframe['close'], dataframe['sar']
#
# Drop the trigger into 'def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:' into your default_strategy backup as:
# dataframe['close'], dataframe['sar'] &
# Then for your other values such as: 'Mfi-Value: 15.00'
# The if statement looks like: conditions.append(dataframe['mfi'] < params['mfi']['value']
# Drop this in as:
# (dataframe['mfi'] < 15.00) &
# The last condition in 'def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:' will have no &
# This class is a sample. Feel free to customize it. ### As an example the sell/buy trend looks like this:
class TestStrategy(IStrategy): # dataframe.loc[
# (
# (dataframe['adx'] > 70) &
# (dataframe['tema'] < dataframe['tema'].shift(1))
# ),
# 'sell'] = 1
#
# Once done, move your backup strategy back over this one and backtest.
class_name = 'DefaultStrategy'
class DefaultStrategy(IStrategy):
""" """
This is a test strategy to inspire you. This is a test strategy to inspire you.
More information in https://github.com/gcarq/freqtrade/blob/develop/docs/bot-optimization.md More information in https://github.com/gcarq/freqtrade/blob/develop/docs/bot-optimization.md
@ -62,7 +93,7 @@ class TestStrategy(IStrategy):
# ADX # ADX
dataframe['adx'] = ta.ADX(dataframe) dataframe['adx'] = ta.ADX(dataframe)
"""
# Awesome oscillator # Awesome oscillator
dataframe['ao'] = qtpylib.awesome_oscillator(dataframe) dataframe['ao'] = qtpylib.awesome_oscillator(dataframe)
@ -114,18 +145,28 @@ class TestStrategy(IStrategy):
stoch_rsi = ta.STOCHRSI(dataframe) stoch_rsi = ta.STOCHRSI(dataframe)
dataframe['fastd_rsi'] = stoch_rsi['fastd'] dataframe['fastd_rsi'] = stoch_rsi['fastd']
dataframe['fastk_rsi'] = stoch_rsi['fastk'] dataframe['fastk_rsi'] = stoch_rsi['fastk']
"""
# Overlap Studies # Overlap Studies
# ------------------------------------ # ------------------------------------
# Previous Bollinger bands
# Because ta.BBANDS implementation is broken with small numbers, it actually
# returns middle band for all the three bands. Switch to qtpylib.bollinger_bands
# and use middle band instead.
# Is broken
"""
dataframe['blower'] = ta.BBANDS(dataframe, nbdevup=2, nbdevdn=2)['lowerband']
"""
# Bollinger bands # Bollinger bands
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2) bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
dataframe['bb_lowerband'] = bollinger['lower'] dataframe['bb_lowerband'] = bollinger['lower']
dataframe['bb_middleband'] = bollinger['mid'] dataframe['bb_middleband'] = bollinger['mid']
dataframe['bb_upperband'] = bollinger['upper'] dataframe['bb_upperband'] = bollinger['upper']
"""
# EMA - Exponential Moving Average # EMA - Exponential Moving Average
dataframe['ema3'] = ta.EMA(dataframe, timeperiod=3) dataframe['ema3'] = ta.EMA(dataframe, timeperiod=3)
dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5) dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)
@ -138,7 +179,6 @@ class TestStrategy(IStrategy):
# SMA - Simple Moving Average # SMA - Simple Moving Average
dataframe['sma'] = ta.SMA(dataframe, timeperiod=40) dataframe['sma'] = ta.SMA(dataframe, timeperiod=40)
"""
# TEMA - Triple Exponential Moving Average # TEMA - Triple Exponential Moving Average
dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9) dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)
@ -152,7 +192,7 @@ class TestStrategy(IStrategy):
# Pattern Recognition - Bullish candlestick patterns # Pattern Recognition - Bullish candlestick patterns
# ------------------------------------ # ------------------------------------
"""
# Hammer: values [0, 100] # Hammer: values [0, 100]
dataframe['CDLHAMMER'] = ta.CDLHAMMER(dataframe) dataframe['CDLHAMMER'] = ta.CDLHAMMER(dataframe)
# Inverted Hammer: values [0, 100] # Inverted Hammer: values [0, 100]
@ -165,11 +205,11 @@ class TestStrategy(IStrategy):
dataframe['CDLMORNINGSTAR'] = ta.CDLMORNINGSTAR(dataframe) # values [0, 100] dataframe['CDLMORNINGSTAR'] = ta.CDLMORNINGSTAR(dataframe) # values [0, 100]
# Three White Soldiers: values [0, 100] # Three White Soldiers: values [0, 100]
dataframe['CDL3WHITESOLDIERS'] = ta.CDL3WHITESOLDIERS(dataframe) # values [0, 100] dataframe['CDL3WHITESOLDIERS'] = ta.CDL3WHITESOLDIERS(dataframe) # values [0, 100]
"""
# Pattern Recognition - Bearish candlestick patterns # Pattern Recognition - Bearish candlestick patterns
# ------------------------------------ # ------------------------------------
"""
# Hanging Man: values [0, 100] # Hanging Man: values [0, 100]
dataframe['CDLHANGINGMAN'] = ta.CDLHANGINGMAN(dataframe) dataframe['CDLHANGINGMAN'] = ta.CDLHANGINGMAN(dataframe)
# Shooting Star: values [0, 100] # Shooting Star: values [0, 100]
@ -182,11 +222,10 @@ class TestStrategy(IStrategy):
dataframe['CDLEVENINGDOJISTAR'] = ta.CDLEVENINGDOJISTAR(dataframe) dataframe['CDLEVENINGDOJISTAR'] = ta.CDLEVENINGDOJISTAR(dataframe)
# Evening Star: values [0, 100] # Evening Star: values [0, 100]
dataframe['CDLEVENINGSTAR'] = ta.CDLEVENINGSTAR(dataframe) dataframe['CDLEVENINGSTAR'] = ta.CDLEVENINGSTAR(dataframe)
"""
# Pattern Recognition - Bullish/Bearish candlestick patterns # Pattern Recognition - Bullish/Bearish candlestick patterns
# ------------------------------------ # ------------------------------------
"""
# Three Line Strike: values [0, -100, 100] # Three Line Strike: values [0, -100, 100]
dataframe['CDL3LINESTRIKE'] = ta.CDL3LINESTRIKE(dataframe) dataframe['CDL3LINESTRIKE'] = ta.CDL3LINESTRIKE(dataframe)
# Spinning Top: values [0, -100, 100] # Spinning Top: values [0, -100, 100]
@ -199,18 +238,18 @@ class TestStrategy(IStrategy):
dataframe['CDL3OUTSIDE'] = ta.CDL3OUTSIDE(dataframe) # values [0, -100, 100] dataframe['CDL3OUTSIDE'] = ta.CDL3OUTSIDE(dataframe) # values [0, -100, 100]
# Three Inside Up/Down: values [0, -100, 100] # Three Inside Up/Down: values [0, -100, 100]
dataframe['CDL3INSIDE'] = ta.CDL3INSIDE(dataframe) # values [0, -100, 100] dataframe['CDL3INSIDE'] = ta.CDL3INSIDE(dataframe) # values [0, -100, 100]
"""
# Chart type # Chart type
# ------------------------------------ # ------------------------------------
"""
# Heikinashi stategy # Heikinashi stategy
heikinashi = qtpylib.heikinashi(dataframe) heikinashi = qtpylib.heikinashi(dataframe)
dataframe['ha_open'] = heikinashi['open'] dataframe['ha_open'] = heikinashi['open']
dataframe['ha_close'] = heikinashi['close'] dataframe['ha_close'] = heikinashi['close']
dataframe['ha_high'] = heikinashi['high'] dataframe['ha_high'] = heikinashi['high']
dataframe['ha_low'] = heikinashi['low'] dataframe['ha_low'] = heikinashi['low']
"""
return dataframe return dataframe
@ -220,12 +259,65 @@ class TestStrategy(IStrategy):
:param dataframe: DataFrame :param dataframe: DataFrame
:return: DataFrame with buy column :return: DataFrame with buy column
""" """
dataframe.loc[ if 'uptrend_long_ema' in params and params['uptrend_long_ema']['enabled']:
( conditions.append(dataframe['ema50'] > dataframe['ema100'])
(dataframe['adx'] > 30) & if 'macd_below_zero' in params and params['macd_below_zero']['enabled']:
(dataframe['tema'] <= dataframe['bb_middleband']) & conditions.append(dataframe['macd'] < 0)
(dataframe['tema'] > dataframe['tema'].shift(1)) if 'uptrend_short_ema' in params and params['uptrend_short_ema']['enabled']:
conditions.append(dataframe['ema5'] > dataframe['ema10'])
if 'mfi' in params and params['mfi']['enabled']:
conditions.append(dataframe['mfi'] < params['mfi']['value'])
if 'fastd' in params and params['fastd']['enabled']:
conditions.append(dataframe['fastd'] < params['fastd']['value'])
if 'adx' in params and params['adx']['enabled']:
conditions.append(dataframe['adx'] > params['adx']['value'])
if 'rsi' in params and params['rsi']['enabled']:
conditions.append(dataframe['rsi'] < params['rsi']['value'])
if 'over_sar' in params and params['over_sar']['enabled']:
conditions.append(dataframe['close'] > dataframe['sar'])
if 'green_candle' in params and params['green_candle']['enabled']:
conditions.append(dataframe['close'] > dataframe['open'])
if 'uptrend_sma' in params and params['uptrend_sma']['enabled']:
prevsma = dataframe['sma'].shift(1)
conditions.append(dataframe['sma'] > prevsma)
# TRIGGERS
triggers = {
'lower_bb': (
dataframe['close'] < dataframe['bb_lowerband']
), ),
'lower_bb_tema': (
dataframe['tema'] < dataframe['bb_lowerband']
),
'faststoch10': (qtpylib.crossed_above(
dataframe['fastd'], 10.0
)),
'ao_cross_zero': (qtpylib.crossed_above(
dataframe['ao'], 0.0
)),
'ema3_cross_ema10': (qtpylib.crossed_above(
dataframe['ema3'], dataframe['ema10']
)),
'macd_cross_signal': (qtpylib.crossed_above(
dataframe['macd'], dataframe['macdsignal']
)),
'sar_reversal': (qtpylib.crossed_above(
dataframe['close'], dataframe['sar']
)),
'ht_sine': (qtpylib.crossed_above(
dataframe['htleadsine'], dataframe['htsine']
)),
'heiken_reversal_bull': (
(qtpylib.crossed_above(dataframe['ha_close'], dataframe['ha_open'])) &
(dataframe['ha_low'] == dataframe['ha_open'])
),
'di_cross': (qtpylib.crossed_above(
dataframe['plus_di'], dataframe['minus_di']
)),
}
conditions.append(triggers.get(params['trigger']['type']))
dataframe.loc[
reduce(lambda x, y: x & y, conditions),
'buy'] = 1 'buy'] = 1
return dataframe return dataframe
@ -239,8 +331,142 @@ class TestStrategy(IStrategy):
dataframe.loc[ dataframe.loc[
( (
(dataframe['adx'] > 70) & (dataframe['adx'] > 70) &
(dataframe['tema'] > dataframe['bb_middleband']) &
(dataframe['tema'] < dataframe['tema'].shift(1)) (dataframe['tema'] < dataframe['tema'].shift(1))
), ),
'sell'] = 1 'sell'] = 1
return dataframe return dataframe
def hyperopt_space(self) -> List[Dict]:
"""
Define your Hyperopt space for the strategy
:return: Dict
"""
space = {
'macd_below_zero': hp.choice('macd_below_zero', [
{'enabled': False},
{'enabled': True}
]),
'mfi': hp.choice('mfi', [
{'enabled': False},
{'enabled': True, 'value': hp.quniform('mfi-value', 5, 25, 1)}
]),
'fastd': hp.choice('fastd', [
{'enabled': False},
{'enabled': True, 'value': hp.quniform('fastd-value', 10, 50, 1)}
]),
'adx': hp.choice('adx', [
{'enabled': False},
{'enabled': True, 'value': hp.quniform('adx-value', 15, 50, 1)}
]),
'rsi': hp.choice('rsi', [
{'enabled': False},
{'enabled': True, 'value': hp.quniform('rsi-value', 20, 40, 1)}
]),
'uptrend_long_ema': hp.choice('uptrend_long_ema', [
{'enabled': False},
{'enabled': True}
]),
'uptrend_short_ema': hp.choice('uptrend_short_ema', [
{'enabled': False},
{'enabled': True}
]),
'over_sar': hp.choice('over_sar', [
{'enabled': False},
{'enabled': True}
]),
'green_candle': hp.choice('green_candle', [
{'enabled': False},
{'enabled': True}
]),
'uptrend_sma': hp.choice('uptrend_sma', [
{'enabled': False},
{'enabled': True}
]),
'trigger': hp.choice('trigger', [
{'type': 'lower_bb'},
{'type': 'lower_bb_tema'},
{'type': 'faststoch10'},
{'type': 'ao_cross_zero'},
{'type': 'ema3_cross_ema10'},
{'type': 'macd_cross_signal'},
{'type': 'sar_reversal'},
{'type': 'ht_sine'},
{'type': 'heiken_reversal_bull'},
{'type': 'di_cross'},
]),
'stoploss': hp.uniform('stoploss', -0.5, -0.02),
}
return space
def buy_strategy_generator(self, params) -> None:
"""
Define the buy strategy parameters to be used by hyperopt
"""
def populate_buy_trend(dataframe: DataFrame) -> DataFrame:
conditions = []
# GUARDS AND TRENDS
if 'uptrend_long_ema' in params and params['uptrend_long_ema']['enabled']:
conditions.append(dataframe['ema50'] > dataframe['ema100'])
if 'macd_below_zero' in params and params['macd_below_zero']['enabled']:
conditions.append(dataframe['macd'] < 0)
if 'uptrend_short_ema' in params and params['uptrend_short_ema']['enabled']:
conditions.append(dataframe['ema5'] > dataframe['ema10'])
if 'mfi' in params and params['mfi']['enabled']:
conditions.append(dataframe['mfi'] < params['mfi']['value'])
if 'fastd' in params and params['fastd']['enabled']:
conditions.append(dataframe['fastd'] < params['fastd']['value'])
if 'adx' in params and params['adx']['enabled']:
conditions.append(dataframe['adx'] > params['adx']['value'])
if 'rsi' in params and params['rsi']['enabled']:
conditions.append(dataframe['rsi'] < params['rsi']['value'])
if 'over_sar' in params and params['over_sar']['enabled']:
conditions.append(dataframe['close'] > dataframe['sar'])
if 'green_candle' in params and params['green_candle']['enabled']:
conditions.append(dataframe['close'] > dataframe['open'])
if 'uptrend_sma' in params and params['uptrend_sma']['enabled']:
prevsma = dataframe['sma'].shift(1)
conditions.append(dataframe['sma'] > prevsma)
# TRIGGERS
triggers = {
'lower_bb': (
dataframe['close'] < dataframe['bb_lowerband']
),
'lower_bb_tema': (
dataframe['tema'] < dataframe['bb_lowerband']
),
'faststoch10': (qtpylib.crossed_above(
dataframe['fastd'], 10.0
)),
'ao_cross_zero': (qtpylib.crossed_above(
dataframe['ao'], 0.0
)),
'ema3_cross_ema10': (qtpylib.crossed_above(
dataframe['ema3'], dataframe['ema10']
)),
'macd_cross_signal': (qtpylib.crossed_above(
dataframe['macd'], dataframe['macdsignal']
)),
'sar_reversal': (qtpylib.crossed_above(
dataframe['close'], dataframe['sar']
)),
'ht_sine': (qtpylib.crossed_above(
dataframe['htleadsine'], dataframe['htsine']
)),
'heiken_reversal_bull': (
(qtpylib.crossed_above(dataframe['ha_close'], dataframe['ha_open'])) &
(dataframe['ha_low'] == dataframe['ha_open'])
),
'di_cross': (qtpylib.crossed_above(
dataframe['plus_di'], dataframe['minus_di']
)),
}
conditions.append(triggers.get(params['trigger']['type']))
dataframe.loc[
reduce(lambda x, y: x & y, conditions),
'buy'] = 1
return dataframe
return populate_buy_trend